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Abstract

OBJECTIVE—Deep learning (DL) image reconstruction has the potential to disrupt the current 

state of MRI by significantly decreasing the time required for MRI examinations. Our goal was to 

use DL to accelerate MRI to allow a 5-minute comprehensive examination of the knee without 

compromising image quality or diagnostic accuracy.

MATERIALS AND METHODS.—A DL model for image reconstruction using a variational 

network was optimized. The model was trained using dedicated multisequence training, in which a 

single reconstruction model was trained with data from multiple sequences with different contrast 

and orientations. After training, data from 108 patients were retrospectively undersampled in a 

manner that would correspond with a net 3.49-fold acceleration of fully sampled data acquisition 

and a 1.88-fold acceleration compared with our standard twofold accelerated parallel acquisition. 

An interchangeability study was performed, in which the ability of six readers to detect internal 

derangement of the knee was compared for clinical and DL-accelerated images.

RESULTS.—We found a high degree of interchangeability between standard and DL-accelerated 

images. In particular, results showed that interchanging the sequences would produce discordant 

clinical opinions no more than 4% of the time for any feature evaluated. Moreover, the accelerated 

sequence was judged by all six readers to have better quality than the clinical sequence.

CONCLUSION.—An optimized DL model allowed acceleration of knee images that performed 

interchangeably with standard images for detection of internal derangement of the knee. 

Importantly, readers preferred the quality of accelerated images to that of standard clinical images.
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MRI is the diagnostic imaging modality of choice for multiple diseases and injuries because 

of its excellent soft-tissue contrast and its ability to gather both morphologic and functional 

information [1–4]. Most MRI examinations require at least 20–30 minutes, with complex 

studies taking 60 minutes or longer. The majority of the examination time is used for image 

acquisition, but some time is used for activities such as bringing patients into and out of the 

scan room, coil positioning, and room cleaning. Long examination times have multiple 

disadvantages, including suboptimal image quality from motion artifacts, necessity for 

anesthesia in pediatric patients, increased costs, and decreased access, particularly in regions 

with limited numbers of MRI scanners [5].

MRI is slow because data are gathered in a generally sequential and progressive fashion; the 

greater the spatial resolution and volumetric coverage required, the more data points are 

needed. When magnetic field gradients are used to encode spatial information, each data 

point takes time to acquire [6]. Circumventing these basic speed limits means acquiring 

fewer sequential data points. A number of innovative techniques have been developed in an 

attempt to accelerate MRI. The most commonly used technique, parallel imaging, allows 

simultaneous acquisition of some data points using multielement detector arrays [7–9]. 

However, signal-to-noise ratio (SNR) generally decreases rapidly with increasing 

acceleration in parallel imaging, and residual artifacts generally increase with increasing 

acceleration, limiting the achievable speed for images of acceptable quality. For most 

clinical examinations, the maximum acceptable acceleration factor is 2 [10].

Software approaches to accelerating image acquisition have been explored using compressed 

sensing and, more recently, deep learning (DL) [11–21] (Knoll F, et al., presented at the 

International Society of Magnetic Resonance in Medicine [ISMRM] 2017 annual meeting). 

Recognizing that most images are compressible, compressed sensing approaches gather a 

reduced set of data points and search for the most compressed image that is consistent with 

those data (rather than first acquiring a time-consuming full dataset and then compressing 

it). Compressed sensing tends to preserve SNR better than parallel imaging, but the 

compression algorithms used tend to oversimplify image content, resulting in residual 

blurring and a loss of realistic image textures.

DL methods for reconstructing MR images from undersampled data can learn from images 

of significantly higher complexity than those used for compressed sensing and therefore may 

allow previously inaccessible levels of acceleration while preserving high image quality 

[12–21] (Knoll F, et al., ISMRM 2017 annual meeting). In the rapidly advancing field of 

image generation using DL, photorealistic results have been produced for images of 

common objects such as faces, dogs, or flowers [22, 23]. However, the use of DL for MR 

images places constraints on reconstructions beyond photorealism. Reconstructed images 

must also be diagnostically accurate (i.e., image details must be real and not just plausibly 

hallucinated). DL methods have yet to make their way into clinical practice because of the 

challenges in developing approaches that can show, through rigorous clinical 
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interchangeability studies, their ability to achieve the dual and often conflicting goals of high 

image quality and strict clinical fidelity. Studies have shown progress toward achieving 

acceptable image quality with a small number of subjects, but a study showing both high 

quality and high accuracy has not been reported to our knowledge [12, 21] (Knoll F, et al., 

ISMRM 2017 annual meeting).

