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A B S T R A C T   

Deep learning (DL) methods have been increasingly applied to neuroimaging data to identify patients with 
psychiatric and neurological disorders. This review provides an overview of the different DL applications within 
psychiatry and compares DL model accuracy to standard machine learning (SML). Fifty-three articles were 
included for qualitative analysis, primarily investigating autism spectrum disorder (ASD; n = 22), schizophrenia 
(SZ; n = 22) and attention-deficit/hyperactivity disorder (ADHD; n = 9). Thirty-two of the thirty-five studies that 
directly compared DL to SML reported a higher accuracy for DL. Only sixteen studies could be included in a meta- 
regression to quantitatively compare DL and SML performance. This showed a higher odds ratio for DL models, 
though the comparison attained significance only for ASD. Our results suggest that deep learning of neuro
imaging data is a promising tool for the classification of individual psychiatric patients. However, it is not yet 
used to its full potential: most studies use pre-engineered features, whereas one of the main advantages of DL is 
its ability to learn representations of minimally processed data. Our current evaluation is limited by minimal 
reporting of performance measures to enable quantitative comparisons, and the restriction to ADHD, SZ and ASD 
as current research focusses on large publicly available datasets. To truly uncover the added value of DL, we need 
carefully designed comparisons of SML and DL models which are yet rarely performed.   

1. Introduction 

Clinical psychiatry is based on observation and self-report which are 
inherently subjective. There are no biomarkers available that could 
enable objective diagnosis or biology-based treatment targeting. Prom
ising approaches for the development of biomarkers include non- 
invasive neuroimaging techniques such as structural or functional 
magnetic resonance imaging (MRI) that can capture the structure and 
function of the healthy and diseased brain. Over the last two decades, 
many neuroimaging studies have been performed to gain insight in the 
neural correlates of psychiatric disorders. Most of these studies have 
compared patients to controls and reported neuroanatomical or neuro
functional differences. This raised hopes of finding imaging biomarkers 
that could aid the diagnostic process. However, these studies typically 
relied on mass univariate analysis (group level statistical analysis) and 
reported group level differences in specific voxels or regions of interest 
(ROI) in the brain, whereas several psychiatric symptoms are best 
explained by network-level changes in structure and function rather 
than specific local alterations (Sheffield and Barch, 2016; Mulders et al., 

2012; Kennedy and Courchesne, 2008; Rubinov and Sporns, 2010; Gong 
et al., 2009). 

As the vast amount of data in neuroimaging scans has made it 
challenging to integrate all the data available, the neuroimaging com
munity has developed a growing interest in machine learning (ML) ap
proaches. ML algorithms are mathematical models that are developed to 
learn patterns in existing data in order to make predictions on new data. 
A major advantage of ML techniques is their ability to take inter-regional 
correlations into account, enabling detection of subtle and spatially 
distributed effects in the brain (Orrù et al., 2012). Moreover, whereas 
mass-univariate results explain group differences, ML models allow 
statistical inference at the level of the individual that could aid indi
vidual diagnostic or prognostic decisions (Arbabshirani et al., 2017). 

Well-known pattern analysis methods, such as linear discriminant 
analysis (LDA), logistic regression (LR) and support vector machine 
(SVM) have been applied to neuroimaging data to detect psychiatric 
disease with varying degrees of success (Arbabshirani et al., 2017). 
Classification studies using ML algorithms on highly dimensional neu
roimaging data usually require several preprocessing steps involving 
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feature extraction and feature selection to reduce the input dimensions 
(Lu and Weng, 2007). These procedures require subjective feature 
choices that raise reproducibility issues (Samper-González et al., 2018). 

After breakthroughs in performance in a large variety of fields, deep 
learning (DL), a specific class of machine learning algorithms, has found 
its way into the neuroimaging community. DL models are hierarchical 
models that achieve increasingly higher levels of abstraction and 
complexity by stacking consecutive nonlinear transformations (see 

Figs. 1 and 2, Box 1 and Vieira et al., 2017 for an introduction). This 
ability makes DL specifically suitable for neuroimaging applications as 
psychiatric and neurological disorders are often characterised by com
plex, subtle and diffuse patterns (Plis, 2014). Moreover, an essential 
difference between standard machine learning (SML) and DL techniques 
is that DL enables the learning of optimal feature representation from 
the raw data, eliminating the need for subjective feature engineering for 
SML techniques. This results in a more objective and less bias-prone 

Fig. 1. a). An artificial neuron or node. Each input × is associated with a weight w. The sum of all weighted inputs is passed onto a nonlinear activation function f 
that leads to an output y. b) An example of a multilayer perceptron. It shows input layer, two hidden layers and an output layer. For each neuron in the first hidden 
layer, a nonlinear function is applied to the weighted sum of its inputs. The result of this transformation is the input for the consecutive layer. 
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process in DL (Vieira et al., 2017).  
Box 1. A short introduction to deep learning 

Deep learning is a group of machine leaning methods that tries to learn features from 
the data by a hierarchical structure of consecutive nonlinear transformations. In the 
present review, we define a deep learning model as follows: a model is a deep model 
when it included two or more stacked layers and therefore learns features through a 
hierarchical learning process. Although deep learning is a subgroup of machine 
learning, when we refer to machine learning in this review, we refer to shallow 
machine learning models (such as support vector machines). 

The building blocks of deep learning methods are called artificial neurons (see 
Fig. 1a). The simplest form of an artificial neuron is the single-layer perceptron as 
proposed by Rosenblatt (1958). The perceptron takes inputs x that are multiplied 
with connection weights w. The sum of all weighted inputs is then passed onto a 
nonlinear activation function such as tanh, sigmoid or rectified linear unit (ReLu). 
The main idea of the perceptron is to learn the values of the weights w in order to 
make a decision whether the neuron should fire or not. 

By stacking several of these neurons, a multi-layer perceptron (MLP) is created (see 
Fig. 1b). An MLP is organized in layers; an input layer, one or more hidden layer(s) 
and an output layer. In the input layer, the input data is where the data is entered 
into the model, the hidden layers learn increasingly abstract features and the output 
layer assigns a class using the learned features. The type of network determines how 
these artificial neurons are connected to other neurons. The simplest form of a deep 
network is the multilayer perceptron (MLP), which is fully connected, meaning that 
each neuron is connected to all neurons of the previous layer. Each connection is 
associated with a weight value, reflecting the strength and direction (positive or 
negative) between two neurons in the network. 

During training, the network learns through a gradient descent-based algorithm, that 
aims to find the optimal weights that lead to a minimal error between predicted and 
true outputs. The idea behind training with gradient descent is as follows: as 
training data is fed through the network, the gradient of the loss function is 
computed with respect to every weight using the chain rule, and the weights are 
changed using gradient descent.   

Box 2. Deep learning architectures 

Besides MLPs, there exists a wide variety of deep learning architectures. We will 
shortly discuss the most common architectures in neuroimaging here (see Fig. 2). 
For a more elaborate overview of methods see Jo et al. (2019) and Vieira et al. 
(2017)  

A. Deep belief network (DBN) 
Whereas MLPs only have feedforward connections, the DBN has undirected 

connections between some layers. These undirected layers are called Restricted 
Boltzmann Machines (RBM) and can be trained both supervised and unsupervised.  

B. Convolutional neural network (CNN) 
CNNs are mostly used in image recognition. They work by learning ‘convolutions’ or 

‘filters’ to detect features. By convolving images, it reduces the data into a form that 
is easier to process, without losing critical information.  

C. Recurrent neural network (RNN) 
RNNs do not only contain feedforward connections, but also feedback connections. 

These feedback connections allow the retainment of information from previous 
inputs (akin to a form of memory) to affect the current output. The most effective 
RNNs are gated RNNs such as long short-term memory (LSTM) and networks based 
on the gated recurrent unit (GRU).  

D. Auto Encoder (AE) 
AE is an unsupervised learning method that is used to encode the data in a smaller 

latent representation. They consist of an encoder and decoder part and are trained 
by making the output value approximate to its input value.  

A previous review from 2017 has shown that DL methods have been 
successfully applied in neuroimaging to classify Alzheimer, ADHD, and 
to predict disease conversion (Vieira et al., 2017). Since then, the advent 
of data-sharing initiatives and advances in DL have led to a large in
crease in DL applications in psychiatry. They show great promise for 

Fig. 2. Architectural structures in deep learning. A. Deep Belief Network (DBN). B. Convolutional neural network (CNN). C. Recurrent neural network (RNN). D. 
Auto Encoder (AE). 
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uncovering reproducible patterns of brain structure and function across 
larger and heterogeneous datasets (Durstewitz et al., 2019; Bzdok and 
Meyer-Lindenberg, 2018). 

However, there is still a lack of carefully designed comparisons to 
benchmark SML and DL performance in brain imaging tasks. Like pre
ceding influential technologies, the expectations of future performance 
of DL in brain imaging might be hyped (Abrol et al., 2020) and it is still 
unclear to what extent it improves capturing the relationship between 
brain activity and behaviour. Whereas some studies suggest that DL does 
not improve prediction of behaviour as compared to simple, linear 
models (He et al., 2020; Schulz et al., 2019; Guerdan, et al., 2019, others 
claim that there exists both linear and non-linear relationships between 
brain connectivity and behaviour and that DL is best capable of fitting 
both (Bertolero and Bassett, 2020). DL seems to improve classification of 
brain age and sex prediction (Peng et al., 2021) and DL have been re
ported to improve AD detection (Vieira et al., 2017; Jo et al., 2019), but 
whether DL improves classification of psychiatric disease has yet to be 
determined. 

The datasets where DL models are known to outperform SML (i.e. 
Imagenet), have a relative high number of instances and low dimen
sionality as compared to brain imaging data. Since DL is a data-hungry 
technique, the question arises whether it can extract sufficient mean
ingful patterns out of the high dimensional data with a small amount of 
training data. To surpass this problem, various studies have used hand 
crafted input features with different levels of feature extraction along 
the spatial and/or temporal dimensions to reduce the input dimen
sionality. Although this is a practical solution to check what DL is 
capable of in comparison to SML, it also deprives DL of its main 
advantage: representation learning without feature engineering (Abrol 
et al., 2020). Given the endless choices in feature extraction, models and 
preprocessing steps, there is a large variety in DL modelling and features 
that have been applied to investigate psychiatric disorders. This leaves 
us with many questions regarding the type and input for DL applications 
and without any validated benchmark model. 

