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Summary

Malignant lymphoma (ML) is a common hematological malignancy with 
many subtypes. Patients with ML usually undergo traditional treatment 
failure and become relapsed or refractory (R/R) cases. Recently, immu-
notherapy, such as immune checkpoint inhibitors (ICIs) and cellular treat-
ment, has gradually emerged and used in clinical trials with encouraging 
achievements for ML treatment, which exerts anti-tumor activity by block-
ing the immune evasion of tumor cells and enhancing the attack ability 
of immune cells. Targets of immune checkpoints include programmed 
cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic 
T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and 
ITIM domain (TIGIT), T cell immunoglobulin-3 (TIM-3) and lymphocyte 
activation gene 3 (LAG-3). Examples of cellular treatment are chimeric 
antigen receptor (CAR) T cells, cytokine-induced killer (CIK) cells and 
natural killer (NK) cells. This review aimed to present the current progress 
and future prospects of immunotherapy in lymphoma, with the focus 
upon ICIs and cellular treatment.

Keywords: cell therapy, clinical trials, immune checkpoint inhibitors (ICIs), 
immunotherapy, lymphoma

Introduction

Malignant lymphoma (ML) is one of the most common 
hematological malignancies, accounting for 3–4% of all 
malignant tumors. It is a heterogeneous entity, generally 
divided into two main types as non-Hodgkin’s lymphoma 
(NHL) and Hodgkin’s lymphoma (HL) [1–3]. Traditional 
treatments for lymphoma include chemotherapy, radiother-
apy, surgery and bone marrow transplantation. On one hand, 
conventional chemotherapy and radiotherapy may lead to 
severe adverse events in low-risk lymphoma patients; on 
the other hand, some patients underwent disease recurrence 
after hematopoietic stem-cell transplantation in aggressive 
high-risk lymphoma patients [4,5]. Also, 30–40% of diffuse 
large B cell lymphoma (DLBCL) patients, which is the most 
common subtype of NHL, may relapse or become refractory 
(R/R) cases after standard treatment with rituximab, cyclo-
phosphamide, doxorubicin, vincristine and prednisone 
(R-CHOP) [6]. Thus, to find innovative and novel strategies 
to solve the current dilemma is an urgent matter.

In recent years, immunotherapy has gradually emerged 
and applied in clinical trials, with encouraging achievements 

for malignant lymphoma. The mechanisms of immuno-
therapy can be divided into two categories. One is to block 
the immune evasion of tumor cells, therapies represented 
by immune checkpoint inhibitors (ICIs) with the focus on 
programmed cell death-1 (PD-1), programmed cell death-
ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 
4 (CTLA-4), T cell immunoglobulin and ITIM domain 
(TIGIT), T cell immunoglobulin-3 (TIM-3) and lymphocyte 
activation gene 3 (LAG-3) [7,8]. The other category is to 
enhance the attack ability of immune cells towards tumor 
cells, therapies represented by cellular treatment with chi-
meric antigen receptor (CAR)-T cells, cytokine-induced 
killer (CIK) cells and natural killer (NK) cells [9]. This 
review aimed to present the current progress and future 
prospects of immunotherapy in lymphoma (Fig. 1).

Immune checkpoint inhibitors (Table 1)

PD-1/PD-L1

As an immunosuppressive molecule, PD-1 is mainly 
expressed on activated T cells, B cells, NK cells and myeloid 
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cells. In the tumor microenvironment, PD-1 on tumor-
infiltrating T cells binds to PD-L1 on tumor cells, which 
suppresses T cell cytotoxicity. By blocking PD-1/PD-L1 
signaling, the T cell-mediated immune response can be 
restored [10,11]. PD-1 inhibitors as nivolumab, pembroli-
zumab and pidilizumab and PD-1 inhibitors as atezoli-
zumab, durvalumab and avelumab are exploited in clinical 
trials with various kinds of lymphoma patients.