We sought to use DL to accelerate MRI to levels compatible with a 5-minute comprehensive 

examination of the knee, without compromising image quality or diagnostic accuracy. To 

achieve this goal, we designed a DL model, based on a variational network architecture [12], 

that explicitly learns MRI detector coil sensitivities, contains several architectural 

refinements, and is followed by adaptive image dithering to improve the perceived image 

quality. We chose to show the effectiveness of our approach for the detection of internal 

derangement of the knee. We collected the largest quantities of dedicated raw MRI data 

reported, to our knowledge, for such a task and divided the data into training, validation, and 

testing datasets. We performed a large-scale clinical interchangeability study comparing 

images obtained using our optimized DL-accelerated protocol with those obtained using our 

standard clinical MRI protocol. To aid in the further advancement of the field, the code and 

trained model associated with this study are open source [24].

Materials and Methods

Model Topology

The goal of DL-based image reconstruction is to convert undersampled data to images with 

full information content. Rather than using blind training for this process, our approach 

incorporates knowledge about the acquisition process, including the sampling pattern and 

the knowledge that the measurement was performed with multiple receive coils. Such a 

physics-guided learning approach reduces the quantity of data required for training and 

protects against generation of plausible-looking but physically infeasible image structures 

[12]. Multiple instances of undersampled data from the training set are fed into a model that 

performs physics-based reconstruction steps (such as gradient descent steps or parallel 

imaging reconstructions) while learning efficient filters that remove image artifacts 

introduced because of accelerated acquisition. The results are compared with corresponding 

ground-truth fully sampled images at each stage of training, and model weights are updated 

using backpropagation. Once training is complete, new undersampled datasets can be fed 

into the model and rapidly converted into full images.

Our particular neural network model is based on the variational network of Hammernik et al. 

[12], to which we added several architectural innovations that improved the quality of the 

reconstructions. First, we replaced the pair of convolutional layers from the original network 

topology with a U-Net architecture [25]. Second, instead of using the ESPIRiT algorithm to 

estimate sensitivity maps, we included an additional U-Net to estimate these maps from the 

input k-space data [26]. The U-Net used to estimate sensitivity maps and the U-Nets used to 

perform reconstruction are trained jointly to optimize the quality of the final reconstruction. 

We found that such an end-to-end approach is beneficial when the number of central k-space 

lines is small, which is necessary to obtain higher accelerations. Third, whereas the original 

variational network performed iterative updates to the complex image representation, our 
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model applied updates directly to the raw k-space data from each coil. Thus, our network 

gradually refined k-space data instead of refining the combined image from all coils. Figure 

1 illustrates the structure of our network, which was selected for this study after comparison 

of the performance of a variety of alternative network topologies. The sensitivity maps are 

estimated from fewer low-frequency autocalibration scan lines than are required to construct 

physically accurate sensitivities, but this reduced set of autocalibration lines is sufficient to 

produce highly accurate reconstructions via the variational network. The parameters of the 

model were estimated by minimizing structural similarity index (SSIM) scores on the 

training set [27]. We used the Adam optimizer with a learning rate of 0.0003 for 100 epochs 

[28]. A validation set was used to fit the hyperparameters of the model, such as the number 

of steps in the variational network as well as the number of layers and the number of feature 

maps in the U-Net. The model contains almost 30 million parameters: 29.5 million in the 

variational network and 0.5 million in the network that estimates sensitivity maps.

Multisequence Training

Our clinical knee protocol, which is described in more detail in the Data Collection and 

Patient Selection section, consists of five separate acquisitions obtained in three distinct 

image planes, resulting in multiple image contrasts and viewing angles. In a 2018 study that 

examined multiple sequences, separate specialized reconstruction models were trained for 

each individual sequence [12]. Although this approach is feasible in a research setting, 

having a single reconstruction pipeline for all sequences in an imaging protocol reduces the 

overhead for clinical deployment and improves the potential for generalizability of the 

trained model. We therefore performed a dedicated multisequence training, in which a single 

reconstruction model was trained with data from all sequences and was then used to 

reconstruct data from the complete clinical protocol. Because the images from the disparate 

sequences in the protocol vary substantially in contrast, SNR, and image content, our model 

needs a higher computational capacity than is generally required for a specialized sequence-

specific model to capture the larger diversity in acquisition parameters. The model was 

trained for 155.4 hours (or 6.5 days) on eight cloud-based graphics processing units (32-GB 

Tesla V100, Nvidia).