Given the high interest in DL within the field of neuroimaging for 
psychiatry and the wide variety of approaches, this review aims to give 
an overview of studies that have applied DL to neuroimaging data for the 
classification of psychiatric disorders. This review will solely focus on 
studies related to classification of psychiatric disorders and does not 
include studies on other neurological disorders such as Alzheimer’s 
Disease (AD) as AD has been extensively reviewed recently (Jo et al., 
2019; Rathore et al., 2017; Ebrahimighahnavieh et al., 2020). Moreover, 
the pathology of many neurological disorders, including AD, largely 
involves anatomical changes, whereas psychiatric disorders usually 
involve subtle, functional alterations that are mainly investigated 
through functional brain scans. In this paper we will discuss the main 
themes that have emerged from our review and include a quantitative 
comparison of the performance of deep learning and standard machine 
learning techniques. Finally, we will make a number of recommenda
tions for future research. 

2. Methods 

We conducted a systematic review of published studies that used DL 
approaches for diagnostic classification of psychiatric disorders using 
neuroimaging. The search strategy is outlined in detail in the PRISMA 
flow diagram in Fig. 3. 

2.1. Identification 

We conducted a literature search in PUBMED and IEEE Xplore using 
the following search string: (“deep learning” OR “deep architecture” OR 
“artificial neural network” OR “convolutional neural network” OR 
“convolutional network” OR “CNN” OR “recurrent neural network” OR 
“RNN” OR “Auto-Encoder” OR “Autoencoder” OR “Deep belief network” 
OR “DBN” OR “Restricted Boltzmann Machine” OR “RBM” OR “Long 

Short Term Memory” OR “Long Short-Term Memory” OR “LSTM” OR 
“Gated Recurrent Units” OR “GRU”) AND (psychiatry OR psychiatric OR 
classification OR diagnosis OR prediction OR prognosis OR outcome) 
AND (neuroimaging OR MRI OR “Magnetic Resonance Imaging” OR 
“fMRI” OR “functional Magnetic Resonance Imaging”) which is a com
bination of search terms used in previous reviews on deep learning in 
neuroimaging (Vieira et al., 2017; Jo et al., 2019). The search was 
limited to articles published from the 1st of January 2013 till the 30th of 
September 2019. 

In addition, articles in PubMed were identified that cited the previ
ous systematic review on deep learning in neuroimaging of Vieira et al. 
(2017). Reference lists of identified articles were further searched to 
select those articles that were deemed appropriate. For the scope of this 
study, we excluded studies using PET or EEG, although there is some 
evidence that DL can be used in this type of data (Page et al., 2014). 
Following this approach, 1176 studies were identified. 

2.2. Screening and inclusion 

64 Articles were eligible for full-text assessment based on title and 
abstract screening. Articles were included if they were a peer-reviewed 
full-text original research article written in English using a deep learning 
model for classification of a psychiatric disorder using (f)MRI. Upon full 
manuscript reading, 11 articles were excluded due to the lack of a clear 
performance measure (4), not performing a classification task of a psy
chiatric disorder (4), lack of a full manuscript (1), and not using a deep 
learning model (1), yielding a total of 53 included articles. For quanti
tative meta-analysis, we included 29 articles that reported sensitivity 
and specificity. For comparison with SML techniques, we included 15 
articles that also reported sensitivity and specificity for DL and SML. 

From the 53 included papers there were 4 that developed a single 
model and tested classification performance for 2 different samples 
(different psychiatric disorders) (Sen et al., 2018; Pinaya et al., 2019; 
Matsubara et al., 2019; Wang et al., 2019). These papers are included 
twice: they are shown independently in the two corresponding tables 
and are analysed as independent studies, yielding a total of 57 studies for 
qualitative analysis, 32 for quantitative analysis for all DL studies and 16 
for quantitative meta-analysis for DL-SML comparison. 

2.3. Qualitative analysis 

The included studies were grouped per disorder. We extracted data 
from all studies to compare key aspects such as sample sizes, type of 
features, classifier and reported accuracies. Data extraction was done by 
two independent researchers and discussed on consistency until agree
ment was reached. Next, we composed a narrative review of findings 
from included studies per disorder. Finally, we included visual sum
maries for all studies combined to discuss occurring themes in the 
literature. 

2.4. Quantitative meta-analysis 

All meta-analyses were conducted using the mada and metaphor 
package in R. As pooling sensitivities or specificities can be misleading 
(Gatsonis and Paliwal, 2006), we have pooled studies using diagnostic 
odds ratios (DOR) according to the Reitsma model and the Cochrane 
handbook for diagnostic tests of accuracy studies (Reitsma et al., 2005; 
Macaskill et al., 2010). The DOR considers both sensitivity and speci
ficity. To visualize between study performance differences, a forest plot 
of the DORs with bootstrapped 95% confidence intervals is given, sub
divided per disorder. In order to assess whether DL and SML models 
obtain different classification performances, we conducted meta- 
regression with classification method as covariate. We performed this 
subgroup analysis for DOR values in the metaphor package using 
bootstrapped confidence intervaIs. We also performed this meta- 
regression for sensitivity and false positive rates with confidence 
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intervals provided by the mada package (Doebler and Holling, 2015). In 
addition, the meta-regression was repeated for the largest subgroups 
separately. Significance was set at an alpha level of 0.05. 

3. Results 

The vast majority of studies addressed the classification of autism 
spectrum disorder (ASD) (n = 22) or schizophrenia (SZ) (n = 22). We 
also retrieved 9 studies for attention-deficit/hyperactivity disorder 
(ADHD). Finally, we included four studies on other disorders: two 
studies focused on major depressive disorder (MDD), one on bipolar 
disorder (BD) and one on conduct disorder (CD). A summary for each 
study including the sample size, imaging modality, DL model, and 
classifier performance is presented in Tables 1–4. A visual summary of 
reviewed studies for ASD, SZ, and ADHD is shown in Fig. 4. As can be 
seen here, most studies (n = 30) used rs-fMRI as input for their DL 
model. The majority of rs-fMRI studies (n = 24) reduced the four- 
dimensional fMRI input by parcellating the brain in regions of interest 
(ROIs) and extracting timeseries per ROI. Most of these studies (n = 16) 
further reduced dimensionality by analysing correlations between ROI 
timeseries to create a connectivity matrix (n = 16). Fewer studies (n = 6) 

worked on 3D fMRI data where the time dimension had been summa
rized. For structural MRI (n = 11) the full 3D input data was used in 
slightly over half of the studies (n = 6). Finally, this summary further 
illustrates the large variety of models that has been deployed in this 
field. 

3.1. Autism spectrum disorder (ASD) 

Twenty-two studies have applied DL for classification of ASD with 
accuracies ranging from 50 to 94. As shown in Table 1, eighteen studies 
have used data from the Autism Brain Imaging Data Exchange (ABIDE), 
a data-sharing initiative involving >20 different scanning sites. The 
ABIDE features over 2000 structural and functional MRI scans of autistic 
and typically developing children and came out in two releases: ABIDE-I 
and II. Even though these studies have used the same dataset, there is a 
large difference in subsets used, with sample sizes ranging from 110 to 
1054. As shown in Fig. 4, three studies have used structural MRI (s-MRI) 
as input. Li et al. (2018) applied 3D CNNs on s-MRIs of the national 
database for autism research (NDAR) (n = 276) and achieved 76.2% 
accuracy. Pinaya et al. (2019) used a deep autoencoder to pre-train s- 
MRI data of the human connectome project (HCP) to detect alterations 

Fig. 3. PRISMA flowchart describing the processes of literature search, study screening and selection (Moher et al., 2009).  
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Table 1 
Overview of ASD studies included in this literature review.  

Authors, year, ref. Dataset. Sample size. # Sites. Input 
Modality. 

Feature selection 
(y/n) 

Feature 
engineering. 

# Features. Validation. Best DL model. DL 
ACC. 

Best ML 
model. 

ML input. ML 
Acc. 

Sen et al. 2018*, 
(Sen et al., 
2018) 

ABIDE. ASD = 573, 
TD = 538. 

17. s-MRI & 
rs-fMRI. 

no. Unsup. features 
(structural +
spatio- 
temporal) 

45 IC for fMRI + ? 
sMRI. 

5 cv on training 
/ 1 test. 

multimodal 
feature 
learning +
linear SVM. 

64.3. x. x. x. 

Pinaya et al. 
2019**, ( 
Pinaya et al., 
2019) 

HCP, 
ABIDE. 

pretraining 
HC = 1113; 
ASD = 83, HC 
= 105. 

17. s-MRI. no. Freesurfer 
cortical 
thickness and 
anatomical 
volumes. 

x (Freesurfer 104 
regions) 

10 strat cv. AE. 63.9a SVM (lin) Freesurfer 
cortical 
thickness and 
anatomical 
volumes. 

56.9 a 

Aghdam et al. 
2018, ( 
Aghdam et al., 
2018) 

ABIDE I 
+ II. 

ASD = 116, 
TD = 69. 

7. s-MRI & 
rs-fMRI. 

no. mean of AAL tc 
+ GM/WM AAL 
parcellation. 

232 or 348. 10 cv. DBN. 65.6. x. x. x. 

Xing et al. 2018, 
(Xing et al., 
2018) 

ABIDE I. ASD = 527, 
TD = 569. 

17. rs-fMRI. no. AAL (90) FC 
matrix. 

4005. 10x strat 5 cv. CNN_EW. 66.9. SVM. AAL (90) FC 
matrix. 

63.6. 

Ktena et al., 
2018,(Ktena 
et al., 2018) 

ABIDE. ASD = 403, 
TD = 468. 

20. rs-fMRI. no. anatomical 
spatial graphs 
with labels of 
HO FC matrix. 

x. 5 cv. GCN. ~67. PCA/ 
Euclidean. 

anatomical 
spatial graphs 
with labels of HO 
FC matrix. 

