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Abstract
Depression is a common mental disorder and one of the leading causes of 
disability around the world. Monoaminergic antidepressants often take weeks to 
months to work and are not effective for all patients. This has led to a search for a 
better understanding of the pathogenesis of depression as well as to the 
development of novel antidepressants. One such novel antidepressant is 
ketamine, which has demonstrated both clinically promising results and 
contributed to new explanatory models of depression, including the potential role 
of neuroplasticity in depression. Early clinical trials are now showing promising 
results of serotonergic psychedelics for depression; however, their mechanism of 
action remains poorly understood. This paper seeks to review the effect of 
depression, classic antidepressants, ketamine, and serotonergic psychedelics on 
markers of neuroplasticity at a cellular, molecular, electrophysiological, 
functional, structural, and psychological level to explore the potential role that 
neuroplasticity plays in the treatment response of serotonergic psychedelics.
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Core Tip: Depression is a common mental disorder and one of the leading causes of 
disability around the world. Monoaminergic antidepressants often take weeks to 
months to work and are not effective for all patients. This review specifically compares 
the effects of serotonergic psychedelics with other antidepressants on plasticity at 
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INTRODUCTION
Depression is a common mental disorder, and considered to be a major contributor to 
the overall global burden of disease, affecting an estimated 300 million people 
worldwide[1]. We have known for more than 60 years that medications with antide-
pressant action increase monoaminergic transmission[2]. Since imipramine was first 
introduced in 1957, numerous antidepressants have been developed with increasing 
specificity for the monoamine systems, including agents selective for serotonin, 
dopamine and norepinephrine. Surprisingly, while these agents lead to an immediate 
change in monoaminergic neurotransmission, they typically require at least 4 wk of 
treatment before leading to beneficial effects, and they are only effective around 30%-
40% of the time. These observations have led to the conclusion that, rather than 
treating a “serotonin deficit” (or some other monoamine deficit) antidepressants may 
work by promoting some form of neuroplasticity in brain circuits that are relevant to 
depression[3].

Neuroplasticity is a general term that encompasses molecular, cellular, electro-
physiological, structural, functional and psychological changes in the brain. 
Neuroplasticity underlies our ability to learn and is important for recovery after injury
[4]. However, the neuroplasticity model of depression suggests that maladaptive 
plasticity can also lead to problems, such as those that occur in major depressive 
disorder (MDD). Antidepressants may work in part by harnessing the power of 
neuroplasticity to change brain circuits driving maladaptive cognitions and behaviors 
and thereby improve symptoms[5]. This neuroplasticity-based theory of depression 
and antidepressant action may also provide an explanatory model for how the novel 
antidepressant, ketamine, exerts its antidepressant effects.

Ketamine modulates glutamate receptors: It is a non-competitive antagonist at the 
glutamate N-methyl-D-aspartate (NMDA) receptors (and its metabolite, hydroxy-
norketamine acts on AMPA receptors). It has been utilized for decades as a 
dissociative anesthetic. In the early 2000s, the intravenous formulation was discovered 
to have rapid antidepressant effects at sub-anesthetic doses[6]. Since then, numerous 
randomized controlled trials have replicated ketamine’s antidepressant effects[7-9]. In 
the last few years the S+ enantiomer of ketamine, esketamine, has received an FDA 
indication for treatment resistant depression and acute MDD with suicidal ideation or 
behavior. Due to its non-traditional mechanism of action as well as its rapid effects, 
ketamine has broadened our understanding of the possible mechanisms behind 
depression and antidepressant action; and has contributed to the shift in focus from 
monoamine functioning to neuroplasticity as a target for antidepressant action.

