Skip to main content
. 2021 Feb 10;30:102584. doi: 10.1016/j.nicl.2021.102584

Table 1.

Overview of ASD studies included in this literature review.

Authors, year, ref. Dataset. Sample size. # Sites. Input Modality. Feature selection (y/n) Feature engineering. # Features. Validation. Best DL model. DL ACC. Best ML model. ML input. ML Acc.

Sen et al. 2018*, (Sen et al., 2018) ABIDE. ASD = 573, TD = 538. 17. s-MRI & rs-fMRI. no. Unsup. features (structural + spatio-temporal) 45 IC for fMRI + ? sMRI. 5 cv on training / 1 test. multimodal feature learning + linear SVM. 64.3. x. x. x.
Pinaya et al. 2019**, (Pinaya et al., 2019) HCP, ABIDE. pretraining HC = 1113; ASD = 83, HC = 105. 17. s-MRI. no. Freesurfer cortical thickness and anatomical volumes. x (Freesurfer 104 regions) 10 strat cv. AE. 63.9a SVM (lin) Freesurfer cortical thickness and anatomical volumes. 56.9 a
Aghdam et al. 2018, (Aghdam et al., 2018) ABIDE I + II. ASD = 116, TD = 69. 7. s-MRI & rs-fMRI. no. mean of AAL tc + GM/WM AAL parcellation. 232 or 348. 10 cv. DBN. 65.6. x. x. x.
Xing et al. 2018, (Xing et al., 2018) ABIDE I. ASD = 527, TD = 569. 17. rs-fMRI. no. AAL (90) FC matrix. 4005. 10x strat 5 cv. CNN_EW. 66.9. SVM. AAL (90) FC matrix. 63.6.
Ktena et al., 2018,(Ktena et al., 2018) ABIDE. ASD = 403, TD = 468. 20. rs-fMRI. no. anatomical spatial graphs with labels of HO FC matrix. x. 5 cv. GCN. ~67. PCA/Euclidean. anatomical spatial graphs with labels of HO FC matrix. ~54.
Li et al. 2018, (Li et al., 2018) ABIDE-UM. ASD = 48, TD = 65 (+411 training) 17* rs-fMRI. no. AAL (90) FC matrix. 4005. strat 5 cv. SSAE-DNN. 67.2. SVM. AAL (90) FC matrix. 60.5.
Kam et al. 2017, (Kam et al., 2017) ABIDE I UM NYU. ASD = 119, TD = 144. 2. rs-fMRI. yes, hierarchical cluster! AAL FC matrix. x. train/test. DRBM. 67.4. SVM (graph theory) AAL FC matrix. 65.9.
Dvornek et al., 2017, (Dvornek et al., 2017) ABIDE I. ASD = 529, TD = 571. 17. rs-fMRI. no. CC200 tc. 90*200. 10 strat cv. LSTM. 68.5. x. x. x.
Dvornek et al. 2018, (Dvornek et al., 2018) 1 site. ASD = 21, TD = 19. 1. task-fMRI + pheno. no. timeseries AAL(90) atlas. 156*90 timeseries. 10x 10 cv. LSTM. 69.8. x. x. x.
Heinsfeld et al.2018, (Heinsfeld et al., 2018) ABIDE I. ASD = 505, TD = 530. 17. rs-fMRI. no. CC200 FC matrix. 19,900. 10 cv and leave-site out. AE-MLP. 70. SVM. CC200 FC matrix. 65.
Dvornek et al. 2018, (Dvornek et al., 2018) ABIDE I. ASD = 529, TD = 571. 17. rs-fMRI + pheno. no. CC200 tc. 90*200 tc + 90*5 phenotypic data. 10 site-strat cv. Pheno_LSTM. 70.1. x. x. x.
Parisot 2018, (Parisot et al., 2018) ABIDE I. ASD = 403, TD = 468. 20. rs-fMRI + pheno. yes, RFE. HO (1 1 0) FC matrix + pheno(sex, site) 2000. 10 strat cv. GCN. 70.4. ridge. HO (1 1 0) FC matrix + pheno(sex, site) 65.3.
Aghdam et al. 2019, (Aghdam et al., 2019) ABIDE I + II. ASD = 210, TD = 249. 20. rs-fMRI. no. Max freq. voxel level. 2D images of (~70*95) 10 cv. combined mixed expert CNN. 70.5. x. x. x.
Anirudh & Thiagarajan 2019, (Anirudh and Thiagarajan, 2017) ABIDE I. ASD = 403, TD = 468. 20. rs-fMRI. no. HO (1 1 0) FC matrix + pheno(sex, site) x. 10 cv. ensemble G-CNN. 70.9. SVM(lin)* FC matrix. 66.8.
Khosla et al. 2018, (Khosla et al., 2019) ABIDE I. ASD=379, TD=395. 17. rs-fMRI. no. multi-channel 3D voxel connectivity maps. x. 10 cv (and ABIDE I/II split) ensemble 3D CNN. 73.5. SVM(RBF) FC matrix. 71.
Li et al. 2018, (Li et al., 2018) NDAR. ASD=61, TD=215. unclear. s-MRI. yes, discriminative landmarks (automatic)!! 50 3D volumes + pheno info (sex, WB volume) 24x24x24x50 10 cv CNN 76.24 x x x
Mellema et al. 2019, (Mellema et al., 2019) IMPAC ASD=418, TD=497 unclear s-MRI & rs-fMRI no FC matrix + ROI volumes x Strat. 3cv MLP 80.4 a Logistic Ridge Regression FC matrix + ROI volumes 77.34a
Guo et al. 2017, (Guo, 2017) ABIDE UM ASD=55, TD=55 1 rs-fMRI yes, based on SAE AAL FC matrix - feature selection based on multiple SAE 6670 nested 5 cv SAE-DNN 86.4 Elastic net AAL FC matrix 79,5
Dekhil et al. 2018, (Dekhil, et al., 2018) NDAR ASD=123. TD=160 2 rs-fMRI no PSD of tc of 34 gICA ROIs 34*83 2,4,10 cv and LOO-CV with 100 permutations SAE_SVM 91 PCA_SVM PSD of tc of 34 gICA ROIs 84
Li et al. 2018, (Li et al., 2018) 1 site ASD=82, TD=48 1 residual f-MRI no 2 channel (mean and std) 3D volumes 2*32x32x32=65536 Strat. 4 cv 2-channel 3DCNN 89b RF flattened vector of 2 channel 3D volumes (65536 dimensions) + PCA 82b
Ismail et al. 2017, (Ismail, 2017) KKI ASD=21, TD=21 1 s-MRI yes, ROIS (automatic) CDF of 64 shape features 64*4000 train/test SAE 92.8 x x x
Wang et al. 2019, (Wang et al., 2019) ABIDE I ASD=501, TD=553 17 rs-fMRI yes, top 1000 of RFE! AAL (1 1 6) FC matrix 6670 average of 5,10,20,30 cv SVM-RFE + SSAE 93.6 SVM-RFE + softmax classifier AAL (1 1 6) FC matrix 67.3