~54. 

Li et al. 2018, (Li 
et al., 2018) 

ABIDE- 
UM. 

ASD = 48, TD 
= 65 (+411 
training) 

17* rs-fMRI. no. AAL (90) FC 
matrix. 

4005. strat 5 cv. SSAE-DNN. 67.2. SVM. AAL (90) FC 
matrix. 

60.5. 

Kam et al. 2017, 
(Kam et al., 
2017) 

ABIDE I 
UM 
NYU. 

ASD = 119, 
TD = 144. 

2. rs-fMRI. yes, hierarchical 
cluster! 

AAL FC matrix. x. train/test. DRBM. 67.4. SVM (graph 
theory) 

AAL FC matrix. 65.9. 

Dvornek et al., 
2017, ( 
Dvornek et al., 
2017) 

ABIDE I. ASD = 529, 
TD = 571. 

17. rs-fMRI. no. CC200 tc. 90*200. 10 strat cv. LSTM. 68.5. x. x. x. 

Dvornek et al. 
2018, ( 
Dvornek et al., 
2018) 

1 site. ASD = 21, TD 
= 19. 

1. task-fMRI 
+ pheno. 

no. timeseries AAL 
(90) atlas. 

156*90 timeseries. 10x 10 cv. LSTM. 69.8. x. x. x. 

Heinsfeld 
et al.2018, ( 
Heinsfeld 
et al., 2018) 

ABIDE I. ASD = 505, 
TD = 530. 

17. rs-fMRI. no. CC200 FC 
matrix. 

19,900. 10 cv and 
leave-site out. 

AE-MLP. 70. SVM. CC200 FC 
matrix. 

65. 

Dvornek et al. 
2018, ( 
Dvornek et al., 
2018) 

ABIDE I. ASD = 529, 
TD = 571. 

17. rs-fMRI +
pheno. 

no. CC200 tc. 90*200 tc + 90*5 
phenotypic data. 

10 site-strat cv. Pheno_LSTM. 70.1. x. x. x. 

Parisot 2018, ( 
Parisot et al., 
2018) 

ABIDE I. ASD = 403, 
TD = 468. 

20. rs-fMRI +
pheno. 

yes, RFE. HO (110) FC 
matrix + pheno 
(sex, site) 

2000. 10 strat cv. GCN. 70.4. ridge. HO (110) FC 
matrix + pheno 
(sex, site) 

65.3. 

Aghdam et al. 
2019, ( 
Aghdam et al., 
2019) 

ABIDE I 
+ II. 

ASD = 210, 
TD = 249. 

20. rs-fMRI. no. Max freq. voxel 
level. 

2D images of 
(~70*95) 

10 cv. combined 
mixed expert 
CNN. 

70.5. x. x. x. 

Anirudh & 
Thiagarajan 
2019, ( 
Anirudh and 

ABIDE I. ASD = 403, 
TD = 468. 

20. rs-fMRI. no. HO (110) FC 
matrix + pheno 
(sex, site) 

x. 10 cv. ensemble G- 
CNN. 

70.9. SVM(lin)* FC matrix. 66.8. 

(continued on next page) 
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Table 1 (continued ) 

Thiagarajan, 
2017) 

Khosla et al. 
2018, (Khosla 
et al., 2019) 

ABIDE I. ASD=379, 
TD=395. 

17. rs-fMRI. no. multi-channel 
3D voxel 
connectivity 
maps. 

x. 10 cv (and 
ABIDE I/II 
split) 

ensemble 3D 
CNN. 

73.5. SVM(RBF) FC matrix. 71. 

Li et al. 2018, (Li 
et al., 2018) 

NDAR. ASD=61, 
TD=215. 

unclear. s-MRI. yes, 
discriminative 
landmarks 
(automatic)!! 

50 3D volumes 
+ pheno info 
(sex, WB 
volume) 

24x24x24x50 10 cv CNN 76.24 x x x 

Mellema et al. 
2019, ( 
Mellema et al., 
2019) 

IMPAC ASD=418, 
TD=497 

unclear s-MRI & 
rs-fMRI 

no FC matrix + ROI 
volumes 

x Strat. 3cv MLP 80.4 a Logistic 
Ridge 
Regression 

FC matrix + ROI 
volumes 

77.34a 

Guo et al. 2017, ( 
Guo, 2017) 

ABIDE 
UM 

ASD=55, 
TD=55 

1 rs-fMRI yes, based on 
SAE 

AAL FC matrix - 
feature 
selection based 
on multiple SAE 

6670 nested 5 cv SAE-DNN 86.4 Elastic net AAL FC matrix 79,5 

Dekhil et al. 
2018, (Dekhil, 
et al., 2018) 

NDAR ASD=123. 
TD=160 

2 rs-fMRI no PSD of tc of 34 
gICA ROIs 

34*83 2,4,10 cv and 
LOO-CV with 
100 
permutations 

SAE_SVM 91 PCA_SVM PSD of tc of 34 
gICA ROIs 

84 

Li et al. 2018, (Li 
et al., 2018) 

1 site ASD=82, 
TD=48 

1 residual f- 
MRI 

no 2 channel 
(mean and std) 
3D volumes 

2*32x32x32=65536 Strat. 4 cv 2-channel 
3DCNN 

89b RF flattened vector 
of 2 channel 3D 
volumes (65536 
dimensions) +
PCA 

82b 

Ismail et al. 
2017, (Ismail, 
2017) 

KKI ASD=21, 
TD=21 

1 s-MRI yes, ROIS 
(automatic) 

CDF of 64 shape 
features 

64*4000 train/test SAE 92.8 x x x 

Wang et al. 
2019, (Wang 
et al., 2019) 

ABIDE I ASD=501, 
TD=553 

17 rs-fMRI yes, top 1000 of 
RFE! 

AAL (116) FC 
matrix 

6670 average of 
5,10,20,30 cv 

SVM-RFE +
SSAE 

93.6 SVM-RFE +
softmax 
classifier 

AAL (116) FC 
matrix 

67.3 

* General model for ASD and ADHD, ** General model for ASD and SZ 
a AUC ROC, b F score, c Balanced accuracy 
! not clear if feature selection is done only on training set, !! Feature selection done before train/test split 
ASD = Autism Spectrum Disorder, TD = typically developing, rs = resting state, fMRI = functional Magnetic Resonance Imaging, s-MRI = Magnetic Resonance Imaging, ABIDE = Autism Brain Imaging Data Exchange, 
NDAR = National Database for Autism Research, IMPAC = Maging-PsychiAtry Challenge, UM = University of Michigan, KKI = Kennedy Krieger Institute , PSD = Power Spectral Densities, Tc = timecourse, gICA = group 
Independent Component Analysis, NMI = Normalized Mutual Information, CDF = cumulative distribution function, WB = whole brain, PCA = principle component analysis, SVM = support vector machine, AAL =
automatic anatomic labelling, CC200, craddock 200, HO = Harvard Oxford, ROI = Region of interest, CNN = convolutional neural network, EW = element-wise filter, GCN = grapch convolutional network, AE = Auto 
Encoder, SAE = Stacked Auto encoder, SSAE = stacked sparse auto encoder, RF = random forest, MLP = multilayer perceptron, LSTM = long short-term memory, DBN = Deep belief network, DRBM = Deep restricted 
Boltzmann machine, FC = functional connectivity, 10 cv = 10 fold cross validation, LOOCV = leave one out cross validation, strat cv = stratified cross validation 
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Table 2 
Overview of SZ studies included in this literature review.  

Authors, year, 
ref 

Dataset Sample size # 
Sites 

Input 
Modality 

Feature selection 
(y/n) 

Feature 
engineering 

# Features Validation Best DL 
model 

DL Acc Best ML model ML input ML 
Acc 

Dakka et al. 
2017, ( 
Dakka et al., 
2017) 

1 site SZ = 46, HC =
49 

1 task-fMRI no full 4D image x 10 cv LSTM 66.4 SVM (rbf) 4D reduced to 1D 
vector 

62.1 

Pinaya et al. 
2019***, ( 
Pinaya et al., 
2019) 

HCP, 
NUSDAST 

pretraining 
HC = 1113 ; 
SZ = 35,HC =
40 

1 s-MRI no Freesurfer cortical 
thickness and 
anatomical 
volumes 

x (Freesurfer 
104 regions) 

10 strat cv AE 70.7a SVM (lin) Normalized 
Freesurfer cortical 
thickness and 
anatomical 
volumes 

63.7a 

Matsubara 
et al. 2019*, 
(Matsubara 
et al., 2019) 

openfMRI SZ = 48, HC =
117 

1 rs-fMRI no AAL timeseries 116*152 10 cv DGM 
(CVAE) 

71.3c PCC_SCCA_SLR AAL FC matrix 66.4c 

Vyskovsky 
et al. 2019, ( 
Vyskovsky 
et al., 2019) 

1 site SZ = 52, HC =
52 

1 s-MRI 
morphometry 

yes, 
discriminative 
features! 