Acceleration Factor

As mentioned at the beginning of this section, because MRI data acquisition is performed 

sequentially, the number of acquired data points (or, in technical parlance, the number of 

acquired phase-encoding steps) is directly proportional to the scan time. In the literature on 

accelerated MRI, reporting the relative number of steps that are skipped in the 

undersampling pattern as the “acceleration factor” (R) is common practice (e.g., an 

acceleration factor of 2 indicates that only every second line in the data space, known as k-

space, is acquired). Scanner vendors use the same convention. However, for parallel imaging 

techniques such as the generalized autocalibrating partially parallel acquisition technique 

used for our clinical sequences in this study, some number of central k-space lines is always 

fully sampled for detector sensitivity calibration. Therefore, the true acceleration factor, as 

compared with a fully sampled case, depends on how many central calibration lines are 

acquired compared with how many outer lines are undersampled, which in turn depends on 

the target number of lines in the reconstructed image.
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To give an example, for the coronal proton density—weighted acquisitions, a fully sampled 

acquisition includes 332 phase-encoding lines. The standard clinical protocol with a nominal 

acceleration factor (or undersampling factor) of 2 therefore acquires 166 phase-encoding 

lines plus 13 lines at the center of k-space (such that a central region of 26 lines at the center 

[nRef] are fully sampled), leading to a total of 179 acquired lines and an actual acceleration 

factor of 1.85 (332/179). In comparison, our accelerated DL reconstruction uses a sampling 

scheme with a nominal acceleration factor of 4, equidistantly sampled, and a fully sampled 

nRef region of 16 lines at the center of k-space. This process results in a total of 95 phase-

encoding lines and an actual acceleration factor of 3.49 (332/95) compared with fully 

sampled, nonparallel imaging. Compared with our standard clinical sequences that used 

twofold accelerated parallel imaging, the DL-reconstructed images were faster by a factor of 

1.88 (179/95).

Added Image Noise (Dithering)

When it comes to subjective image appearance, a common challenge associated with 

nonlinear reconstruction approaches such as compressed sensing or DL is a residual 

smoothing of fine image features or background textures. To enhance the subjective 

perception of sharpness in images, known as acutance in photography, low levels of noise 

were added back to the reconstructed images (a process known as dithering) [29] (Fig. 2). To 

avoid obscuring dark areas of the reconstruction by adding too much noise, we adapted the 

level of noise to the brightness of the image in the vicinity of each voxel. Specifically, we 

blurred the image we wished to dither with a median filter, taking medians over 11 × 11 

patches of voxels, took the square root of the median value at each voxel of the blurred 

image, and multiplied it by a baseline value (σ) to yield a local SD (σlocal). We then dithered 

the original unblurred image by adding gaussian noise with 0 mean and SD equal to σlocal at 

each voxel. Before computing the square root and adding the noise, we normalized every 

voxel by dividing by the maximum value over all voxels in the cross-sectional slice.

Data Collection and Patient Selection

Institutional review board approval was obtained for this study with a waiver of informed 

consent. All images and raw data used in this study were anonymized to protect personal 

health information. Data from 406 consecutive knee examinations acquired on 3-T MRI 

scanners (Skyra and Biograph mMR, Siemens Healthineers) were collected retrospectively 

and divided randomly into training (n = 242), validation (n = 56), and test (n = 108) sets. 

Each MRI examination included our standard knee protocol of five 2D turbo spin-echo pulse 

sequences acquired in the sagittal, coronal, and axial planes. Each sequence in this protocol 

used parallel imaging with a nominal acceleration factor of 2; the net acceleration factor 

accounting for parallel imaging calibration data was closer to 1.85. Table 1 provides the 

sequence parameters used. We chose to use parallel imaging—accelerated scans for our 

source data and ground truth, rather than slower fully sampled scans, because parallel 

imaging with an acceleration factor of 2 is the clinical standard at our institution and many 

others around the world.

The observed performance of trained models in reconstructing data from the independent 

validation set was used to optimize the model topology used for reconstruction, the extent 
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and pattern of retrospective undersampling performed, and the level of noise added to the 

reconstructed images.

Interchangeability Study

Once all parameters were optimized, an interchangeability study was performed on the 108 

test patients’ examinations [30]. The examinations were performed over 28 days (April 2–

29, 2019). Of the 108 patients, 57 (53%) were women and 51 (47%) were men; patient age 

ranged from 18 to 89 years (median age, 44 years). None of these examinations were used in 

any way during the design process, training, and validation phases of our neural network. 

