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Abstract

Purpose: To develop a rapid 2D MR fingerprinting technique with a submillimeter in-plane 

resolution using a deep learning-based tissue quantification approach.

Methods: A rapid and high-resolution MR fingerprinting technique was developed for brain T1 

and T2 quantification. The 2D acquisition was performed using a FISP-based MR fingerprinting 

sequence and a spiral trajectory with 0.8-mm in-plane resolution. A deep learning-based method 

was used to replace the standard template matching method for improved tissue characterization. 

A novel network architecture (i.e., residual channel attention U-Net) was proposed to improve 

high-resolution details in the estimated tissue maps. Quantitative brain imaging was performed 

with 5 adults and 2 pediatric subjects, and the performance of the proposed approach was 

compared with several existing methods in the literature.

Results: In vivo measurements with both adult and pediatric subjects show that high-quality T1 

and T2 mapping with 0.8-mm in-plane resolution can be achieved in 7.5 seconds per slice. The 

proposed deep learning method outperformed existing algorithms in tissue quantification with 

improved accuracy. Compared with the standard U-Net, high-resolution details in brain tissues 

were better preserved by the proposed residual channel attention U-Net. Experiments on pediatric 

subjects further demonstrated the potential of the proposed technique for fast pediatric 

neuroimaging. Alongside reduced data acquisition time, a 5-fold acceleration in tissue property 

mapping was also achieved with the proposed method.

Correspondence Dinggang Shen, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina 
at Chapel Hill School of Medicine, MRI Building, CB #7513, 130 Mason Farm Road, Chapel Hill, NC 27599. dgshen@med.unc.edu.
Zhenghan Fang and Yong Chen contributed equally to this work.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2021 August 01.

Published in final edited form as:
Magn Reson Med. 2020 August ; 84(2): 579–591. doi:10.1002/mrm.28136.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion: A rapid and high-resolution MR fingerprinting technique was developed, which 

enables high-quality T1 and T2 quantification with 0.8-mm in-plane resolution in 7.5 seconds per 

slice.
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1 | INTRODUCTION

Quantitative MRI has great potential for the detection and diagnosis of various diseases, 

including cancer, edema, and sclerosis.1–3 Although its importance has long been 

recognized, the adoption of quantitative imaging for clinical practice remains a challenge, 

which is largely due to the prolonged acquisition times. Magnetic resonance fingerprinting 

(MRF) is a relatively new MRI framework for quantitative MRI, and can provide rapid and 

simultaneous quantification of multiple tissue properties.4 Compared with conventional 

quantitative imaging approaches, the MRF technique uses pseudorandom acquisition 

parameters, such as flip angles and TRs, to obtain unique signal evolutions for each tissue 

type, and estimates the tissue property values using a template-matching method. 

Specifically, each observed signal evolution is matched to a precomputed MRF dictionary, 

which contains a large number of tissue property values and their corresponding signal 

evolutions simulated by Bloch equations. During the template-matching process, the 

dictionary entry with the highest correlation to the observed signal is selected and the 

corresponding tissue property values are retrieved.

Although MRF has demonstrated superior performance as compared with other quantitative 

techniques for T1 and T2 mapping, its spatial resolution is generally lower as compared with 

the current clinical standard. For example, the original 2D MRF technique was performed 

with a spatial resolution of 2 × 2 × 5 mm3 for adult brain imaging,4 and a recent pediatric 

study was conducted with 1 × 1 × 3 mm3 for neuroimaging of typically developing children. 

Further improvement in the spatial resolution of MRF techniques is desired, which will 

facilitate wide applications especially for pediatric imaging and characterization of small 

lesions. However, high-resolution MRF, particularly at submillimeter levels, is technically 

challenging and often requires extended scan times. Since the introduction of the MRF 

technique in 2013, many different techniques have been proposed to accelerate MRF 

acquisition as well as postprocessing.5–14 Most of these advanced methods focus on 

extracting more information from the MRF data set for improved accuracy and acquisition 

speed.