VBM and DBM 
Grey Matter 
Images 

100–10.000 10x LOOCV ensemble 
MLP for 
VBM and 
DBM 

73.1 SVM on VBM 
and DBM 

VBM, DBM 73.5 

Pinaya et al. 
2016, ( 
Pinaya et al., 
2016) 

1 site SZ = 143, HC 
= 83 

1 s-MRI  Freesurfer cortical 
thickness and 
anatomical 
volumes 

x 3 cv DBN-DNN 73.6c SVM Freesurfer cortical 
thickness and 
anatomical 
volumes 

68.1c 

Ulloa et al., 
2015, (Ulloa 
et al., 2015) 

JHU, 
MPRC, 
IOP, WPIC              
SZ = 198, 
HC = 191 

4 s- 
MRI 

no generating sMRI 
images with RV 
generator 

55,527 10 cv sMRI 
generator 
+ MLP 

75 a Logistic 
Regression 

sMRI images 70 a  

Han et al. 
2017, (Han 
et al., 2017) 

1 site SZ (Sheffield 
and Barch, 
2016) = 39, 
HC = 31 

1 rs-fMRI no AAL (90) FC 
matrix 

4005 10 cv MLP 79.3 x x x 

Li et al. 2019, ( 
Li, 2019) 

1 site SZ = 80, HC =
103 

1 task fMRI and 
SNP 

no SNP loci from 
blood + AAL ROI 

116 Train/test 2 SAE +
DCCA +
SVM 

80.5 x x x 

Lei et al. 2019, 
(Lei et al., 
2020) 

5 sites SZ = 295, HC 
452 

5 rs-fMRI no FC matrix 90 ROIS 4005 strat 5 cv 2D CNN 81.0c SVM FC matrix 90 ROIS 81.7c 

Wang et al. 
2019**, ( 
Wang et al., 
2019) 

1 site SZ = 28, HC =
28 

1 rs- fMRI no based on a single 
3D EPI image 

61*73*61 5 cv 3D CNN 82.2 x x x 

Yang et al. 
2019, (Yang 
et al., 2019) 

COBRE, 
UCLA, 
WUSTLE 

SZ = 102, HC 
= 120 

3 rs-fMRI no 3 ensemble inputs: 
sparse dictionary 
learning, multiple 
kernel mapping, 
AAL FC matrix 

80*20; 
100*50; 
116*116 

10 cv ensemble 
capsule 
network 

82.8 weighted 
ensemble SVM 

3 ensemble inputs: 
sparse dictionary 
learning, multiple 
kernel mapping, 
AAL FC matrix 

74.2 

Yan et al. 
2019, (Yan 
et al., 2019) 

7 sites SZ = 558, HC 
= 542 

7 rs-fMRI yes, group ICA 
noise!! 

group ICA tc 8500 (170 
TR * 50 IC) 

10 cv and 
LSO 

Conv +
RNN 

83.2 SVM group ICA FC 
matrix (50*50) 

79.4 
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Authors, year, ref Dataset Sample 
size 

# 
Sites 

Input 
Modality 

Feature 
selection (y/n) 

Feature engineering # 
Features 

Validation Best DL model DL 
Acc 

Best ML 
model 

ML input ML 
Acc 

Oh et al. 2019, (Oh 
et al., 2019) 

1 site SSD =
103, HC 
= 41 

1 task-fMRI no 3D GLM activation 
map 

x 10 cv 3D CAE-CNN 84.4 SVM +
PCA 

3 ways: full WB, beta 
AAL, 40 PCA features 

70.7 

Yan et al. 2017, (Yan, 
2017) 

7 sites SZ = 558, 
HC = 542 

7 rs-fMRI yes, group ICA 
noise!! 

group ICA FC matrix 
(50*50) 

1225 10 cv and 
LSO 

DNN + LRP 84.8 SVMRFE group ICA FC matrix 
(50*50) 

77.1 

Zeng et al. 2018, ( 
Zeng et al., 2018) 

COBRE, UCLA, 
WUSTL, 
XJING1_2, 
AMU, Xiangya 

SZ = 357, 
HC= 377 

7 6 rs-fMRI, 
1 task 
fMRI 

no FC of diff atlases(ROI: 
176, 160, 116)  

10 cv + leave 
site out 
validation 

DANS with 3 
atlas features 
fusion at label 
level 

85.0 RFE-LDA selected features from 
correlation matrices 3 
atlases label level 
fusion; 

80.9 

Kim et al. 2016, (Kim 
et al., 2016) 

COBRE SZ= 50, 
HC=50 

1 rs-fMRI no group ICA FC matrix 
(116*116) 

6670 10 x nested 5 
cv 

2 SAE + DNN 86.5 SVM (lin) FC matrix GICA 76.9 

Plis et al. 2014, (Plis, 
2014) 

JHU, MPRC, 
IOP, WPIC 

SZ = 198, 
HC=191 

4 s-MRI no RBM feature learning 60,645 
voxel GM 
images 

10 cv RBM of 3 layers +
Logistic 
regression for 
classification 

91b x x x 

Chyzhyk 2015, ( 
Chyzhyk et al., 
2015) 

COBRE SZ=72, 
HC=74 

1 rs-fMRI Yes, 
evolutionary 
selection 
algorithm 

VHMC map 86,559 10 cv Ensemble of ELM 91.2 RF on 
ReHo 

ReHO selected C map 80.9 

Patel 2016, (Patel 
et al., 2016) 

COBRE SZ=72, 
HC=74 

1 rs-fMRI yes, filter out 
inactive or noisy 
GM voxels 

AAL (116) timeseries  10 cv SAE_SVM 92 x x x 

Srinivasagopalan 
2019, ( 
Srinivasagopalan 
et al., 2019) 

Kaggle dataset SZ = 69, 
HC=75 

1 s-MRI & rs- 
fMRI 

yes, ICA noise 
selection 

FC maps ICA brain 
maps derived from GM 
concentration 

411 Train/test MLP 94.4 RF 55 selected features 
with RFE and RF 

83.3 

Qureshi et al. 2019, ( 
Qureshi et al., 
2019) 

COBRE SZ = 72, 
HC=72 

1 rs-fMRI yes, group ICA 
noise! 

3D-ICA 15 10 cv 3DCNN 98.0 x x x 

Qureshi et al. 2017, ( 
Qureshi et al., 
2017) 

COBRE SZ = 72, 
HC=72 

1 s-MRI & rs- 
fMRI 

yes, group ICA 
noise! 

structural ROI, global 
functional 
connectivity, group 
ICA, kernel PCA with 
spatial ICA maps 

748 nested 10 by 
10 cv 

ELM 99.3 SVM-L structural ROI, global 
functional 
connectivity, group 
ICA, kernel PCA with 
spatial ICA maps 

77.8 

* General model SZ and BD, ** General model SZ and ADHD, *** General model SZ and ASD 
SZ (Sheffield and Barch, 2016) early onset Schizophrenia 
aAUC ROC, b F score, c Balanced accuracy 
! not clear if feature selection is done only on training set,!! Feature selection done before train/test split 
SZ = Schizophrenia, HC = healthy controls, rs = resting state, fMRI = functional Magnetic Resonance Imaging, s-MRI = Magnetic Resonance Imaging, Tc = timecourse, gICA = group Independent Component Analysis, 
GM = grey Matter,WB = whole brain, VBM = voxel based morphometry, DBM = dephormation based morphometry, SNP = single nucleotide polymorphisms, PCA = principle component analysis, SVM = support vector 
machine, AAL = automatic anatomic labelling, CC200, craddock 200, HO = Harvard Oxford, ROI = Region of interest, VHMC = voxel-mirrored homotopic connectivity, CNN = convolutional neural network, EW =
element-wise filter, GCN = grapch convolutional network, GLM = General linear model, AE = Auto Encoder, DGM = deep generative model, CVAE = conditional variational auto encoder, SAE = Stacked Auto encoder, 
SSAE = stacked sparse auto encoder, CAE = convolutional auto encoder, ReHo = Regional Homogeneity, RF = random forest, MLP = multilayer perceptron, LDA = linear discriminant analysis, LSTM = long short-term 
memory, LRP = Layer wise relevance propagation, DBN = Deep belief network, RNN = recurrent neural network, RBM = Restricted Boltzmann Machine, DANS = Discriminant Autoencoder Network with Sparsity 
Constraint, ELM = Extreme Learning Machine, FC = functional connectivity, 10 cv = 10 fold cross validation, LOOCV = leave one out cross validation, strat cv = stratified cross validation, LSO = leave site out, COBRE =
Center for Biomedical Research Excellence, JHU = Johns Hopkins University, MPRC = the Maryland Psychiatric Research Center, IOP = the Institute of Psychiatry, WPIC = Western Psychiatric Institute and Clinic at the 
University of Pittsburgh, UCLA = university of california Los Angeles, WUSTL = Washingthon university in st. Louis, AMU = Anhui Medical University, HCP = Humman Connectome Project, NUSDAST = Northwestern 
University Schizophrenia Data and Software Tool 
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Table 3 
Overview of ADHD studies included in this literature review.  

Authors, year, ref Dataset Sample size # 
Sites 

Input 
Modality 

Feature 
selection 
(y/n) 

Feature engineering # Features Task Validation Best DL model DL 
ACC 

Best 
ML 
model 

ML input ML 
ACC 

Kuang et al. 
2014, (Kuang 
et al., 2014) 

ADHD- 
200-NYU 

HC = 107, 
ADHD-C = 99, 
ADHD-I = 44, 
ADHD-H = 13 

1 rs-fMRI yes 
(expert) 

ROI (PFC) max freq x HC vs. 
ADHD-C vs 
ADHD-I vs 
ADHD-H 

Train/test DBN 37.4 x x x 

Kuang and He, 
2014, (Kuang 
and He, 2014) 

ADHD- 
200 

HC = 160, 
ADHD-C =
125, ADHD-I =
50, ADHD-H =
14 

3 rs-fMRI no WB freq PCA 257*9177 HC vs. 
ADHD-C vs 
ADHD-I vs 
ADHD-H 

Train/test DBN 44.6 x x x 

Hao et al., 2015, ( 
Hao et al., 
2015) 

ADHD- 
200_NYU 

HC = 110, 
ADHD-C = 95, 
ADHD-I = 2, 
ADHD-H = 50 

1 rs-fMRI no selected ROI 
network of 14 ROIS 

x HC vs. 
ADHD-C vs 
ADHD-I vs 
ADHD-H 

100 cv DBaN 64.7 x x x 

Sen et al., 2018*, 
(Sen et al., 
2018) 

ADHD- 
200 

ADHD = 356, 
HC = 373 

8 s-MRI & 
rs-fMRI 

no Unsupervised 
features (structural 
+ spatio-temporal) 

45 IC for fMRI +
sMRI 

ADHD vs 
TPC 

Train/test Multimodal 
feature learning 
+ linear SVM 

67.3 x x x 

Wang & Kamata, 
2019, (Wang 
and Kamata, 
2019) 

ADHD- 
200 

ADHD = 362, 
HC = 585 

7 s-MRI no 3D fractal 
dimension 
complexity map 
(FDCM) 

96*120*100 ADHD vs 
TPC 

Train/test 3D CNN 69.0 x x x 

Zou et al. 2017, ( 
Zou et al., 
2017) 