Since the emergence of glutamatergic agents as new approaches to the treatment of 
MDD, we have also witnessed renewed enthusiasm for the potential therapeutic role 
of serotonergic psychedelics. Serotonergic psychedelics encompass a broad category of 
compounds including lysergic acid diethylamide (LSD), psilocybin, mescaline, 
dimethyltryptamine (DMT, an active ingredient of ayahuasca), and other derivates 
that induce non-ordinary states of consciousness, and act as agonists or partial-
agonists at the serotonin 2A (5-HT2A) receptor[10-12]. Serotonergic psychedelics have 
been used for thousands of years in traditional medicine and religious ceremonial 
settings[11]. In the 1940s, LSD played an increasingly important role in the field of 
psychiatry in clinical and research settings until the end of the 1960s when psyche-
delics were made illegal and clinical research abruptly ceased[13]. More recently, 
clinical research with serotonergic psychedelics has slowly started to reappear. Recent 
clinical research in the context of psychedelic-assisted psychotherapy, has 
demonstrated the efficacy of psilocybin in treatment resistant depression[14], in MDD
[15], and in cancer-related anxiety and depression, with positive effects lasting up to 
several months after treatment[16]. Similarly recent trials with ayahuasca in recurrent 
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MDD and in treatment resistant MDD suggest its potential efficacy for MDD[17]. 
Although clinical trials with LSD are limited, a randomized control double-blind 
crossover study of LSD in healthy subjects demonstrated lasting changes in positive 
attitudes about life, positive mood changes, positive social effect and positive changes 
in well-being[18]. It is important to note that psychedelics may also be associated with 
transient anxiety, negative affect, and psychosis, which appears to be more common in 
unprepared users or users with vulnerability to psychosis, however there is no 
evidence of prolonged psychotic reactions in modern clinical trials when individuals 
are properly screened[19]. While these early findings suggest that psychedelics may 
have a potential therapeutic benefit in certain patient populations, the antidepressant 
mechanism of serotonergic psychedelics remains poorly understood.

One hypothesis is that all antidepressants share, in common, efficacy in driving 
neuroplasticity relevant to depression circuits. This paper seeks to briefly review the 
changes in neuroplasticity associated with MDD, and the larger established literature 
demonstrating the role that neuroplasticity plays in the therapeutic effect of classic 
antidepressants and ketamine. We will use this as a basis for exploring what is known 
about serotonergic psychedelics on markers of neuroplasticity (Figure 1).

MOLECULAR CORRELATES OF PLASTICITY ASSOCIATED WITH MDD, 
CLASSIC ANTIDEPRESSANTS AND PSYCHEDELIC AGENTS
Neurotrophic factors play an important role in neuroplasticity. Neurotrophic factors 
are a family of molecules that, by binding to specific neurotrophic receptors, support 
growth, survival, differentiation and synaptic plasticity of neurons. Brain derived 
neurotrophic factor (BDNF) is a key neurotrophic factor involved in most forms of 
synaptic plasticity. By binding to its corresponding receptor tropomyosin receptor 
kinase B (TrkB), BDNF activates intracellular pathways that play an important role in 
the survival and differentiation of neurons and during synaptogenesis[20-22].

Alterations in BDNF-TrkB signaling have been associated with depression in both 
humans and animals models[23]. In multiple rodent models of chronic, intermittent, or 
social defeat stress, BDNF-TrkB signaling has been found to be decreased in the 
prefrontal cortex (PFC) and hippocampus[24,25]. Chronic stress also may increase 
BDNF/synaptic plasticity in the amygdala and nucleus accumbens[25], suggestive of 
maladaptive plasticity. In humans, decreased blood levels of BDNF, and cortical 
expression of BDNF (measured in postmortem studies) have been noted in subjects 
with MDD[26,27]. Lower levels of BDNF and TrkB expression have also been found in 
the hippocampus and PFC of subjects who had died by suicide[28].