Recently, deep learning–based approaches have been proposed for tissue quantification in 

MRF.15–22 Compared with the standard template matching algorithm, deep learning can 

extract more advanced features from the complex MRF signal evolution for improved tissue 

characterization and accelerated tissue property mapping. Specifically, Cohen et al used a 4-

layer neural network and achieved an approximate 300–5000-fold reduction in computation 

time for tissue property mapping as compared with the standard template matching 

approach.15 Fang et al22 proposed a spatially constrained quantification approach that 
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exploits spatial information from neighboring pixels using a convolutional network (i.e., U-

Net23) and achieved accurate quantification using a 4-fold reduction in scan time (i.e., from 

about 23 to 6 seconds for each 2D MRF data set). Although the spatially constrained 

quantification method22 enabled accurate quantification with less sampling data, some 

image blurring was noticed in the estimated tissue maps, which hinders its application for 

high-resolution tissue quantification. Based on the conventional U-Net method, an improved 

network architecture, called the residual channel attention U-Net (RCA-U-Net), has been 

developed in this study. Compared with the standard U-Net structure, which uses stacked 

convolutional layers for feature extraction, the RCA-U-Net uses residual channel attention 

blocks (RCABs)25 to enhance high-frequency information in the intermediate feature maps 

and therefore the final network output. The RCAB also reweights each feature channel based 

on its contained information for tissue quantification, making the network focus more on the 

channels with more information and less noise, thus improving the training efficiency and 

quantification accuracy in high-resolution MRF.

The aim of this study was to develop a rapid, submillimeter 2D MRF method using the 

RCA-U-Net. The study was established and validated with in vivo brain imaging on 5 

healthy adult subjects and 2 pediatric subjects. The performance of the proposed method in 

terms of quantification accuracy and processing speed was also compared with several 

existing algorithms for MRF processing.

2 | METHODS

2.1 | Magnetic resonance fingerprinting acquisition and image reconstruction

All MRF experiments were performed on a Siemens 3T Prisma scanner (Erlangen, 

Germany) with a 32-channel head coil. The 2D FISP-based MRF method previously 

developed for cardiac MRF was adopted26,27 and applied with a spiral trajectory with 0.8-

mm resolution (FOV, 25 cm; matrix size, 304 × 304; slice thickness, 3 mm). Variable 

acquisition parameters, such as flip angles and inversion pulses, were applied to encode 

MRF signal in the acquisition. Each MRF image was acquired with a spiral readout, and a 

golden-angle rotation was further applied between adjacent MRF images to increase spatial 

inhomogeneities (Supporting Information Figure S1). A uniform spiral trajectory, instead of 

a variable-density spiral, was used to minimize the readout time and image blurring incurred 

due to B0 field inhomogeneities (spiral readout time, 8.0 msec; Supporting Information 

Figure S2). A total of about 2300 time frames were acquired with variable flip angles 

ranging from 5° to 12° (Supporting Information Figure S1). Instead of acquiring only 1 

spiral arm for each time frame as the conventional MRF approach (in-plane reduction factor 

of 48), 4 spiral arms were acquired for each time frame (in-plane reduction factor of 12) to 

reduce the aliasing artifacts and ensure high-quality quantitative maps for the training 

purpose. The acquisition was designed to acquire the first spiral arm for all time frames and 

was followed by the sampling of the remaining 3 spiral arms. A constant waiting time of 20 

seconds was applied between the sampling of different spiral arms to ensure complete 

longitudinal relaxation for all brain tissues, including CSF. A constant TR of 10.4 msec was 

used in the study, and the total scan time for 1 slice was approximately 3 minutes.
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After the data acquisition, image reconstruction was performed off-line using MATLAB 
(R2017a; MathWorks, Natick, MA) on a standalone personal computer. Nonuniform fast 

Fourier transform was used to reconstruct the highly undersampled MRF images. The MRF 

dictionary in this study was simulated using Bloch equations for a total of 13 123 

combinations of T1 and T2 values. Specifically, the T1 values range from 60 msec to 5000 

msec, and T2 ranges from 10 msec to 500 msec in the dictionary.