The total scan time required for the test patients ranged from 8 minutes 11 seconds to 11 

minutes 20 seconds. The variation in time was mainly due to differences in coverage needed 

as a result of differences in habitus. The total examination time ranged between 15 minutes 

and 33 minutes, with a median room time of 21 minutes.

Raw data (in the k-space domain) from each of the five sequences in the examination were 

retrospectively undersampled with the optimized sampling trajectories and then 

reconstructed using the optimized model parameters to create accelerated images. The 

reconstruction was performed on a single graphics processing unit (16-GB V100, Nvidia) 

that is comparable to the hardware already installed in the host computers of state-of-the-art 

MRI scanners. Our computation times per slice were approximately 145 milliseconds for the 

coronal and axial sequences, 180 milliseconds for the sagittal T2-weighted sequence, and 

255 milliseconds for the sagittal proton density—weighted sequence. The examinations 

using the standard clinical sequences and those with the DL-reconstructed accelerated 

sequences were anonymized and separated into eight equal groups. Each examination was 

reviewed by six fellowship-trained subspecialized musculoskeletal radiologists with 1–19 

years of subspecialty experience. The readers were blinded to all patient information and 

sequence details. The interpretation scheme consisted of each reader reviewing one group of 

examinations each week. To limit the potential for recall bias, interpretation of the clinical 

and accelerated examinations for each subject were separated by a period of 4 weeks, and 

the readers were blinded to the other readers’ evaluations.

The reader evaluations were recorded on a standardized score sheet using a 4-point Likert 

scale to assess for internal derangement (meniscal tears, ligament abnormalities, chondral 

defects, and subchondral bone marrow signal-intensity abnormalities). For the Likert scale, 1 

was definitely normal; 2, probably normal; 3, probably abnormal; and 4 definitely abnormal. 

For scoring of the chondral and subchondral bone marrow abnormalities, the knee was 

divided into six surfaces (medial and lateral tibial plateaus, medial and lateral femoral 

condyles, and patellar trochlear surfaces). In addition, each examination was evaluated for 

sharpness, subjective SNR, presence of artifacts, and overall image quality on a 4-point 

scale. Each reader also indicated whether they thought the examinations consisted of 

standard clinical or accelerated sequences.

Statistics

Interchangeability tests the ability of the accelerated technique to replace the clinical 

sequence by showing that when two readers assess the same patient, the rate of agreement 
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when both readers use the clinical sequence is not substantially higher than that when 

exactly one of the readers uses the accelerated sequence [30]. For the purposes of this study, 

a clinically important difference was defined as greater than 5% additional agreement when 

both readers were interpreting standard images as opposed to when one reader was 

interpreting standard images and the other was interpreting accelerated images.

For each reader, an exact McNemar test was used to compare the sequences in terms of the 

percentage of times the reader correctly identified the sequence (clinical or accelerated) that 

was used to generate an image. An exact paired sample Wilcoxon signed rank test was used 

to compare the sequences in terms of the image quality scores from each reader. All 

statistical tests were conducted at the two-sided 5% significance level using SAS software 

(version 9.4, SAS Institute). For each sequence, an exact test based on the binomial 

distribution was performed to assess whether the percentage of times a given reader 

correctly identified the sequence used to derive an image was different from 50%, the rate 

expected for random guessing.

Results

Optimization Phase

The MR pulse sequences, image plane orientations, and data undersampling patterns used 

for this study are described in more detail in the Materials and Methods section. Figure 3 

shows the SSIM score (or the negative loss) of our model as a function of training time for 

both the training set and the validation set. Optimized sampling parameters included 

fourfold nominal acceleration and sampling of 16 calibration lines, which yielded images for 

each pulse sequence and orientation at a net 3.49-fold acceleration that were difficult to 

distinguish from the standard clinical images (Figs. 4 and 5). The theoretic scan time of the 

accelerated sequences ranged between 4 minutes 20 seconds and 6 minutes. With higher 

acceleration factors, fewer calibration lines, or both, subtle signal abnormalities became less 

conspicuous (Fig. 6). The optimal baseline SD of noise (σ) added back to the images in the 

image dithering process described in the Materials and Methods section was determined to 

be 0.015. With less added noise, the images appeared oversmoothed, with loss of fine detail 

such as bone trabeculae, whereas greater amounts of added noise led to the images being 

subjectively too noisy.