Nivolumab (trade name: Opdivo), a fully human immu-
noglobulin (Ig)G4 anti-PD-1 monoclonal antibody, was first 
studied in 23 patients with R/R Hodgkin’s lymphoma (HL) 
by Ansell et al. [12]. The results showed that the objective 
response rate (ORR) was achieved in 87% patients, with 
complete remission (CR) in 17% patients and partial remis-
sion (PR) in 70% patients. A Phase II clinical trial carried 
out by Younes et al. further confirmed the efficacy of 
nivolumab in 80  patients with R/R HL [13]. The ORR 
was 66.3%, with 9% patients obtaining CR, and the most 
common grades 3/4 adverse events (AEs) were neutropenia 
and increased lipase in 5% of patients. Another Phase I 
study conducted by Lesokhin et al. evaluated the efficacy 
of nivolumab in 10 patients with follicular lymphoma (FL), 
11 patients with diffuse large B cell lymphoma (DLBCL) 
and five patients with peripheral T cell lymphoma (PTCL); 
the corresponding ORRs were 40, 36 and 40%, respectively 
[14]. Moreover, Nayak et al. observed the clinical outcome 
of nivolumab in four cases with R/R primary central nerv-
ous system lymphoma (PCNSL) and one case with recurrent 

primary testicular lymphoma (PTL) [15]. The results showed 
that four cases reached CR and one reached PR, with a 
median progression-free survival (PFS) of 9 months. Based 
on the encouraging results of nivolumab as a monotherapy, 
the clinical efficacy of nivolumab combined with other 
therapies were further explored. A Phase I/II clinical trial 
recruiting 61 patients with R/R HL assessed the tolerability 
and feasibility of nivolumab combined with brentuximab 
vedotin (BV) [16]. A total of 50  patients had objective 
responses and 60  patients underwent manageable AEs.

Pembrolizumab (trade name: Keytruda) is the second 
human IgG4 monoclonal antibody targeting PD-1. A Phase 
I clinical trial investigated the efficacy and safety of pem-
brolizumab in 31 classical HL (cHL) patients experiencing 
BV treatment failure [17]. Among these patients, ORR 
was 65%, with 48% patients developing PR; 16% patients 
had grade 3 AEs and no treatment-related deaths occurred. 
A subsequent Phase II clinical trial also explored the anti-
tumor activity and safety profile of pembrolizumab in 210 
subjects with R/R cHL, and the clinical outcomes were 
similar to the above Phase I study [18]. For R/R primary 
mediastinal large B cell lymphoma (PMBCL), seven of 17 
patients responded to pembrolizumab and survived at the 
end of a Phase Ib study. Also, 11 patients suffered from 
treatment-related AEs and grades 1/2 AEs were mostly 
frequent [19]. For natural killer (NK)/T cell lymphoma, 
all the seven included subjects had responses to pembroli-
zumab and only one case underwent grade 2 AE [20].

Fig. 1. Schematic diagram of lymphoma immunotherapy.
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Pidilizumab is a fully human IgG1 anti-PD-1 monoclonal 
antibody. A Phase I study was designed to estimate the 
toxicity and tolerability of pidilizumab in 17 patients with 
advanced hematological malignancies (including four 
patients with NHL). No drug-related toxicities were observed 
and AEs independent of the treatment appeared in 11 
patients. Six patients responded to the treatment, including 
one case with CR. The half-life of pidilizumab in blood 
was approximately 9–17 days [21]. In another Phase II 
clinical trial, pidilizumab was evaluated in 66 patients with 
DLBCL after autologous hematopoietic stem-cell transplan-
tation. The results suggested that the 16-month PFS in 24 
high-risk patients (0·70, 90% CI  =  0·51–0·82) was com-
parable to that in overall patients (0·72, 90% CI  =  0·60–
0·82); ORR was 51% among 35 evaluable patients [22].