2.2 | Data processing

Figure 1A illustrates the framework for data processing in this study. As shown in the upper 

part of Figure 1A, the MRF images reconstructed with all 4 spiral arms were used to obtain 

the ground-truth tissue maps. Both T1 and T2 maps were obtained using the standard 

template matching approach with all 2300 time frames. To identify the optimal number of 

time frames to reduce the MRF acquisition time for rapid high-resolution imaging, MRF 

images were reconstructed with only 1 spiral arm and reduced the number of time frames, as 

shown in the lower part of Figure 1A. Specifically, 3 acceleration rates were evaluated in this 

study (i.e., 2×, 4×, and 8× shortened scan times), corresponding to the cases of using the first 

1152 (1/2), 576 (1/4), and 288 (1/8) time points in the original acquisition, respectively. The 

MRF images generated with less sampled data were used as the input in the deep learning 

model for tissue quantification, whereas the ground-truth tissue maps obtained from all 

acquired data and template matching were used for model training and validation. The deep 

learning model was trained 3 times for 3 different acceleration rates.

2.3 | Magnetic resonance fingerprinting tissue quantification using deep learning

Figure 1B shows the structure of the deep learning model used for tissue quantification in 

this study. Similar to the method proposed in Fang et al,22 the deep learning model consists 

of 2 different modules. The feature extraction module uses a fully connected neural network 

to reduce the dimension of signal evolutions and extract useful features. The spatially 

constrained module uses residual channel attention U-Net, which is an improved version of 

U-Net, to estimate the tissue maps from the feature maps. The RCA-U-Net extracts spatial 

information from neighboring pixels to improve the quantification accuracy with reduced 

data.

As introduced in the literature,22 the input of the fully connected neural network was an 

MRF signal evolution extracted from 1 pixel. The real and imaginary parts of complex 

signals were split and concatenated to form a real-value vector. Thus, the input dimension of 

the fully connected neural network equals 2 times the number of time points. The output of 

the fully connected neural network is a 64-dimensional feature vector extracted from the 

input signals. The network consists of 4 fully connected layers, with an output dimension of 

64 for each layer.

Figure 2 shows the structure of the proposed RCA-U-Net, which has a U-Net-like structure. 

With 3 down-sampling layers (maximum pooling 2 × 2) and 3 up-sampling layers (transpose 

convolution 2 × 2), it extracts spatial information from 3 different scales. At each spatial 

scale, skip connections are used to combine global information with local details. Unlike the 

conventional U-Net, RCA-U-Net uses RCABs25 to extract more informative features for 
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improved tissue quantification. As shown in Figure 2B, the RCAB integrates a channel 

attention module into the conventional residual block. The channel attention module first 

applies global average pooling to each channel of the feature map to generate a channel 

descriptor. Let x be the input of the channel attention module, with C feature maps at the 

size of H × W. Each channel descriptor is determined by

zc = 1
H × W ∑

i = 1

H
∑
j = 1

W
xc(i, j), (1)

where xc(i, j) is the value at position (i, j) of the cth feature map xc. Then, two 1 × 1 

convolution layers are used to exploit channel-wise dependency for estimation of channel-

wise rescaling weights. The rescaling weights w∈ℝC are given by

w = f W Uδ W Dz , (2)

where WD is the weights of the first 1 × 1 convolution layer, which acts as a channel-

downscaling layer with a reduction ratio of 4; WU is the weights of the second 1 × 1 

convolution layer, which acts as a channel-upscaling layer with a ratio of 4; δ(·) denotes 

sigmoid function; and f(·) represents rectified linear unit activation. Then, the original 

feature map x is rescaled by the weights through channel-wise multiplication as follows:

yc = wc ⋅ xc, (3)

where wc and xc are the rescaling weight and feature map in the cth channel, respectively, 

and yc is the output of channel attention module in the cth channel. In this way, the features 

containing more information for quantification of the desired tissue property are 

strengthened, whereas those features containing more noise and less useful information are 

weakened. The output of the channel attention module is then added to the input of RCAB 

by residual skip connection to generate the final output of RCAB as

Y = X + y, (4)

where X is the input of RCAB and y is the output of channel attention module.

For training purposes, the loss function is defined as the relative L1 difference between 

network estimation and ground truth, as follows:

L = Eθx, θx
θx − θx

θx
, (5)

where θx denotes the estimated tissue property (T1 or T2) value at pixel x; θx denotes the 

ground-truth value at pixel x; and  represents mathematical expectation. In this study, the 

L1 loss was chosen, instead of L2 loss, as the L2 loss tends to produce smoother tissue 

property maps, which is not desired for imaging at high spatial resolutions. The Adam 

optimizer28 was used to train the networks with a batch size of 32. Patches of 64 × 64 pixels 

were extracted for training. The network weights were initialized from a Gaussian 

distribution with zero mean and SD of 0.02. The learning rate was initially set as 0.0002, 

Fang et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



remained the same for 200 epochs, and then linearly decayed to zero in the next 200 epochs. 