Typical antidepressants seem to work in part by activating BDNF/TrkB pathways. 
Chronic antidepressant treatment has been shown to increase BDNF and TrkB receptor 
mRNA expression in the hippocampus[29] and heterozygous BDNF knockout mice 
show an impaired antidepressant response[24]. The antidepressant effect of ketamine 
has also been associated with an increase in BDNF levels in several studies[30,31] and 
as with typical antidepressants, heterozygous BDNF knockout mice do not show the 
typical anti-depressant effects of ketamine[32]. Moreover, NMDA antagonists (e.g., 
memantine) that do not increase BDNF also do not show antidepressant effects, 
providing further evidence that it is the mechanism of plasticity, rather than NMDA 
antagonism, that mediates the antidepressant effects of ketamine[33]. This is further 
bolstered by recent evidence that direct activation of AMPA receptors by a metabolite 
of ketamine, hydroxy-nor-ketamine, may be sufficient to increase BDNF and induce an 
antidepressant response[30]. Down-stream from BDNF, there is much evidence that 
antidepressants like ketamine work via TrkB-induced activation of mTOR[34,35]. In 
animal models, this mTOR pathway seems critical for the rapid effects of ketamine[36].

In vitro research suggests serotonergic psychedelics can also rapidly increase BDNF 
levels[37]. Cortical neurons were treated with DOI (a psychedelic amphetamine), DMT 
or LSD for 24 h before measuring BDNF gene and protein expression using droplet 
digital polymerase chain reaction and enzyme-linked immunosorbent assay, 
respectively. Although serotonergic psychedelics did not increase the presence of the 
BDNF transcript they did result in a 2-fold increase in BDNF protein levels[37]. In 
human trials, a study in Brazil demonstrated that a single dose of ayahuasca in healthy 
controls (HCs) and patients with treatment resistant depression led to higher levels of 
serum BDNF which has been previously negatively correlated with depressive 
symptoms[38]. Similarly, a recent study of low doses of LSD demonstrated increased 
serum BDNF levels in HCs at 4 h and 6 h after administration, compared to placebo
[39].
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Figure 1 Psychedelic effects on markers of neuroplasticity. At the molecular level serotonergic psychedelics have been associated with increases in brain 
derived neurotrophic factor protein; at the cellular level serotonergic psychedelics have been associated with increases in neuritogenesis, spinogenesis, and 
synaptogenesis; at the electrophysiological level serotonergic psychedelics have been shown to lead to cortical desynchronization acutely, less is known about the 
long term electrophysiological changes although; at the level of functional connectivity serotonergic psychedelics lead to a decrease in default mode network (DMN) 
integrity acutely but longer-term they may lead to a normalization of DMN integrity; less data exists about volumetric changes with serotonergic psychedelics although 
in rodents hippocampal neurogenesis has been observed and in long term ayahuasca users decreased thickness of the posterior cingulate cortex has been 
observed; at a psychological level serotonergic psychedelics have been associated with changes in emotional processing specifically: decreased negative affect, 
increased positive affect, and an increased sense of connection to the self, others, and the world. BDNF: Brain derived neurotrophic factor; DMN: Default mode 
network; PCC: Posterior cingulate cortex.

CELLULAR CORRELATES OF PLASTICITY ASSOCIATED WITH CHRONIC 
STRESS, CLASSIC ANTIDEPRESSANTS AND PSYCHEDELIC AGENTS
There is a large body of literature demonstrating that chronic stress, of various forms, 
leads to atrophy of prefrontal and hippocampal dendrites[40-43] and synapse loss in 
those brain regions[44-46]. By contrast, chronic stress models show increased spine 
density in the basolateral amygdala and nucleus accumbens[47,48]. Postmortem 
studies in humans are limited but have demonstrated similar findings. For example, 
there is reduced dendritic branching in the hippocampus and PFC[49] with reduced 
synapse number in the PFC of depressed subjects[50]. In rodent models of depression, 
there is evidence that chronic antidepressant treatment can block or reverse some of 
the above noted changes, including dendritic atrophy and spine loss in the 
hippocampus and the PFC[51]. Ketamine has also been observed to rapidly increase 
the number of spine synapses in layer V neurons of the mPFC of rodents in association 
with its antidepressant behavioral response, and with a similar time course in which 
the antidepressant effects occur[36,52,53].