ADHD- 
200 

ADHD = 197, 
HC = 362 

8 rs-fMRI no ReHo, fALFF, 
VMHC 

3 * 47 * 60 * 46 
+ 3 * 90*117 
*100 

ADHD vs 
TPC 

10 cv and 
leave-site 
out 

3D CNN 69.2 x x x 

Riaz et al., 2018, 
(Riaz, et al., 
2018) 

ADHD- 
200 

HC = 95, 
ADHD-C =
127* 

1 rs-fMRI no 90 AAL timeseries 900*T HC vs 
ADHD 

Train/test CNN 73.1 SVM FC matrix with 
feature selection 
of elastic net 

56.1 

Wang et al., 
2019**, (Wang 
et al., 2019) 

ADHD- 
200 

ADHD = 146, 
HC = 441 

8 s-MRI no full 3D image 121*145*121 ADHD vs 
TPC 

5 cv 3D CNN 76.6 x x x 

Desphande et al., 
2015, ( 
Deshpande 
et al., 2015) 

ADHD- 
200 

HC = 744, 
ADHD-C =
260, ADHD-I =
173 

7 rs-fMRI yes, (PCA) 200 PCA 
connectivity 
features 

20 HC vs 
ADHD-C 

LOOCV Fc cascade NN 
with 2 training 
stages 

~90 SVM significant 
features of PCA 
+ conn weights 

~80 

* General model for ADHD and ASD, ** General model for ADHD and SZ 
aAUC ROC, b F score, c Balanced accuracy 
! not clear if feature selection is done only on training set, !! Feature selection done before train/test split 
ADHD = Attention Deficit hyperactivity disorder, -I, Inattentive, -H hyperactive, -C combined, HC = healthy control, rs = resting state, fMRI = functional Magnetic Resonance Imaging, s-MRI = structural Magnetic 
Resonance Imaging, AAL = automatic anatomic labelling, ROI = Region of interest, CNN = convolutional neural network, DBN = Deep belief network, DBaN = deep baysesian network, FC = functional connectivity, SVM 
= support vector machine, 10 cv = 10 fold cross validation, LOOCV = leave one out cross validation, PCA = principle component analysis, ReHO = regional homogeneity, VHMC = voxel-mirrored homotopic connectivity, 
fALFF = Fractional amplitude of low-frequency fluctuations, NN = neural network. 
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Table 4 
Overview of BD, CD, MDD studies included in this literature review.  

Authors, year, 
ref 

Disorder Dataset Sample 
size 

# 
Sites 

Input 
Modality 

Feature 
selection 
(y/n) 

Feature 
engineering 

# Features Task Validation Best DL 
model 

DL 
Acc 

Best ML model ML input ML 
Acc 

Matsubara 
et al., 
2019*, ( 
Matsubara 
et al., 2019) 

Bipolar 
Disorder 
(BD) 

openfMRI BD = 46, 
HC =
117 

1 rs-fMRI no AAL timeseries 116*152 BD vs 
HC 

10 cv DGM (CVAE) 64.0c PCC_Kendall_LLE_Cmeans AAL FC 
matrix 

62.2c 

Zhang et al. 
2019, ( 
Zhang et al., 
2020) 

Conduct 
disorder 
(CD) 

1 site CD = 60, 
HC = 60 

1 s-MRI no full 3D image 
with 
augmentation 

121*145*121 CD VS 
HC 

5 cv 3D CNN 85 SVM(lin) VBM 77 

Pominova 
et al., 2018, 
(Pominova, 
2018) 

Major 
Depressive 
Disorder 
(MDD) 

1 site MDD =
25, HC 
= 25 

1 rs-fMRI yes, 
cleaned 
data 
(unclear) 

full 4D image 52*62*52*133 MDD 
vs HC 

5 cv 3DConvLSTM 73 x x x 

Miholca & 
Onicas, 
2017, ( 
Miholca and 
Onicaş, 
2017) 

Major 
Depressive 
Disorder 
(MDD) 

openfMRI MDD =
19, HC 
= 20 

1 task- 
fMRI 

yes, task 
related 
ROIII 

task-related 
param. of 
selected ROIs 

x MDD 
vs HC 

LOOCV MLP 92.3 RAR based classifier task- 
related 
param. of 
selected 
ROIs 

94.8 

* General model for BD and SZ 
aAUC ROC, b F score, c Balanced accuracy 
!not clear if feature selection is done only on training set, !! Feature selection done before train/test split 
BD = Bipolar Disorder, CD = Conduct Disorder, MDD = Major Depressive Disorder, HC = healthy control, rs = resting state, fMRI = functional Magnetic Resonance Imaging, s-MRI = Magnetic Resonance Imaging, AAL =
automatic anatomic labelling, ROI = Region of interest, DGM = Deep neural generative model, CVAE = conditional variational auto encoder, CNN = convolutional neural network, ConvLSTM = convolutional Long Short- 
Term Memory, MLP = multilayer perceptron, FC = functional connectivity, SVM = support vector machine, RAR = Relational association rules, VBM = Voxel based morphometry, LLE = locally linear embedding, 10 cv =
10 fold cross validation, LOOCV = leave one out cross validation 
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in the ABIDE and achieved an AUC-ROC of 0.64 (n = 188). The study 
with the highest reported accuracy using s-MRI of Ismail et al., 2017) 
used a stacked auto encoder (SAE) on cumulative distribution function 
(CDF) of shape features and reached up to 92.8% accuracy. However, 
this is also the study with the smallest study size (n = 42) and they did 
not report cross-validated results. 

Of the studies using fMRI, the vast majority used resting state (rs-) 
fMRI. Instead, Li et al. (2018) used residual fMRI: task f-MRI controlled 
for the task-related signal. They used a 3D convolutional model on 3D 
brain volumes where the time dimension is summarized in mean and 
standard deviation of voxel’s timecourses per time window. With this 
approach they obtained 89% accuracy, the highest accuracy for studies 
without any feature selection. As can be seen in Table 1, when accuracy 
performances are getting higher (lower in the Table), feature selection is 
done more often. One needs to be careful with concluding that feature 
selection is beneficial for performance, as it seems that several studies 
have done feature selection on the whole sample instead of properly 
selecting features only on the training set. Wang et al. (2019) reported a 
very high accuracy of 93.6 on the full ABIDE I dataset, using a stacked 
sparse autoencoder on selected features of a functional connectivity (FC) 
matrix. They applied SVM-RFE for the selection of 1000 features. 
However, this appears to be done on the entire dataset without keeping 
the test set separately. This increases the risk of overfitting, complicates 

model interpretation, and may produce optimistic results (Mwangi et al., 
2014; Varoquaux et al., 2017; Scheinost et al., 2019). 

Besides Wang et al. (2019), seven other ASD studies have applied a 
DL model on FC matrices, making it the most common input feature used 
in DL classifications for ASD. Mainly the Automated Anatomic Labeling 
(AAL), Craddock or Harvard-Oxford (HO) atlas are used, probably 
because the ABIDE provides extracted timecourses for these atlas par
cellations. Interestingly, most studies on the ABIDE-I achieve similar 
accuracies, ranging from 65 to 71%, with intrinsically different 
methods. On a single site of the ABIDE dataset consisting of 110 samples, 
Guo et al. (2017)) achieved an accuracy of 86,4 using an autoencoder to 
pretrain an MLP. Li et al. (2018) also pretrained an MLP with stacked 
autoencoders, but obtained an accuracy of 67.2% when training on 
multiple sites and testing on one. With a similar approach of pretraining 
an MLP, Heinsfeld et al. (2018) obtained an accuracy of 70% when 
testing on the full ABIDE-I release, consisting of 1035 samples. 

Whereas these studies reshape the connectivity matrix into a vector, 
Xing et al. (2018) retained spatial information of the network topology 
by applying convolutional networks (CNN) to the full FC matrix. Their 
results on the full ABIDE-I results are similar to Heinsfeld et al. (2018), 
reaching 66.88 with their best CNN model. Graph convolutional ap
proaches are explored by Parisot et al. (2018) and Anirudh and Thia
garajan (2017), obtaining 70.4% and 70.9% accuracy respectively. 

Fig. 4. Visual summary of articles reviewed grouped by the three most investigated disorders ADHD, ASD and SZ. A) Number of articles on different modalities; B) 
Number of articles of different feature extraction, C) number of articles on different DL models, D) Number of articles on different feature selection procedures. 
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Using a discriminative restricted Boltzmann machine (DRBM), Kam 
et al. (2017) reached an accuracy of 67.4% on two sites of the ABIDE 
dataset. 

Instead of focusing on FC matrices, four studies have incorporated 
the time dimension and worked on timeseries as input data (Dvornek 
et al., 2018a, 2018b, 2017; Dekhil, et al., 2018). In three different 
studies by (Dvornek et al., 2017, 2018f, 2018g), they have experimented 
with the optimal input for Long Short-Term Memory (LSTM) models. 
The highest performance on timeseries input is reported by a study from 
Dekhil et al. (2018). They transformed timeseries into power spectral 
densities (PSD) for 34 group independent component analysis (ICA) 
spatial maps and used sparse auto encoders (SAE) to reduce the input 
dimensionality so it could be fed into an SVM. They obtained a high 
accuracy of 88%, but on a relatively homogeneous dataset with 2 
different scanning sites (as compared to > 20 in ABIDE). 

There are three studies that have incorporated both structural and 
functional MRI as input to the DL model (Sen et al., 2018; Aghdam et al., 
2019; Mellema et al., 2019) reported the highest accuracy of 80.4% on a 
large dataset (n = 915) by inputting FC and ROI volume values into an 
MLP. A major part of their success seems to be due to their multimodal 
input, as even a simplistic logistic regression obtained an accuracy of 
77.3. Finally, there are three studies that have worked on 3D input data 
(Khosla et al., 2019; Li X. et al., 2018; Li G. et al., 2018). Khosla et al. 
(2019) used the largest, most heterogeneous dataset (n = 774, sites =
17) and achieved 73.5% by using an ensemble of 3D Convolutional 
Neural Networks. 

Overall, a wide variety of input, models and subsets of the data has 
been used, making it difficult to make direct comparisons between 
studies. 