The deep learning algorithm was implemented in Python with the PyTorch library. The 

whole training process took around 5 to 10 hours (depending on the number of time points 

used to generate the input data) on a graphics processing unit (GPU; NVIDIA GeForce GTX 

TITAN XP; Santa Clara, CA). The application of the trained deep learning network for T1 

and T2 quantification was tested on both the GPU and the CPU (4.2 GHz Intel Core i7 with 

4 cores and 16 GB memory).

To evaluate the performance of the proposed method, leave-1-subject-out cross validation 

was performed using the data set acquired from healthy adult subjects, and the mean 

quantification error was calculated from all of the subjects. Specifically, in each experiment, 

the data from 4 adult subjects were used for training, and the data from the remaining 

subject were used for testing. Three existing methods were also evaluated on the adult data 

for comparison,4,7,22 including (1) the standard template matching approach, (2) template 

matching with singular value decomposition compressed dictionary, and (3) deep learning 

with conventional U-Net. For template matching with singular value decomposition 

compression, the rank of compressed dictionary is selected as 17, which retains 99.9% of the 

total energy of MRF signal evolutions in the dictionary. To identify the optimal acceleration 

rate for high-resolution MRF acquisition, the mean percentage error values were calculated 

between the deep learning–derived T1 and T2 maps and the ground-truth maps.

2.4 | Effect of RCA-U-Net on spatial resolution

In this section, we quantitatively evaluated the impact of residual channel attention block on 

spatial resolution of quantitative maps. Based on the fact that spatial smoothing or 

degradation of image resolution leads to a decrease of high-frequency energy in the images, 

the proportion of high-frequency energy in the tissue maps was calculated for quantitative 

evaluation of the spatial resolution of in vivo brain data. Specifically, the tissue maps were 

first converted to the frequency domain by 2D Fourier transform. The sum-up of the energy 

of frequency components within the upper 25% of spectrum was calculated and then divided 

by the sum-up of the energy of all frequency components to obtain the proportion of high-

frequency energy for each tissue property map. To evaluate the effect of RCABs on spatial 

resolution, we calculated this value for the MRF results obtained using the standard U-Net 

and the proposed RCA-U-Net. The proportion of high-frequency energy from the ground-

truth tissue maps obtained using template matching was also computed as the reference.

2.5 | In vivo measurements

Five normal adult volunteers (male:female, 3:2; mean age, 29 ± 13 years) were recruited for 

this study, and informed consent was obtained from all subjects before the MRI 

measurements. For each subject, a total of 10 axial slices were acquired using the MRF 

protocol containing 4 spiral arms. The results were used to generate the MRF images and 

ground-truth T1 and T2 maps to train the deep learning model as outlined in Figure 1A.

To evaluate the potential of the developed approach for fast pediatric neuroimaging, 2 

healthy pediatric volunteers (2 females; mean age, 9.5 ± 0.7 years) were recruited in the 

study by obtaining informed parental consent for each subject before the study. The 
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prospectively accelerated MRF scan with the optimal acceleration rate determined from the 

adult study was applied on both pediatric subjects. The deep learning model trained from 

adult subjects was used to generate quantitative T1 and T2 maps for these scans. To further 

evaluate the accuracy of the proposed method on pediatric neuroimaging, 1 MRF scan with 

4 spiral arms and 2300 time frames was acquired from 1 pediatric subject and prescribed to 

have the same slice location as 1 of the prospectively accelerated scans. The deep learning 

model was applied to retrieve T1 and T2 maps from retrospectively shortened data and 

prospectively accelerated data, and the results were compared with the reference maps 

obtained using 4 spiral arms.

Quantitative T1 and T2 values from multiple brain regions, including white matter, gray 

matter, and subcortical gray matter, were extracted with a region-of-interest analysis. For 

each subject, multiple regions of interest were drawn manually on T1 relaxation maps by a 

neuroradiologist with 16 years of experience in neuroimaging. Because all tissue property 

maps obtained using MRF were inherently co-registered, the regions of interest were 

automatically propagated from T1 maps to T2 maps to extract both T1 and T2 values 

simultaneously. For adult subjects, the regions of interest were drawn based on the ground-

truth maps to extract reference T1 and T2 values. The regions of interest were further applied 

to the maps obtained using deep learning with the retrospectively shortened data set.