Interchangeability

Table 2 provides data that support interchangeability of the accelerated and the clinical 

sequences. They provide 95% confidence that any decrease in the percentage of times two 

readers would provide concordant opinions that might result from interchanging the 

sequences will be no more than 4% for any feature that was evaluated. Taking into 

consideration only abnormalities of the menisci and ligaments, the injuries most commonly 

treated by operative intervention, the decrease was no more than 1.7%. The number of 

abnormalities for each structure evaluated is presented in Table 3.
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Image Quality and Sequence Identification

All six readers judged the accelerated sequence to produce better quality than the clinical 

sequence (Table 4). Irrespective of the sequence actually used to derive an image, only one 

of the six readers was able to correctly identify the sequence more than 50% of the time. In 

other words, only one reader was more accurate in identifying accelerated sequences than 

would be expected by chance alone.

Discussion

Our study has shown that an optimized DL network can be used to reconstruct fourfold 

accelerated images that perform interchangeably with our standard clinical images for the 

detection of internal derangement of the knee. In particular, the data provide 95% confidence 

that interchanging the sequences would decrease the likelihood of reader agreement by no 

more than 4%. Taking into consideration only the menisci and ligaments, the decrease was 

no more than 1.7%. The fact that accelerated images using DL reconstruction were judged 

superior to standard clinical images offers promise that such accelerated images can achieve 

rapid clinical acceptance. In the context of clinical acceptance, an additional benefit of DL 

reconstruction is that the major computational effort is expended at the stage of training the 

reconstruction model. Once the training is complete, the computational effort for the time-

critical step of reconstructing images while the patient is on the table is relatively low and 

does not require special computing resources like clusters or cloud computing. As 

mentioned, our computation times per slice were approximately 145 milliseconds for the 

coronal and axial sequences, 180 milliseconds for the sagittal T2-weighted sequence, and 

255 milliseconds for the sagittal proton density—weighted sequence.

The theoretic scan time that would be required for the knee examination using the fourfold 

accelerated sequences ranged between 4 minutes 20 seconds and 6 minutes. Although time 

spent on activities other than imaging has previously accounted for a significant percentage 

of total MRI examination time, recently described innovative workflow solutions such as 

dockable tables and dedicated preparation rooms have enabled the time for these activities to 

be decreased to less than 2 minutes per patient [31]. Combining the DL-accelerated 

acquisitions with such time-saving workflows could decrease the total examination time for 

MRI of the knee to less than 10 minutes, which is faster than the time generally allotted for 

radiography of the knee (15 minutes). If examination time is significantly reduced, the 

technical reimbursement for knee MRI examinations could also decrease. Currently, 

radiography is the first step in imaging patients with acute knee trauma because of short 

examination time and low cost, despite its extremely low sensitivity for such injuries and its 

use of ionizing radiation [32]. Radiography will continue to play a valuable role in knee 

imaging particularly for abnormalities that can be difficult to detect on MRI, such as subtle 

avulsion fractures. However, a low-cost knee MRI examination requiring only a few minutes 

to acquire has the potential to replace radiography in some clinical situations.

Although various prior studies have investigated the use of DL reconstruction of MR 

images, they have included small numbers of subjects and have been limited in scope to 

evaluating image quality rather than diagnostic accuracy. Those studies have predominantly 

shown inferior quality for DL-accelerated images compared with traditional MR images—a 
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trade-off almost universally encountered in the evaluation of accelerated imaging methods. 

To our knowledge, ours is the first study to find both high quality and diagnostic 

interchangeability between a standard clinical MRI protocol and a DL-accelerated protocol.

Our study had several limitations. First, all examinations were performed on MRI scanners 

produced by a single vendor and only at 3-T field strength. However, all of the accelerated 

images were reconstructed on a model trained simultaneously on five distinct sequences 

with markedly different contrast that were obtained in three different planes of orientation, 

which augurs well for the generalizability of the model. Further studies on multiple vendor 

platforms and at different field strengths are necessary to fully assess generalizability of our 

technique. Second, we used retrospective undersampling in this study to simulate the 

acceleration that could be achieved in clinical practice using prospective undersampling, 

while still allowing comparison of accelerated images with otherwise identical ground truth 

images. That said, for knee MRI in particular, in which physiologic motion is limited and 

dynamic acquisitions are uncommon, our networks would be unlikely to perform differently 

on prospectively undersampled data. Third, we did not have arthroscopic data with which to 

judge the diagnostic accuracy of the accelerated sequences. Previous studies, however, have 

reported excellent accuracy of MRI for the detection of internal derangement of the knee 