* General model for ASD and ADHD, ** General model for ASD and SZ

a AUC ROC, b F score, c Balanced accuracy

! not clear if feature selection is done only on training set, !! Feature selection done before train/test split

ASD = Autism Spectrum Disorder, TD = typically developing, rs = resting state, fMRI = functional Magnetic Resonance Imaging, s-MRI = Magnetic Resonance Imaging, ABIDE = Autism Brain Imaging Data Exchange, NDAR = National Database for Autism Research, IMPAC = Maging-PsychiAtry Challenge, UM = University of Michigan, KKI = Kennedy Krieger Institute , PSD = Power Spectral Densities, Tc = timecourse, gICA = group Independent Component Analysis, NMI = Normalized Mutual Information, CDF = cumulative distribution function, WB = whole brain, PCA = principle component analysis, SVM = support vector machine, AAL = automatic anatomic labelling, CC200, craddock 200, HO = Harvard Oxford, ROI = Region of interest, CNN = convolutional neural network, EW = element-wise filter, GCN = grapch convolutional network, AE = Auto Encoder, SAE = Stacked Auto encoder, SSAE = stacked sparse auto encoder, RF = random forest, MLP = multilayer perceptron, LSTM = long short-term memory, DBN = Deep belief network, DRBM = Deep restricted Boltzmann machine, FC = functional connectivity, 10 cv = 10 fold cross validation, LOOCV = leave one out cross validation, strat cv = stratified cross validation