3.2. Schizophrenia (SZ) 

Similar to the other disorders, the first papers on deep learning for 
schizophrenia classification appeared in 2016 and in the last 3 years 
many papers have followed. We included twenty-two studies for SZ 
classification with an accuracy range of 66–99 that are shown in Table 2. 
In contrast to ASD, there is a large variety in datasets used despite 
different data sharing efforts such as the MCIC and COBRE. Most sample 
sizes are relatively small as compared to the ABIDE or ADHD-200. The 
largest studies of (Yan, 2017; Yan et al., 2019) with a cohort of 1100 
subjects report accuracies over 80%, which is relatively high as 
compared to the classification performances on the full ABIDE dataset. 
Yet, the SZ sample may be more homogeneous as it only consists of seven 
different scanning sites. (Yan, 2017; Yan et al., 2019) have reported a 
model on FC matrices of group independent component analysis (ICA) 
spatial maps as well as its timeseries. Their first model on the FC 
matrices using an MLP outperformed a Convolutional Recurrent 
Network on timeseries, but the difference is small: 84.8% vs 83.2%. It 
seems that both studies have done group ICA to select spatial brain 
components on the whole sample before splitting the data into training 
and test sets. Although the influence of including test data in group ICA 
for spatial maps may be minimal, it is preferred to keep the training and 
test data completely separate, to prevent model ‘peeking’ into test data 
and making it more susceptible to overfitting (Scheinost et al., 2019). 

We suspect that model ‘peeking’ has biased the results of two studies 
of (Qureshi et al., 2017, 2019b) which report the highest classification 
accuracies for SZ. They performed ICA on brain-wise correlation co
efficients to select functional networks. The authors state that after ICA, 
specific components are ‘discarded as noise and/or artifacts upon visual 
inspection’ and it is not explicitly mentioned whether this is done on the 
training set only. On a multimodal input of structural MRI features 
including cortical thickness, surface area, volume, white matter volume 
and intensity measures from cortical parcellation and fMRI features 
consisting of these ICA selected global connectivity maps, they report a 
classification accuracy of 99.3% on the COBRE dataset (Qureshi et al., 
2017). In a second study the performance dropped minimally to 98.1% 

(Qureshi et al., 2019) when applying 3D convolution neural networks on 
3D volumetric images of the same group ICA selected connectivity maps. 

There are two other studies applying a convolutional network, both 
reporting accuracies over 80% (Lei et al., 2020; Oh et al., 2019) with 
different approaches. (Lei et al., 2020) experimented with different in
puts but obtained the highest results with a 2D CNN on FC matrices. (Oh 
et al., 2019) Oh et al. (2019) used a 3D convolution autoencoder on 3D 
activation maps based on contrast images (activation vs. control) 
derived from task-fMRI. 

Besides Qureshi et al. (2017), one other study of Srinivasagopalan 
et al. (2019) used a multimodal input from structural and resting-state 
functional MRI made available by a classification competition (Silva, 
2014). Features included FC values and source-based Morphometry 
(SBM) loadings; the latter corresponds to the weights of brain maps 
obtained from ICA on gray-matter concentration maps. They achieved 
an accuracy of 94.4% with a normal MLP of 3 layers on all 411 features 
from FC and SBM which outperformed traditional machine learning 
techniques as logistic regression, SVM and random forest (Srinivasago
palan et al., 2019). 

Seven studies have used the COBRE dataset, of which the highest 
accuracies reported are from (Qureshi et al., 2017, 2019b), followed by 
Patel et al. (2016) with an accuracy of 92%. They trained an SAE on each 
ROI timeseries to obtain an encoded vector that could be fed into an 
SVM. Chyzhyk et al. (2015) obtained a similarly high accuracy of 91% 
with a very different approach; they used an evolutionary algorithm for 
feature selection of 3D voxel-mirrored homotopic connectivity (VHMC) 
maps. This input was fed into an ensemble of extreme learning machines 
(ELM) for classification. Yang et al. (2019) also used an ensemble of 
networks to classify an input of multiple image features (including 
functional connectivity, nonlinear multiple kernel learning and sparse 
dictionary learning) and obtained 82.8% accuracy on 3 datasets 
including COBRE. Kim et al. (2016) used a deep learning technique to 
select features that could be passed on to a standard machine learning 
model: they used a stacked auto encoder on timeseries from the AAL 
atlas to encode a latent feature vector that was fed into an SVM to obtain 
an accuracy of 86.5%. Similarly, Zeng et al. (2018) selected discrimi
native features from correlation matrices using an autoencoder that 
were parsed into an SVM for classification. On a sample from 7 datasets, 
including COBRE, they achieved 85% accuracy with their best model. 

Remarkably, one study focusing only on structural MRI by Plis et al. 
(2014) also obtained a relatively high F score of 0.91 using restricted 
Boltzmann machine (RBM) on 2D gray matter voxel images on a larger 
dataset (n = 389). 

One study applied transfer learning; the normative model of Pinaya 
et al. (2019) (also mentioned in the ASD section) trained on data from 
the human connectome project (HCP), was not only tested on ASD data, 
but also detected neuroanatomical deviations in SZ patients, reaching an 
accuracy of 70.7% for SZ. 

3.3. ADHD 

We included nine studies on ADHD classification. As shown in 
Table 3, they all have used the ADHD-200 dataset. Nevertheless, sample 
size varies and ranges from 349 to 1167 subjects. Three studies have 
performed classification of the ADHD subtypes (inattentive, hyperactive 
or both) with accuracies ranging from 27 to 65 (chance level of 25% for 
classification of 4 different groups). The highest performance for sub
type classification is reported by Hao et al. (2015) that achieved 64.7% 
on a constructed Bayesian network on the max frequencies ROIS from rs- 
fMRI data. For bivariate classification of ADHD the highest accuracy is 
reported by Deshpande et al. (2015). They used a fully connected 
cascade neural network on 200 spatial PCA connectivity features and 
obtained around 90% accuracy. 

Using a convolutional neural network on structural MRI, (Wang 
et al., 2019) applied 3D convolutions and obtained an accuracy of 
77.6%. They also tested their model on SZ data and obtained an 
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accuracy of 82.2% for SZ. One other study by Sen et al. (2018) developed 
one model that was tested on two psychiatric disorders; they developed 
an autoencoder to learn features from structural MRI and ICA to learn 
spatial features from fMRI. These combined learned features were 
classified by an SVM classifier and tested on ADHD and ASD to obtain 
68% and 63% respectively. 

Three other studies deployed convolutions for classification (Wang 
and Kamata, 2019; Zou et al., 2017), all with different inputs: AAL 
timeseries (Riaz, et al., 2018), a combination of ReHo, fALFF and VHMC 
(Zou et al., 2017) or 3D structural maps 68. There does not appear to be 
a large difference between using rs-fMRI or structural MRI in these 
studies, but they are difficult to compare as they have used different 
subsets of the ADHD-200 and applied different validation procedures. 

Remarkably, four out of nine studies do not perform cross-validation 
but train their model once on training data and then report the perfor
mance on test data (Wang and Kamata, 2019; Riaz, et al., 2018; Kuang 
et al., 2014; Kuang and He, 2014). This might be since the ADHD-200 
dataset started off as a competition and provides this train/test split. 

3.4. Other disorders 

We included four studies that investigated classification of other 
disorders, which are summarized in Table 4. These four studies have 
relatively small sample sizes, ranging from 49 to 163. One study of 
Matsubara et al. (2019) developed a single model for classification of 
fMRI data and tested this for both schizophrenia and bipolar disorder 
(BD). They used the AAL timeseries and obtained a balanced accuracy of 
64% for BD (and 71.3% for SZ). Zhang et al. (2020) applied 3D convo
lutions on structural MRI to classify conduct disorder (CD) with an ac
curacy of 85%. Two studies classified major depressive disorder (MDD) 
(Pominova, 2018; Miholca and Onicaş, 2017). Miholca and Onicas 
(2017) obtained an accuracy of 92% using an MLP on task fMRI, but they 
selected features on the whole dataset, including test data. Pominova 
et al. (2018) (Pominova, 2018) is one of the rare studies that did not 
perform feature engineering, but applied a 3DConvLSTM model on full 
4D fMRI data. They obtained an accuracy of 73% on a relatively small 
dataset of 50 subjects. 

3.5. Effect of sample size and number of sites 

The effect of sample size on accuracy is illustrated in Fig. 5. Although 
there is no obvious linear relation, there is a significant negative 
monotonic relation between sample size and accuracy when combining 
all the studies (rs = -0.32, p = 0.02). Though when splitting the data per 
disorder, these trends did not reach significance and were even absent or 
in opposite direction (ASD: rs = -0.42, p = 0.05; SZ: rs = 0.02, p = 0.94; 
ADHD: rs = 0.43, p = 0.24). When splitting the data for number of sites, 
no significant relation was observed (see Fig S1, S2). 

We repeated the correlation analysis between sample size and ac
curacy after excluding nine ASD or SZ studies where feature selection on 
the entire sample cannot be ruled out (Li et al., 2018; Wang et al., 2019; 
Kam et al., 2017; Yan et al., 2019; Qureshi et al., 2019, 2017; Vyskovsky 
et al., 2019) or where cross-validation was lacking while working on a 
small sample (n < 50) (Ismail et al., 2017). These results also showed a 
significant negative relation between sample size and accuracy on the 
full dataset (rs = -0.42, p = 0.002). When splitting the data per disorder, 
this trend was only significant for ASD (ASD: rs = -0.51, p = 0.03; SZ: rs 
= 0.15, p = 0.57; ADHD: rs = 0.43, p = 0.24). 

Naturally, larger samples usually involve more scanning sites, thus 
more heterogeneity in the data. It also shows that SZ studies have more 
studies with high performances (>90% accuracy), but that most of these 
are conducted on small datasets. ASD studies often involve large sample 
sizes with many scanning sites, which could be explained by the publicly 
available ABIDE dataset. 