Atezolizumab (trade name: Tecentriq) is a human IgG1 
monoclonal antibody blocking PD-L1. A Phase I/II clinical 
study was executed to evaluate the safety profile and serum 
concentration of atezolizumab in children and young adults 
with R/R solid tumors, NHL and HL. Of the 90 enrolled 
patients, no mortal complications occurred and a high 
serum atezolizumab concentration was detected in all 
patients, while the efficacy was limited, with only four 
patients showing a response to the therapy [23]. Furthermore, 
some clinical trials are in progress to assess the anti-tumor 
activity of atezolizumab combined with other inhibitors or 
antibodies in DLBCL (NCT03276468, NCT02926833, NCT 
02220842, NCT03321643, NCT03422523, NCT02596971) 
and FL (NCT03276468, NCT02631577, NCT02220842, 
NCT02596971). The efficacy of atezolizumab as monotherapy 
is also evaluated in DLBCL (NCT03463057), cutaneous   
T cell lymphoma (CTCL) (NCT03357224), PTCL 
(NCT03046953) and HL (NCT03120676).

Durvalumab (trade name: Imfinzi) is also a human IgG1 
monoclonal antibody that inhibits PD-L1. In a Phase Ib/II 
clinical trial, the safety, tolerability and clinical response of 
ibrutinib plus durvalumab were measured in 27 cases with 
R/R FL and 34  cases with R/R DLBCL [16 germinal center 
B cell (GCB) subtype, 16 non-GCB subtype and two unclas-
sified subtype]. Fifteen of 61 patients acquired an objective 
response (seven had CR and eight had PR), with a median 
response time of 11·3 months. Median progression-free sur-
vival (PFS) and overall survival (OS) were 4·6 and 18·1 
months, respectively, and FL patients both had longer survivals 
than DLBCL patients. A total of 34 patients had grades 3/4 
adverse events (AEs) and 12 patients had immune-related 
AEs, with no fatal AEs [24]. The safety and efficacy of dur-
valumab plus other drugs, radiotherapy or CAR-T cells are 
under investigation for lymphoma treatment, including 
DLBCL (NCT03003520, NCT03685344, NCT03610061, NCT 
02706405, NCT03212807, NCT02549651), FL (NCT03685344, 
NCT03610061), mantle cell lymphoma (MCL) (NCT 
03685344), NK/T cell lymphoma (NCT03054532), PTCL 
(NCT03161223, NCT03011814) and CTCL (NCT03011814).N
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Avelumab (trade name: Bavencio) is another human IgG1 
monoclonal antibody targeting PD-L1, which has the ability 
to enhance antibody-dependent cell-mediated cytotoxicity 
[25]. Some clinical trials are designed to evaluate the fea-
sibility of avelumab in DLBCL (NCT03244176, NCT 
02951156, NCT03440567), FL (NCT03636503), MCL 
(NCT03440567), PTCL (NCT03046953, NCT03905135), ana-
plastic large cell lymphoma (ALCL) (NCT03905135), NK/T 
cell lymphoma (NCT03439501) and HL (NCT03617666, 
NCT02603419).

CTLA-4

CTLA-4 is a transmembrane receptor on T cells, which 
can induce T cell anergy and negatively regulate immune 
response when binding to B7 ligand on antigen-presenting 
cells (APCs) [26]. Blocking CTLA-4 causes increased   
T cell proliferation and activation to attack tumor cells.

Ipilimumab (trade name: Yervoy) was first introduced 
as the CTLA-4 inhibitor to treat metastatic melanoma 
patients [27]. The clinical efficacy of ipilimumab was studied 
in a Phase I clinical trial of 18 patients with R/R B cell 
malignant lymphoma. The study included nine cases of 
FL at grade 1, five cases of FL at 2 grade, three cases of 
DLBCL and one case of MCL. The results showed that 
one DLBCL achieved 31 months of continuous remission 
and one FL achieved 19 months of PR [28]. Another 
Phase I clinical trial performed by Tuscano et al. dem-
onstrated the safety and efficacy of ipilimumab combined 
with rituximab in 33 patients with CD20-positive R/R B 
cell lymphoma. The clinical outcome indicated that eight 
patients (eight of 33, 24%) had a response with a median 
PFS of 2·6 months, while seven patients (seven of 13, 
54%) had a response with a median PFS of 5·6 months, 
particularly in follicular lymphoma patients. Adverse events 
were under control and the ratio of CD45RA– regulatory 
T cells (Treg : Treg) could be associated with patient response 
using this therapeutic strategy [29].

