Skip to main content
. 2021 Feb 10;30:102584. doi: 10.1016/j.nicl.2021.102584

Table 3.

Overview of ADHD studies included in this literature review.

Authors, year, ref Dataset Sample size # Sites Input Modality Feature selection (y/n) Feature engineering # Features Task Validation Best DL model DL ACC Best ML model ML input ML ACC
Kuang et al. 2014, (Kuang et al., 2014) ADHD-200-NYU HC = 107, ADHD-C = 99, ADHD-I = 44, ADHD-H = 13 1 rs-fMRI yes (expert) ROI (PFC) max freq x HC vs. ADHD-C vs ADHD-I vs ADHD-H Train/test DBN 37.4 x x x
Kuang and He, 2014, (Kuang and He, 2014) ADHD-200 HC = 160, ADHD-C = 125, ADHD-I = 50, ADHD-H = 14 3 rs-fMRI no WB freq PCA 257*9177 HC vs. ADHD-C vs ADHD-I vs ADHD-H Train/test DBN 44.6 x x x
Hao et al., 2015, (Hao et al., 2015) ADHD-200_NYU HC = 110, ADHD-C = 95, ADHD-I = 2, ADHD-H = 50 1 rs-fMRI no selected ROI network of 14 ROIS x HC vs. ADHD-C vs ADHD-I vs ADHD-H 100 cv DBaN 64.7 x x x
Sen et al., 2018*, (Sen et al., 2018) ADHD-200 ADHD = 356, HC = 373 8 s-MRI & rs-fMRI no Unsupervised features (structural + spatio-temporal) 45 IC for fMRI + sMRI ADHD vs TPC Train/test Multimodal feature learning + linear SVM 67.3 x x x
Wang & Kamata, 2019, (Wang and Kamata, 2019) ADHD-200 ADHD = 362, HC = 585 7 s-MRI no 3D fractal dimension complexity map (FDCM) 96*120*100 ADHD vs TPC Train/test 3D CNN 69.0 x x x
Zou et al. 2017, (Zou et al., 2017) ADHD-200 ADHD = 197, HC = 362 8 rs-fMRI no ReHo, fALFF, VMHC 3 * 47 * 60 * 46 + 3 * 90*117 *100 ADHD vs TPC 10 cv and leave-site out 3D CNN 69.2 x x x
Riaz et al., 2018, (Riaz, et al., 2018) ADHD-200 HC = 95, ADHD-C = 127* 1 rs-fMRI no 90 AAL timeseries 900*T HC vs ADHD Train/test CNN 73.1 SVM FC matrix with feature selection of elastic net 56.1
Wang et al., 2019**, (Wang et al., 2019) ADHD-200 ADHD = 146, HC = 441 8 s-MRI no full 3D image 121*145*121 ADHD vs TPC 5 cv 3D CNN 76.6 x x x
Desphande et al., 2015, (Deshpande et al., 2015) ADHD-200 HC = 744, ADHD-C = 260, ADHD-I = 173 7 rs-fMRI yes, (PCA) 200 PCA connectivity features 20 HC vs ADHD-C LOOCV Fc cascade NN with 2 training stages ~90 SVM significant features of PCA + conn weights ~80

* General model for ADHD and ASD, ** General model for ADHD and SZ

aAUC ROC, b F score, c Balanced accuracy

! not clear if feature selection is done only on training set, !! Feature selection done before train/test split

ADHD = Attention Deficit hyperactivity disorder, -I, Inattentive, -H hyperactive, -C combined, HC = healthy control, rs = resting state, fMRI = functional Magnetic Resonance Imaging, s-MRI = structural Magnetic Resonance Imaging, AAL = automatic anatomic labelling, ROI = Region of interest, CNN = convolutional neural network, DBN = Deep belief network, DBaN = deep baysesian network, FC = functional connectivity, SVM = support vector machine, 10 cv = 10 fold cross validation, LOOCV = leave one out cross validation, PCA = principle component analysis, ReHO = regional homogeneity, VHMC = voxel-mirrored homotopic connectivity, fALFF = Fractional amplitude of low-frequency fluctuations, NN = neural network.