3.6. Deep learning vs. Standard machine learning 

A total of thirty-five studies included in this review compared a DL 
model against a standard machine learning method (such as SVM, LR or 
RF). The results of these studies are shown in Fig. 6. For thirty-two of the 
thirty-five included studies (91%), DL showed improved performance as 
compared to SML. Given the heterogeneity of the input of the models, it 
is difficult to identify specific characteristics of the studies associated 
with greater improvement when applying DL. The difference seems to go 
up whenever DL models are gaining higher performances. Only three 

Fig. 5. Scatterplot of accuracy for different sample sizes, the size of the dots indicates the number of scanning sites included in the sample.  
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studies report lower performance for DL than SML (Lei et al., 2020; 
Miholca and Onicaş, 2017; Vyskovsky et al., 2019): Lei et al. (2020) 
compared many different models of which SVM achieved the highest 
performance on the AAL FC matrix. The 2D convolutional neural 
network only performed slightly worse (difference of 0.7%). In 
Vyskovsky et al. (2019) an ensemble of MLPs was outperformed by an 
ensemble of SVMs for first episode schizophrenia classification with a 
marginal difference of 0.4%. Finally, in Miholca and Onicaş (2017) a 
new kind of ML technique using relational association rules achieved a 
2.6% better accuracy score than an MLP. 

4. Quantitative meta-analysis 

To test whether DL techniques achieved significantly higher perfor
mances than SML techniques, we performed a quantitative meta-analysis 
for 16 studies that 1) directly compared a DL model with SML and 2) 
reported sensitivity and specificity results to perform meta-analysis for 
bivariate classification. Fig. 7 shows an illustrative forest plot of the 
included studies. The pooled DOR for deep learning models was 2.51 
[2.03, 2.97] versus 2.04 [1.58, 2.49] for standard machine learning 
models. To test whether this difference was significant we performed a 
random-effect meta-regression for type of model, for which the results 
are presented in Table 5. Although DL had a higher odds ratio, the dif
ference between the two estimates was not significant (p = 0.165). When 
comparing sensitivity and false positive rates (fpr) separately according 
to the Reitsma model, DL had a higher sensitivity, but the difference was 
again non-significant (p = 0.779). The false positive rates were higher 
for machine learning models (p = 0.032), but this did not remain sig
nificant after Bonferroni correction for multiple comparisons. 

When pooling studies that investigated the same disorder, there was 
only a significant increase in DL performance in ASD (n = 4) as 
measured by increased odds ratio (p = 0.007). For SZ (n = 9), there was 
only a significant difference for false positive rate (p = 0.017) with SML 
results showing higher fpr, but this did also not remain significant after 
Bonferroni correction for multiple comparisons. 

4.1. Pooled DOR per disorder 

The univariate forest plot of DOR of all studies included in the meta- 
analysis is shown in Fig. 8. The total pooled DOR of DL studies was 2.76 

[95% CI = 2.24–3.25]. Pooled DOR for ADHD studies was lowest with 
1.67 [95% CI = 0.73–2.58], followed by ASD with a pooled DOR of 2.15 
[95% CI = 1.21–3.08] and the highest for SZ studies with a pooled DOR 
of 3.38 [95% CI = 2.81–3.95]. Again, it can be seen that there is large 
variety in performance of models within a disorder, which is probably 
caused by sample variance as inter-study differences are present in 
population, modalities, type of DL model, feature selection and engi
neering technique. 

5. Discussion 

5.1. General conclusions from the existing literature 

In the present review we systematically reviewed the literature 
applying deep learning methods to neuroimaging data for psychiatric 
disorders. Despite many promising results, the clinical use of DL on 
neuroimaging data to aid disease diagnosis for psychiatric disorders is 
still in its infancy. Given the complexity of the problem, starting from 
inherently uncertain diagnostic labels to heterogeneous scanning pro
tocols and preprocessing, this is perhaps not surprising. Nevertheless, in 
recent years many studies have applied DL techniques to classify psy
chiatric disorders. While the body of literature on ASD, SZ or ADHD is 
increasing steadily, only a few studies have applied DL on other disor
ders such as MDD. It seems that the large, publicly available datasets are 
driving research as many of the included studies were based on ABIDE, 
COBRE and ADHD-200 datasets. Furthermore, the way that these 
datasets provide the neuroimaging data seems to influence what kind of 
features have been used as input for DL. For example, the ABIDE offers 
preprocessed timecourses for various atlas parcellations and many ASD 
studies use atlas extracted timecourses or FC matrices as input. In 
contrast, in SZ studies the input is highly heterogeneous. Even though 
multiple studies are using the same datasets, it remains difficult to 
compare performances and to identify optimal models or feature input. 
Various studies still use different subsets of the available dataset due to 
different quality checks or preferences. Furthermore, due to the rapid 
development of DL techniques and the wealth of preprocessing and 
parameter choices, there is large heterogeneity in models used and 
features engineered. 

Only a few studies have directly compared either differently engi
neered features or different modality approaches, making a definite 

Fig. 6. Results of studies comparing DL and conventional ML models. The graph shows the accuracies (or other reported performance scores: AUC, balanced Acc, F 
score) for DL models in blue and ML models in orange. The difference between the two groups is depicted in grey. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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conclusion on specific inputs difficult. Resting-state fMRI seems to be 
used most often, but whenever structural MRI is used, it achieves similar 
accuracies. The vast majority of studies apply a form of feature engi
neering to the data, instead of developing end-to-end models for MRI 
that could learn features from the raw data. 

From the three main disorders discussed, SZ seems to obtain the 
highest classification performance. There are several non-exclusive 
possibilities that may explain the differences in performance. One 

possibility is that the labels for SZ are more reliable. However, the inter 
rater reliability (IRR) for SZ appears lower than for ASD and ADHD 
(Regier et al., 2013). Yet, it is important to note that also IRR of these 
different disorders is difficult to compare as they have been assessed in 
different settings. (Regier et al., 2013) Another possibility is that the 
samples were more homogenous. Fig. 5 indicates that the samples for SZ 
were smaller and obtained at fewer sites. This could have reduced the 
clinical heterogeneity within the patient group that is associated with 

Fig. 7. Forest plot of diagnostic odds ratio for deep learning and machine learning comparison.  
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higher accuracy (Schnack and Kahn, 2016), as well as the heterogeneity 
of the imaging data. This is also consistent with the observation that 
accuracy was higher with smaller sample sizes (Fig. 5), which is in line 
with reviews for standard ML (Woo et al., 2017; Wolfers et al., 2015). 
However, this pattern was absent for SZ and even positive for ADHD, 
suggesting that the overall negative association was primarily driven by 
the negative trend for ASD studies. Another explanation may be that 
differences in brain anatomy and function are more distinct from 
healthy controls. This is supported by data from large-scale neuro
imaging consortia that have reported larger differences in brain anat
omy for SZ compared with ADHD and ASD (Thompson et al., 2020). 

Remarkably, only half of the studies report sensitivity or specificity 
performance measures, whereas these are important for interpretation, 
especially when case/control groups have unequal sample sizes (Schei
nost et al., 2019), and these measures are required for the present meta- 
analysis based on diagnostic odds ratios. Furthermore, many studies do 
not compare their model with a benchmark SML model. This hinders a 
comprehensive comparison and a quantitative analysis of all included 
studies. In the following section we will evaluate more good and bad 
practices. 

5.2. Good and bad practices 

In general, it can be concluded that there are still a considerable 
number of studies not adhering to the ten simple rules of individual 
differences in neuroimaging as proposed by Scheinost et al. (2019). We 
will discuss four themes based on these ten rules and our findings from 
this review: 

5.2.1. Out-of-sample predictions 
The first rules of Scheinost et al. (2019) describe the need for an out- 

of-sample prediction as it generates more accurate and generalizable 
models. Predictive models in neuroimaging can be susceptible to over
fitting, the tendency to mistakenly fit sample-specific noise as if it were 
signal (Yarkoni and Westfall, 2017), especially since the number of 
predictors is usually far greater than the number of observations 
(Whelan and Garavan, 2014). Common practice to deal with the curse of 
dimensionality in neuroimaging is feature selection or engineering. This 
should be done carefully as training and test set need to stay indepen
dent. In our reported tables the highest reported accuracies are often 
from studies doing feature selection and we need to carefully interpret 
these results. Doing feature selection is not a bad practice, but it should 
be done inside a cross validation loop or on a different dataset (Scheinost 
et al., 2019). At least for three studies (Li et al., 2018; Yan, 2017; Yan 
et al., 2019) feature selection is done on the whole sample, leading to 
model ‘peeking’ into the test data, which may lead to optimistic results. 
For several other studies it was unclear whether this procedure was done 
properly (Wang et al., 2019; Qureshi et al., 2019, 2017). 

5.2.2. Proper cross-validation 
As discussed in rule number 3 of Scheinost et al. (2019), cross vali

dation should be used to test a model’s generalizability. Preferably even, 
the model should be tested on a separate, external dataset as this pro
vides most evidence of model generalization, but this is often not 
feasible. Still, several studies only report accuracies based on a single 
train/test split (Li et al., 2018; Srinivasagopalan et al., 2019; Kuang 
et al., 2014; Kuang and He, 2014; Li, 2019), therefore reporting an 
overly optimistic outcome and complicating comparisons with other 
studies. As the best practice for model generalizability is to use an 
independently collected dataset as test set, it is good practice to report 
leave site out validation as each site is an independent dataset. This is 
not yet standard practice as many studies have used multi-site data, but 
only few report leave-site-out cross-validation. 

5.2.3. Choice of model and performance metric 
The choice of model and performance metric should be defined prior 

to the analysis and heavily depends on the question of interest. Ques
tions of interest about comparisons of SML and DL models should be 
carefully designed and define models and methods of parameter opti
mization before analysis. It is important to note that using pre- 
engineered features for SML and DL models can lead to an unfav
ourable comparison for DL as its main advantage is representation 
learning. Instead of focusing on the highest performance score, ques
tions of interest could also focus on exploring the possibilities of DL 
models on minimally preprocessed data, as preprocessing involves many 
subjective choices. In this review we conclude that there is both a lack of 
proper comparisons between SML and DL models on the same, pre- 
engineered input features as well as studies of DL models that explore 
the possibilities of DL applications to higher dimensional data such as 3D 
or 4D images. 