Tremelimumab is another CTLA-4 inhibitor which was 
initially explored in malignant mesothelioma [30]. Three 
clinical trials are currently under investigation regarding 
the application of tremelimumab in lymphoma, including 
durvalumab combined with tremelimumab in R/R DLBCL 
(NCT02549651), MEDI6469 (OX40 monoclonal antibody) 
combined with tremelimumab in aggressive B cell lym-
phoma (NCT02205333) and tremelimumab combined with 
durvalumab and poly-ICLC [Toll-like receptor (TLR)-3 
agonist] in cutaneous T cell lymphoma (NCT02643303).

TIGIT, TIM-3 and LAG-3

TTIGIT, TIM-3 and LAG-3 are newly discovered immune 
checkpoints that regulate immune function and are 
associated with cancer development. TIGIT is highly 
expressed in Tregs, follicular helper T cells, effector T 
cells and NK cells as a co-inhibitory factor mediating 

immunosuppression [31,32]. TIGIT was found in FL 
[33], various subtypes of NHL [34] and HL [35], indi-
cating TIGIT blockage as a major concern of immune 
checkpoint therapies in the field of lymphoma. TIM-3 
is a type of surface inhibitory molecule on CD4+ helper 
T cells and CD8+ cytotoxic T cells, which can cause T 
cell exhaustion during cancer progression and chronic 
virus infection [36,37]. In the context of lymphoma, 
TIM-3 demonstrated expression in DLBCL [38], NK/T 
cell lymphoma [39], PTCL [40] and FL [41], showing 
the potent anti-lymphoma activity of impeding TIM-3. 
LAG-3 is a negative immune regulator mainly distributed 
on activated T cells and NK cells [42]. LAG-3 expres-
sion was up-regulated in DLBCL [38], NK/T cell lym-
phoma [39] and FL [43], indicating that it might be 
the potential target for lymphoma treatment.

Cellular treatment (Table 2)

CAR-T cell therapy

CAR-T cell therapy is a novel adoptive immunotherapy 
by equipping T cells with ‘CAR’ to recognize specific 
tumor antigen. CAR consists of antigen-binding, trans-
membrane and signal transduction regions. T cells are 
extracted from peripheral blood and manufactured as 
CAR-T cells, which can enhance the anti-tumor activity 
of T cells for specific targets [44,45].

CAR-T cell therapy was first applied to attack CD19-
positive B lineage malignancies due to CD19 expression 
on malignant and normal B cells [45]. Kochenderfer   
et al. reported the first case with FL who reached partial 
remission and maintained for 32 weeks after CD19-specific 
CAR-T cell therapy [46]. A Phase I/II multicenter clinical 
trial (NCT02348216) collected 108 patients with large B 
cell lymphoma who received a single dose of anti-CD19 
CAR-T cellular treatment (axicabtagene ciloleucel) [47]. 
For efficacy evaluation, 84 of 101 evaluable patients had 
responses with a median duration of 11·1 months. For 
safety analysis, 52 of 108 evaluable patients suffered from 
at least grade 3 non-treatment-related AEs, including 
cytokine release syndrome (CRS) and neurotoxicity [47]. 
Subsequently, a Phase IIa single-center clinical trial 
(NCT02445248) recruited 93 patients with R/R DLBCL 
who were administered CD19-specific CAR-T cell infusion 
(tisagenlecleucel) [48]. Objective responses appeared in 
52% patients and the rate of relapse-free survival was 
65% within 1 year after response. Most patients underwent 
AEs-like cytopenias and CRS, with no treatment-related 
deaths [48]. Another CAR-T cell therapy (lisocabtagene 
maraleucel) with a distinct 1  :  1 CD4+  :  CD8+ ratio was 
investigated in 32 patients with R/R B cell NHL [49]. 
Twenty patients who had previously had lymphodepletion 
chemotherapy comprised of cyclophosphamide and 
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fludarabine (Flu) achieved 72% ORR and 50% CR, with 
stable CAR-T cell expansion and persistence in vivo. CRS 
and neurotoxicity were observed in 13 and 28% of all 
32 patients [49].