Recent research on serotonergic psychedelics suggests that they, likewise, promote 
rapid dendritic and axonal remodeling. A detailed in vitro report observed increased 
dendritic arbor complexity when cortical neurons were treated with the serotonergic 
psychedelics (DMT, DOI, LSD, and psilocin) as well as the entactogen (MDMA) which 
appeared to arise from an increase in number of dendritic branches and the total 
length of branches[37]. The effects were even greater to those seen when cortical 
neurons were treated with ketamine at similar doses. These effects were not observed 
after treatment with serotonin or D-amphetamine. The in vivo effects of serotonergic 
psychedelics on neuritogenesis were measured in this study and drosophila larvae 
treated with LSD and DOI were observed to have increased dendritic branching of 
class 1 sensory neurons. Serotonergic psychedelics also had an effect on spinogenesis 
in rat cortical cultures treated with DOI, DMT, and LSD showed an increase of 
dendritic spines, with LSD doubling the number of spines observed. Adult rats treated 
with an intraperitoneal dose of DMT also showed a significant increase in synaptic 
spine density in the PFC 24 h after dosing, coupled with an increase in excitatory post 
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synaptic currents (EPSCs). Interestingly, the effect on neuritogenesis and spinogenesis 
in cortical neurons was blocked by a TrkB antagonist, ANA-12 and by treatment with 
rapamycin, an mTOR inhibitor. Thus, this study demonstrated rapid effects of 
serotonergic psychedelics on neuritogenesis and synaptogenesis are likely mediated 
by TrkB and mTOR pathways. The effects of serotonergic psychedelics on neurito-
genesis and spinogenesis in cultured rat cortical neurons was also reduced by 
inhibition of the 5-HT2A receptor with ketanserin, a 5-HT 2A receptor antagonist, 
suggesting that activation of 5-HT2A receptor by serotonergic psychedelics may play a 
role in their neuritogenesis and synpatogenic properties[37].

ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING RAPID 
PLASTICITY ASSOCIATED WITH KETAMINE AND SEROTONERGIC 
PSYCHEDELIC AGENTS
We have described above how ketamine and serotonergic psychedelics have been 
shown to promote rapid synaptic plasticity, with this plasticity possibly mediated via 
BDNF/TrkB and mTOR pathways. However, one question is why ketamine and 
serotonergic psychedelics have such rapid effects on plasticity. One hypothesis is that 
they do so because they induce molecular/cellular correlates of plasticity while 
simultaneously activating brain circuits in ways that amplifies or drives activity-
dependent plasticity[22].

To understand how serotonergic psychedelics might result in rapid plasticity, we 
reviewed the evidence around whether such agents modify brain activity in a way 
that, like ketamine, might drive activity-dependent plasticity. Ketamine has long been 
shown to increase cortical excitability[54]. These changes may occur by suppressing 
activity of inhibitory neurons preferentially[55-57], resulting in an overall state of 
disinhibition. More recent work has shown that that ketamine-induced antidepressant 
effects are specifically linked with inhibition of somatostatin neurons[58] resulting in 
increases in excitability of parvalbumin in addition to glutamatergic neurons and thus 
protection of spines that would otherwise have been pruned[59]. Evidence from 
humans corroborates that there is a net increase in both glutamate and GABA 
(gamma-aminobutyric acid) concentrations in PFC measured using proton 
spectroscopy after ketamine suggesting that, in humans too, there is a relative 
disinhibition of prefrontal cortical activity[60]. This data is verified using in vivo 
electrophysiology as well. Multiple studies, across both humans and animals, suggest 
that ketamine (and its metabolite, hydroxy-norketamine) results in a clear increase in 
gamma activity (30-80 Hz activity, a useful index of an increase in cortical excitability
[61,62].

Some research suggests that serotonergic psychedelic drugs may directly modulate 
prefrontal cortical activity, leading to activity-dependent plasticity, via 5-HT2A receptor 
activation in the cortex, though it appears to do so in a way very different then 
ketamine[63]. The 5-HT2A receptor is expressed in deep layer V pyramidal neurons and 
GABAergic (particularly parvalbumin, PV+) neurons[63,64]. Activation of the 5-HT2A 

receptor depolarizes and directly excites a subpopulation of deep Layer V pyramidal 
neurons[65,66], leading to an increase in glutamatergic EPSCs[67-70]. There are reports 
that pyramidal neurons show both increases and decreases in spiking in response to 5-
HT2A agonists, though typically a higher proportion of pyramidal neurons are 
increased[71-73]. However, unlike ketamine, serotonergic psychedelics like DOI and 5-
MeO-DMT actually reduce low-frequency oscillations[71,72] and gamma oscillations
[73]. Data from humans also shows that serotonergic psychedelics are all associated 
with a broadband reduction of power less than 100 Hz[74-77].