[33]. Therefore, we believe that the interchangeability of accelerated and standard sequences 

provides evidence that accelerated sequences also had excellent accuracy for the diagnosis of 

internal derangement. Finally, this study only tested the DL model on knee images. To fully 

realize its potential positive impact, our DL model needs to be validated on additional 

anatomic regions and multiple abnormalities. We have since applied the model successfully 

to images of the brain and liver, and studies are underway to assess diagnostic accuracy [34].

Conclusion

An optimized DL model allowed an additional twofold acceleration of our standard clinical 

knee images, which are already accelerated by a factor of 2 using parallel imaging. The DL-

reconstructed images performed interchangeably with standard images for the detection of 

internal derangement of the knee. Importantly, the accelerated images were judged better in 

quality than standard clinical images.
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Fig. 1—. 
Structure of network used for deep learning reconstruction of 3-T knee MR images.

A, Block diagram shows structure of our model, which takes undersampled k-space as input 

and applies several iterative refinements (R). Each refinement includes residual connection, 

R module, and data consistency (DC) module. Inverse Fourier transform (IFT) followed by 

root-sum-of-squares (RSS) transform is applied after final refinement to obtain reconstructed 

image. SME = sensitivity map estimation.

B, Diagram shows DC module that computes correction map that brings intermediate k-

space data closer to input k-space data. Correction is computed only at k-space locations 

where measurements have been performed.

C, Diagram shows R module that converts multicoil k-space data into single image, applies 

U-Net, and then converts output back to multicoil k-space data. In first step, IFT is applied 

to obtain multicoil images, which are then multiplied by conjugate of sensitivity maps and 

added (Reduce). In final step, image is multiplied by sensitivity maps (Expand) followed by 

Fourier transform (FT).

D, Diagram shows SME module that estimates sensitivity maps used in R modules. SME 

selects only autocalibration signal (ACS) lines from input k-space and applies IFT and then 
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U-Net. Finally, output of U-Net is normalized by dividing each individual sensitivity map 

voxelwise by RSS of all maps.

Recht et al. Page 13

AJR Am J Roentgenol. Author manuscript; available in PMC 2021 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2—. 
34-year-old man with acute knee injury. A–C, Coronal fat-suppressed proton density–

weighted images with no added noise (A), baseline noise value (σ) = 0.015 (B), and σ = 

0.05 (C) show effect of dithering.
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Fig. 3—. 
Graph shows structural similarity index (SSIM) score (or negative loss) as function of 

training time. SSIM score is computed both on training set (solid line) and on validation set 

(dashed line).

Recht et al. Page 15

AJR Am J Roentgenol. Author manuscript; available in PMC 2021 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4—. 
64-year-old man with recurrent popliteal cyst.

A–D, Coronal clinical (A) and deep learning (DL)-accelerated (B) as well as sagittal clinical 

(C) and DL-accelerated (D) proton density—weighted images show medial (black arrows) 

and lateral (white arrows, A and B) meniscal tears and popliteal cyst (arrowheads, C and D). 

It is difficult to distinguish between clinical and DL-accelerated images.
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Fig. 5—. 
22-year-old man with acute knee injury. A and B, Sagittal clinical (A) and deep learning 

(DL)-accelerated (B) fat-suppressed proton density—weighted images show bone 

contusions (arrows) in lateral femoral condyle and lateral tibial plateaus, consistent with 

anterior cruciate ligament tear. It is difficult to distinguish between clinical and DL-

accelerated images. Such indistinguishability is uncommon for traditional acceleration 

techniques at high acceleration factors, particularly for challenging case of 2D images with 

strong requirements for spatial resolution and anatomic fidelity.
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Fig. 6—. 
43-year-old man with medial knee pain. A–C, Clinical (A), fourfold (B), and eightfold (C) 

deep learning—accelerated fat-suppressed proton density—weighted images show subtle 

signal-intensity change in medial meniscus (arrow) on clinical and fourfold accelerated 

sequences that is not visible on eightfold accelerated image. Eightfold acceleration was 

therefore deemed too aggressive for this use of 2D musculoskeletal imaging. However, 

substantially higher accelerations are likely to be feasible for other clinical applications and 

for acquisitions that are multidimensional, dynamic, or both.
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