Studies regarding anti-CD20 CAR-T cell therapy were 
also explored. Till et al. reported seven cases with R/R 
FL successfully infused anti-CD20 CAR-T cells for treat-
ment (NCT00012207), and demonstrated the safety and 
effectiveness in these patients [50]. They subsequently used 
anti-CD20 CAR-T cells with co-stimulatory domains of 
CD28 and 4-1BB to treat three MCL and one FL 
(NCT00621452), and again proved the feasibility and tol-
erability of this method [51]. Another study assessed the 
anti-tumor activity of CD20-specific CAR-T cells in seven 
patients with advanced DLBCL; these patients achieved 
at least 3  months of tumor regression. AEs were consid-
ered to be associated with tumor size and location [52].

CAR-T cell therapy targeting CD30 may provide alter-
natives for patients with CD30 positive R/R HL or NHL. 
In a Phase I clinical trial, anti-CD30 CAR-T cell therapy 
was applied in 18 patients with R/R HL [53]. The results 
showed that seven patients had PR, two patients appeared 
to be grade ≥  3 AEs, serum CAR-T cells increased and 
CD30 antigens decreased, proving that anti-CD30 CAR-T 
cell therapy was tolerated and effective. Another Phase I 
study regarding CD30-specific CAR-T cell therapy was 
performed in seven cases with R/R HL and two cases 
with R/R ALCL [54]. The clinical outcome showed that 
three patients achieved CR with a response duration of 
9  months, 2  years and >  2·5 years, respectively. Serum 
CAR-T cells persisted for more than 6  weeks, and no 
treatment-related toxicities occurred.

Dual-target CAR-T cell therapy, which means that CAR-T 
cells are manufactured to recognize bispecific antigens, 
has become a new focus in lymphoma immunotherapy. 
Preclinical data illustrated the anti-tumor activity of anti-
CD19–CD20 CAR-T cells towards B cell malignancies 
[55,56]. Tu et al. discussed a case presented with R/R 
PCNS-DLBCL using CAR-T cells against CD19 and CD70 
[57]. The patient achieved CR within 1 month and disease-
free survival for more than 17  months; no neurotoxicities 
occurred. Additionally, CD19/CD22 bispecific CAR-T cell 
therapy was investigated in patients with acute B cell 
lymphoblastic leukemia and considered to be safe and 
efficient [58].

CIK cell therapy

CIK cells originate from peripheral blood mononuclear 
cells with stimulation of interferon (IFN)-γ, interleukin 
(IL)-2 and anti-CD3 monoclonal antibody [59]. CIK cells 
express both CD3 and CD56 markers, with strong anti-
tumor activity-like T lymphocytes and non-major histo-
compatibility complex (MHC)-restricted tumor killing-like 
NK cells [60,61].

A Phase I clinical trial conducted by Leemhuis et al. 
explored the efficacy of CIK cellular treatment with dif-
ferent doses for relapsed B cell lymphoma after autologous 
transplantation. Two patients achieved partial response 
and two patients achieved stable disease among the nine 
enrolled patients, while no relationship was found between 
dose level and clinical outcome due to the small sample 
size [62]. Guo et al. also performed a retrospective study 
to demonstrate the feasibility of CIK treatment in eight 
patients with refractory lymphoma after various chemo-
therapy regimens. All these patients had complete response 
or partial response with no serious complications after 
CIK cell infusion, indicating the effectiveness and safety 
of this novel therapy [63]. Another study proved that 
CIK cellular treatment could improve immunity in refrac-
tory or relapsed lymphoma patients, with increased level 
of CD3+CD8+ and CD3+CD56+ cells in their peripheral 
blood [64–66]. CIK cell therapy was also safe and effec-
tive for elderly patients with malignant lymphoma [65,66].