In summary, while there is some preliminary evidence that both ketamine and 
serotonergic psychedelics increase molecular and cellular aspects of synaptic plasticity 
(activation of BDNF/TrkB pathways; increased synapse/dendritic structure), the 
mechanisms by which ketamine and serotonergic do this seem to be quite different. 
With ketamine, there is evidence of an increase in gamma activity/excitability in the 
cortex, which could serve to activate activity-dependent mechanisms of plasticity and 
may explain some of the rapid effects observed. With serotonergic psychedelic agents, 
changes in activity have been shown for certain deep pyramidal cells, but overall 
evidence from in vivo studies suggests that there is not a global level of disinhibition or 
increase in neural synchrony as a general or wide-spread phenomenon during psyche-
delics exposure.
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PLASTICITY WITHIN DEFAULT-MODE-NETWORK STRUCTURES
Neuroplasticity may also be observed on the level of changes in brain networks[78]. 
The literature suggests that symptoms of depression are associated with network 
alterations in “default-mode” brain networks, as well as in salience, affective and 
cognitive control/executive function brain networks[79]. The default mode network 
(DMN) defined by the anterior medial PFC, posterior cingulate cortex (PCC) and 
angular gyrus has consistently demonstrated altered connectivity in depression[80]. 
The normal functioning of the DMN has been associated with self-referential 
processes, which may be maladaptively heightened in patients with depression[81]. 
Processes such as maladaptive rumination that are associated with depression, and 
involve a repetitive reflection of negative thoughts and emotions[82], are associated 
with hyper connectivity of the DMN both in depressed patients and healthy subjects
[83].

It is likely that a simple linear relationship between increased or decreased 
connectivity in the DMN being correlated to depression and antidepressant response 
is over-simplified, and instead antidepressant therapies may work to reconfigure the 
default mode towards healthier patterns. In that vein, antidepressants have been 
found to affect and normalize altered DMN connectivity. In a study of healthy 
volunteers a two week administration of the serotonin-norepinephrine reuptake 
inhibitor (SNRI) duloxetine was found to reduce default mode connectivity in healthy 
individuals during rest[84]. In a study of 41 patients with dysthymic disorder, a 
depressive disorder similar to MDD, who were found to have alteration of DMN 
activity compared to normal controls, 10 wk of treatment with duloxetine was found 
to normalize function in the DMN, compared to placebo which had no such effect[85]. 
Ketamine has also been associated with circuit level changes in the DMN. In a 
randomized, placebo-controlled, double-blind, crossover study in healthy subjects, 
ketamine was found to decrease functional connectivity of the DMN to the dmPFC
[86]. A different study comparing HCs with patients with MDD measured functional 
connectivity at baseline and at 2 and 10 d after ketamine infusion. In subjects with 
MDD, connectivity between the insula and the DMN was normalized compared with 
HCs 2 d post ketamine infusion. This change was reversed after 10 d, a typical time 
course when the effects of ketamine begin to diminish and did not appear in either of 
the placebo scans, indicating this effect was an important aspect of the antidepressant 
function of ketamine[87].

Serotonergic psychedelics clearly alter DMN function and connectivity. A number 
of studies using LSD[88,89], psilocybin[90-92] and ayahuasca[93-95] have observed 
changes in functional connectivity of the DMN, and a common finding is an acute 
decrease in the integrity of the DMN. There are few studies that have looked at longer-
term changes in DMN activity or connectivity. However, one study showed that in 
patients with depression treated with psilocybin, DMN integrity has been observed to 
increase or normalize in the post-acute period (1-d post-dose) accompanied by 
improvements in mood, and DMN normalization was predictive of treatment 
response at five weeks[96]. It is striking that in the early studies serotonergic psyche-
delics seem to have longer lasting treatment response than typically seen in ketamine 
studies, although clearly more evidence is required.