Finally, when the ultimate goal is to understand the relationship 
between behaviour and brain activity, the interpretation of results 
matters (Scheinost et al., 2019). If a complex model yields better per
formance but is less able to map the brain-behaviour associations, 
simpler models may be preferred. In this review several studies try to 
map the findings of DL models to specific brain areas (Sen et al., 2018; 
Matsubara et al., 2019; Xing et al., 2018; Yan et al., 2019; Kim et al., 
2016; Deshpande et al., 2015; Vyskovsky et al., 2019; Castro et al., 2015; 
Pinaya, 2016), but there is still a lack of comparisons between those 
highlighted brain areas across studies or between DL and SML models. 

In conclusion, different questions of interest ask for different ap
proaches and should therefore be defined properly and prior to the 
analysis. 

5.2.4. Reporting statistics and code 
Moreover, not only accuracy should be reported, as overall accuracy 

may not translate well to accuracy for individual classes (Baldi et al., 

Table 5 
bivariate random-effect meta-regression with DL/ML as covariate   

Point 
Estimate 

SE z value p value 95% CI 
lower 

95% CI 
upper 

All studies 
(n = 16)       

DOR 
(higher is 
better) 

0.464 0.334 1.387 0.165 − 0.192 1.119 

Sens 
(higher is 
better) 

0.068 0.242 0.281 0.779 − 0.406 0.542 

Fpr (lower 
is better) 

− 0.419 0.195 2.149 0.032* − 0.801 − 0.037 

ASD (n =
4)       

DOR 
(higher is 
better) 

0.347 0.128 2.721 0.007** 0.097 0.597 

Sens 
(higher is 
better) 

0.181 0.203 0.888 0.374 − 0.218 0.579 

Fpr (lower 
is better) 

− 0.162 0.183 − 0.884 0.377 − 0.520 0.197 

SZ (n = 9)       
DOR 

(higher is 
better) 

0.601 0.331 1.814 0.070 − 0.048 1.250 

Sens 
(higher is 
better) 

0.086 0.328 0.261 0.794 − 0.558 0.729 

Fpr (lower 
is better) 

− 0.519 0.217 − 2.396 0.017* − 0.944 − 0.095 

Bivariate random effects meta regression results with DL/ML as covariate. Re
sults are indicated as estimates for DL, thus a higher point estimate for sensitivity 
indicates higher sensitivity for DL results as compared to ML. 
* Significant at the 0.05 level without Bonferroni correction 
** Significant at the 0.05 level with Bonferroni correction 

M. Quaak et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 30 (2021) 102584

18

2000). Studies should at least also report sensitivity and specificity. 
Furthermore, when comparing models’ performance, it is crucial to 
perform statistical analysis of performance gains before drawing any 
conclusions. Statistical significance is best evaluated using permutation 
testing, since results of each fold of the cross-validation are not inde
pendent, or with external validation on an independent dataset (Schei
nost et al., 2019). Finally, although a considerable number of studies 
already shares data and code, this should become standard practice to 
facilitate external validation and model comparisons. 

5.3. Deep learning vs machine learning 

Although DL has unlocked unprecedented success in various do
mains, its superiority as an analytical tool for neuroimaging in psychi
atry is yet to be demonstrated. The added benefit of DL is its ability to 
capture nonlinear, subtle patterns, but the question arises whether these 
nonlinearities 1) exist between brain connectivity and psychiatric dis
orders and 2) are exploitable at the currently available sample sizes and 
examined scales. In this review we tried to examine the difference in 
performance between DL and standard, shallow ML models in the 
classification of psychiatric disorders. As can be seen in Fig. 6, for thirty- 

Fig. 8. Univariate random-effect forest plots of log diagnostic odds ratio’s grouped per disorder.  
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two out of thirty-five studies (91%) directly comparing DL to SML, the 
performance of DL models was higher. When statistically comparing the 
two techniques on the sixteen studies that did report sensitivity and 
specificity, which is necessary for meta-analysis on odds ratios (Mac
askill et al., 2010), no significant difference was obtained. This could 
merely be the result of insufficient power, or because the random-effect 
meta-regression with SML/DL covariate assumes that the data arise from 
a randomized design. This is a conservative approach as the results truly 
are paired results; they are obtained by application of both techniques to 
the same dataset. Unfortunately, there is a lack of meta-analytical 
models that account for pairing of test results (Macaskill et al., 2010) 
and we can therefore not apply a more appropriate and possibly more 
liberal approach. We assume that a paired analysis will show significant 
better performance of DL techniques as DL performed better in 91,43% 
% of the included studies that compare both methods, and we have seen 
that comparisons of SML-DL within one disorder does lead to significant 
differences. 

The outperformance of DL compared to SML may be partly explained 
by a publication bias given the increased interest in DL and our search 
for DL papers specifically (Boulesteix et al., 2013). It is, for instance, 
likely that many included studies optimized parameters for their DL 
model but did not optimize parameters for their comparative SML 
model. The difference with and without optimisation can be large: In a 
study of (Yang et al., 2019) a grid search method was deployed to find 
the optimal parameters for SVM. They obtained a cross validated ac
curacy of 71.98% on the entire ABIDE I, whereas without optimisation 
(Heinsfeld et al., 2018) report an accuracy of 65% using SVM on the 
ABIDE I. It is therefore important to have standardized procedures for 
fair comparison between DL and SML models, where the models and 
methods of parameter optimization are chosen beforehand. Further
more, studies should test whether the difference in performance is sig
nificant to properly benchmark the potential added value of DL models. 

The overwhelming outperformance of DL studies is still surprising 
given that the majority of studies used pre-engineered features for 
classification, whereas the main advantage of DL comes from learning 
non-linearities of minimally preprocessed data (Abrol et al., 2020). A 
recent study suggested that DL is better able to fit brain connectivity, 
even when the data is preprocessed (using connectivity features of 400 
regions). They showed that DL performs particularly well at connector 
hubs - regions with diverse connectivity (Bertolero and Bassett, 2020). It 
is still unclear whether the discussed models of this review have also 
picked up these non-linearities or whether there are more specific cases 
where DL could be particularly beneficial. We do know that only a few 
studies have exploited DL’s capabilities of representation learning, 
meaning that the ‘true’ value of DL performance still remains to be 
deciphered. 

5.4. Strengths and limitations 

We will shortly discuss the strengths and limitations of this review 
and meta-analysis. First of all, given the high interest in DL and rapid 
increase of DL studies in neuroimaging, there was a need for a systematic 
overview of DL applications in psychiatry. Given the rigorous search in 
technical and biologically oriented databases, we included a large 
amount of studies in an attempt to give a comprehensive overview. One 
important limitations of this overview is the lack of an extensive quality 
assessment of studies as is proposed by the Cochrane handbook (Mac
askill et al., 2010). This may have led to inclusion of studies of less 
quality and biased results. However, this enabled us to identify good and 
bad practices within the field. Furthermore, for a good comparison be
tween SML and DL studies, a thorough investigation on publication bias 
is needed to establish the reliability of this trend in favour of DL. 

The most important limitation for the meta-analysis is that we could 
only include a small amount of studies for quantitative analysis as most 
studies did not report sensitivity or specificity performances. Whenever 
more studies can be included, this would aid the generalization of our 

conclusions. An important boost for statistical power would be to 
include AD studies in this meta-analysis as numerous studies have 
applied DL models for AD classification (Jo et al., 2019; Vieira et al., 
2019). Although the identification of AD is usually based on structural 
rather than functional neuroimaging, the inclusion of AD studies in a 
future meta-analysis may enable the identification of a reliable baseline 
to validate future studies. Finally, performing a paired meta-regression 
would aid in the comparison of DL-SML performances, but appropriate 
methods for doing so still need to be developed. 

6. Conclusions and future directions 

Effective and accurate diagnosis of psychiatric disorders is important 
for initiation and choice of effective treatment. This review confirms 
that DL on neuroimaging is a promising tool for development of bio
logical diagnostic models that could aid diagnosis. While still in its early 
stages, the application of DL in neuroimaging for psychiatric disorders 
has shown promising results and obtained better performance than 
conventional shallow machine learning techniques. Nevertheless, 
several improvements are needed before the full potential of DL in 
psychiatric neuroimaging can be achieved. The fifty-five studies 
included in this review show a wide variety of patient characteristics, 
type of feature engineering and applied DL techniques which raises 
problems of generalizability. Due to these heterogeneous approaches, 
we could not identify optimal models or approaches for bivariate 
classifications. 

When choosing a model and reporting its accuracy, future studies 
should be mindful of the questions of interest they want to answer. If the 
aim is to develop a new DL model to improve performance, an extensive, 
neutral comparison to benchmarked SML models should be made that 
includes important performance measures for diagnostic classification 
(including sensitivity and specificity). Alternatively, the aim could be to 
apply DL to different kinds of input data, as it can learn features from 
higher dimensional data than SML techniques. Yet, we have seen that 
many studies still use linear feature engineered inputs, suggesting that 
the DL models are not used to their full potential. In general, studies 
should report extensive performance comparisons and keep in mind the 
ten rules for predictive modelling of individual differences (Scheinost 
et al., 2019) including proper validation. 

Since we found that publicly available datasets drive research, we 
suggest that our recommendations are best implemented bottom-up, by 
introducing standardized datasets, with standardized preprocessing 
protocols. Ideally, all code for models using these datasets should be 
publicly available. Similarly, not only the performance results should be 
reported, but the full data of (in)correct classification of all subjects 
should be made available to make a proper comparison between models. 
This would also help to identify subject IDs that are always classified 
wrong, which could aid to identify noise in the diagnostic labels. 

In conclusion, neuroimaging research in psychiatry using deep 
learning is still evolving to achieve better performance. While there are 
important challenges to overcome, our findings provide preliminary 
evidence supporting the promising role of DL in the future development 
of biological neuroimaging biomarkers for psychiatric disorders. 

Appendix A. Supplementary data 

When a model reported several ML techniques, we chose the one 
with the highest accuracy. If there were several DL techniques, we also 
chose the highest accuracy. If a study tested on several scanning sites, we 
chose to report the results on the scanning site with the largest sample 
size. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2021.102584. 
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