NK cell therapy

NK cells are important innate immune cells, which can 
kill tumor cells without antigen pre-sensitization [67,68]. 
NK cells can exert cytotoxicity through a series interac-
tion of activated and inhibitory receptors and corresponding 
ligands. The most common mechanism is called ‘missing-
self ’, meaning that low expression of human leukocyte 
antigen (HLA)-I molecules on the tumor cell surface leads 
to the escape of tumor killing by cytotoxic T cells but 
activates tumor killing by NK cells [69]. Activated NK 
cells directly kill target cells by releasing perforin and 
granzymes [70]. Another important way technique for 
activating NK cell function is mediated by IgG, termed 
‘antibody-dependent cell-mediated cytotoxicity’ (ADCC). 
Here, the Fab segment of IgG links to the antigen epitopes 
of tumor cells while the Fc segment of IgG links to CD16 
expressed on NK cell surface; target cells are then directly 
killed by NK cells [71,72].

In 2010, Bachanova et al. first investigated the clinical 
efficacy of adoptive haploidentical donor NK cells com-
bined with IL-2 and rituximab to treat six relapsed or 
refractory CD20+ NHL patients [73]. The addition of IL-2 
and rituximab enhanced the NK cell-related ADCC effect. 
Four of six patients obtained complete response (two cases) 
and partial response (two cases), while NK cell survival 
was transient (no more than 7  days) in these patients 
with increased levels of Tregs. Another study was also per-
formed by Bachanova et al. in 2018 [74], and four of 14 
patients obtained complete response (two cases) and partial 
response (two cases). In this study, NK cells persisted in 
vivo for at least 7 days due to enhanced immunodepletion 
and Treg depletion therapy. Williams et al. evaluated a 
Phase I trial of irradiated NK-92 cell therapy in 12 patients 
with relapsed hematological malignancies after autologous 
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hematopoietic cell transplantation [75]. The clinical out-
come showed that five patients had remission and improve-
ment, and no serious adverse events occurred.

Similarly to CAR-T, CAR-NK cellular treatment against 
specific antigens is introduced to attack tumor cells. 
Currently, several preclinical researches have assessed the 
feasibility of CAR-NK cells in the field of malignant lym-
phoma, such as anti-CD20 CAR-NK cells against lymphoma 
cells in vitro [76,77] and a Burkitt’s lymphoma mouse model 
in vivo [77], anti-CD3 CAR-NK-92 cells against peripheral 
T cell lymphoma [78], anti-CD19 CAR-NK-92 cells against 
B cell lymphoma [79], anti-CD4 CAR-NK-92 cells against 
T cell lymphoma [80], anti-CD5 CAR-NK cells against T 
cell malignancies [81] and anti-38 CAR-NK-92 cells against 
Burkitt’s lymphoma cells [82]. A clinical trial investigated 
by Liu et al. has shown the effectiveness and safety of 
anti-CD19 CAR-NK cell therapy in 11 relapsed or refrac-
tory CD19-positive hematological neoplasms, including six 
NHL patients and five chronic lymphocytic leukemia 
patients. A total of eight patients achieved remission response 
within 1  month after CAR-NK treatment and the duration 
of CAR-NK cells in vivo was at least 12  months [83].

Discussion

With the rapid development of basic and clinical research 
of malignant lymphoma, clinical trials of immunotherapy 
for malignant lymphoma are gradually emerging and bring 
more benefits to targeted patients. However, therapeutic 
efficacy is limited in certain types of lymphoma, and 
adverse events cannot be ignored. For PD-1/PD-L1 inhibi-
tors, the most common drug-related toxicities were fatigue, 
nausea and diarrhea, which were tolerated and manageable. 
For other immune checkpoints, such as CTLA-4, TIGIT, 
TIM-3 and LAG-3, preclinical studies of their inhibitors 
have demonstrated feasibility, while related clinical trials 
are ongoing and efficacy and safety remain to be deter-
mined. For cellular treatment, donor source and cell 
infusion-related complications should be thoroughly con-
sidered and solved. Despite some encouraging clinical 
results from cellular treatment, large-scale studies need 
to be carried out to further support these results. In future, 
ICIs combined with cellular treatment, such as combina-
tion of PD/PD-L1 inhibitors and CAR-T cell therapy, might 
further enhance anti-lymphoma activity. Extensive clinical 
trials are ongoing to provide optimal strategies and improve 
the prognosis for lymphoma patients.
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