CHANGES IN BRAIN VOLUME ASSOCIATED WITH ANTIDEPRESSANTS 
AND PSYCHEDELIC AGENTS
Depression and antidepressant treatment have also been associated with neuroplastic 
changes at the volumetric level. One area that has been heavily implicated in being 
involved in depression is the hippocampus. Reductions of hippocampal volume have 
been seen in cynomolgus monkeys and in mice[46], and in humans reduction of 
hippocampal volume is one of the most common brain changes associated with 
depression and chronic stress[97,98]. The hippocampus (and medial temporal lobe) is a 
key part of the human default-mode-network, and stress-induced alterations in this 
structure may contribute to some of the network-changes observed above. Other 
consistently reported grey matter abnormalities associated with depression in humans 
include decreased volumes of the cingulate cortex, the PFC, the orbitofrontal cortex, 
amygdala, and the basal ganglia[99]. White matter lesions have also been 
demonstrated in depression and have been demonstrated as being especially 
prominent in late-life depression[100].
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Amazingly, antidepressants have been shown to normalize hippocampal volume. 
One study found increased right hippocampal volumes in female responders 
compared to non-responders after eight weeks of treatment with the selective 
serotonin reuptake inhibitor (SSRI) fluoxetine[101]. Other studies have demonstrated 
that patients treated with antidepressants who do not remit have lower bilateral 
hippocampal volumes at baseline and follow-up compared to remitted patients[102], 
though not all studies have found this relationship[103]. Studies investigating the 
effect of ketamine on structural brain changes are limited, although one study invest-
igating the use of repeated ketamine treatment in patients with MDD observed 
increases in the volumes of the amygdala and hippocampus after just 6 ketamine 
infusions[104]. Studies on structural changes associated with serotonergic psychedelics 
are even more limited particularly with regards to humans with depression. However, 
in rodent models of trace fear conditioning, mice injected with low doses of psilocybin 
exhibited faster extinguishing of fear conditioning and an increased number of cells in 
the hippocampus compared to mice injected with saline or high dose psilocybin[105]. 
In non-depressed patients, one study found that 22 regular users of ayahuasca had 
thinning in the PCC and noted that cortical thickness values in the PCC were inversely 
correlated with personality traits measuring religiousness, transpersonal feelings and 
spirituality[106].

PSYCHOLOGICAL CHANGES ASSOCIATED WITH DEPRESSION, ANTI-
DEPRESSANTS AND PSYCHEDELIC FUNCTION
Plasticity can also relate to psychological changes in emotional, self, and social 
processing, which all play an important role in depression and antidepressant 
responses. Several studies have demonstrated that individuals with MDD demonstrate 
a bias towards negative emotional information compared to HCs[107,108]. Depression 
is also associated with perseverative negative ruminations[109]. Depression can also 
affect social processing, and has been associated with diminished desire for social-
ization, increased sensitivity to rejection, reduced cooperativeness, and impairment in 
understanding how others are feeling[110].

Antidepressants have been associated with changes in emotional processing[111], 
including changes in positive emotional recall with SSRIs and SNRIs in healthy 
volunteers, and changes in recognition of emotional facial expression, with the SSRI 
citalopram and the SNRI reboxetine reducing the identification of the negative facial 
expressions of harm and fear[112]. Ketamine may also lead to changes in these psycho-
logical processes. In a double-blind, placebo-controlled crossover study of 33 
individuals with treatment-resistant MDD and 24 HCs, participants received ketamine 
and placebo infusions 2 wk apart, and functional magnetic resonance imaging scans 
were conducted at baseline and 2 days after each infusion during an attentional bias 
dot probe task with emotional face stimuli using “happy”, “angry” or “neutral” faces 
across multiple time points. Ketamine infusion was found to have opposite effects on 
brain activation in regions associated with emotional processing in MDD vs HC 
participants, and in participants with MDD led to similar brain activity as HCs after 
placebo suggesting a possible “normalizing” effect on emotional processing in patients 
with MDD[113].

Serotonergic psychedelics also result in sustained and profound changes in 
emotional processing and sociability. LSD and psilocybin have been observed to 
decrease the recognition of negative facial expressions in healthy participants[114,
115]. Another study of healthy participants looking at changes in affect one week and 
one month after administration of psilocybin observed that negative affect decreased 1 
wk after administration of psilocybin and positive affect increased, and while the 
changes in negative affect normalized after 1 mo, changes in positive affect persisted
[116]. Beyond this, other unique psychological changes have been associated with 
serotonergic psychedelics, including a shift from a sense of disconnection from oneself, 
others, and the world to a sense of connection, and from avoidance of emotion to 
acceptance[117]. Both LSD and psilocybin have also been shown to acutely increase 
emotional empathy, and LSD was found to increase prosocial behavior on a social 
value orientation test. One unique property of serotonergic psychedelics is the 
experience of ego-dissolution which may occur during peak psychedelic experiences 
or “mystical experiences” where one experiences a loosening sense of boundaries 
between themselves and the world and a sense of unity and interconnectedness. It is 
possible that this subjective experience may in part account for shifting the 
relationship to one’s sense of self and towards one’s sense of connection with others. It 
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is interesting that the quality of the subjective “peak experience” has been associated 
with therapeutic efficacy[118]. Indeed, one plausible explanation for why serotonergic 
psychedelic agents are effective is that they evoke psychological experiences acutely 
while (at a molecular/cellular level) activating mechanisms of plasticity that help to 
engrain these experiences in long-term memory.

CONCLUSION
There is increasing evidence that psychedelic agents may induce rapid synaptic 
plasticity, and that this plasticity may be a key mechanism by which they can exert 
long-term antidepressant effects. However, it is important to note that plasticity is not, 
by itself, an inherently “anti-depressant” action. Indeed, as reviewed above, 
depression, anxiety and PTSD can, themselves, be caused or exacerbated by 
maladaptive forms of plasticity. Thus, the particular locus of this plasticity (neuronal 
sub-type, brain region, large-scale brain network) is important in understanding how 
such drugs cure depression. Psychedelic agents affect the brain in very different ways 
than ketamine (both when measured at the level of single units and local field 
potentials, or fMRI). However, longer-term changes in default-mode-network function 
may be a common endpoint linking both ketamine and psychedelic drugs in 
explaining antidepressant function of both agents. It is also vitally important to 
consider the psychedelic experience itself. The psychedelic experience has been 
described by some participants as being among the most meaningful or spiritually 
significant experiences of their lives[119]. If psychedelic agents produce these altered 
brain states, while simultaneously activating molecular/cellular cascades linked with 
plasticity, it could, indeed, provide a completely unique way of rapidly consolidating 
the effects of the experience for long-term retention. Trauma provides an example of 
how a single event, linked to mechanisms of plasticity, can cause long-term 
detrimental effects on brain and behavior[120]. Serotonergic psychedelics may well be 
the opposite — a pharmacologically-induced state of altered consciousness in which 
experiences are consolidated due to heightened mechanisms of synaptic plasticity.

Many questions remain. First, the question of to what extent neuroplasticity plays a 
role in depression. MDD is a complex disorder, and numerous factors play a role in its 
development including genetic, epigenetic, developmental, inflammatory, endocrine 
and psychological changes. A complete model of depression would account for how 
these various factors interlink to lead to the ultimate outcome of depression. Similarly, 
the question exists of to what extent neuroplasticity plays a role in the therapeutic 
effect of serotonergic psychedelics. The question also remains as to whether the 
therapeutic effect of serotonergic psychedelics is dissociable from the drugs subjective 
effects. While it is likely that neuroplasticity plays a role in the antidepressant 
treatment response of serotonergic psychedelics, further research is warranted to 
better characterize the other factors that play a role.
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