2.6| Statistical analysis

The results are presented as mean ± SD. A paired Student’s t-test was performed to compare 

the proportion of high-frequency energy in MRF maps obtained using the U-Net and RCA-

U-Net methods. A p-value less than 0.05 was considered significantly different in 

comparison.

3 | RESULTS

3.1 | Reference maps using 4 spiral arms versus 1 spiral arm

Figure 3 shows representative reference T1 and T2 maps obtained from an adult subject 

using 4 spiral arms. The maps were calculated using template matching and approximately 

2300 MRF time frames. The T1 and T2 maps obtained from the same MRF scan but using 

only the first spiral arm are also plotted as a comparison. With the high in-plane resolution 

of 0.8 mm, the quality of tissue property maps was largely improved. For example, both 

cortical and subcortical gray matters are better delineated using the 4-arm approach. The 

noisy appearance in the T2 map with only 1 spiral arm was also eliminated with the 4-arm 

approach. Therefore, the tissue maps obtained using 4 spiral arms were chosen as the ground 

truth, to train the deep learning model in this study.

3.2 | Determination of the optimal acceleration rate

We further evaluated the effect of acceleration rate on the quantification performance of the 

proposed method. Figure 4 shows the T1 and T2 maps obtained using the deep learning 

method with 1 spiral arm and 3 different acceleration rates. The ground-truth maps obtained 

using template matching with 4 spiral arms and all time points are also shown for 

comparison. With an increase in acceleration rate, the mean percentage error values were 
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increased for both T1 and T2 maps (Figure 4). Compared with the deep learning results 

obtained from the acceleration rates of 2 and 4, certain image blurring, especially in T2 maps 

as demonstrated in the zoomed-in plots, was observed with the acceleration rate of 8. To 

balance the image quality and acquisition time, an acceleration rate of 4 was selected for the 

prospectively accelerated scans performed in the pediatric study. For this scan protocol, 

about 570 time frames were acquired, and the corresponding acquisition time was about 7.5 

seconds per slice.

3.3 | Comparison with existing approaches

Figure 5 shows representative T1 and T2 maps from a healthy adult volunteer with 4-times 

shortened scan time. In addition to the tissue quantification results from the proposed 

method (i.e., deep learning with RCA-U-Net), the results from 3 existing methods in the 

literature are also plotted. For T1 quantification, the deep learning–based approaches 

generally perform better than the template-matching-based approaches. Similar mean 

percentage error values were noticed in the results obtained using the conventional U-Net 

and the proposed RCA-U-Net methods. For T2 quantification, the results were largely 

improved with the deep learning methods as compared with the template matching methods. 

Furthermore, compared with the conventional U-Net, the proposed RCA-U-Net achieves 

improved accuracy in T2 quantification and preserves more high-resolution details in the T2 

maps. Table 1 summarizes the T1 and T2 quantification errors yielded by the proposed deep 

learning method and the existing methods obtained from leave-one-out cross validation. The 

proposed RCA-U-Net method outperforms the other 3 methods for both T1 and T2 

quantification, which is consistent with the results shown in Figure 5. In addition, when only 

about 570 time points were used for tissue quantification, substantial variation across 

different subjects was noticed in the results obtained with the template matching approach. 

However, more consistent results were observed with the proposed deep learning method.

3.4 | High-resolution MRF with pediatric subjects

We further evaluated the proposed high-resolution MRF method on pediatric subjects. 

Before the implementation of the accelerated MRF method, we first evaluated the accuracy 

of the proposed method with pediatric imaging, and 1 MRF scan with 4 spiral arms was 

acquired from 1 of the subjects. The T1 and T2 maps obtained from retrospectively 

shortened MRF data (4-times shortened scan time) using template matching and deep 

learning are shown in the second and third columns of Figure 6. The ground-truth maps are 

also presented in the first column for comparison. Again, the deep learning approach 

achieves significant improvement in T2 quantification accuracy compared with the template 

matching approach.

We then applied the prospectively accelerated MRF method on 2 pediatric subjects (4-times 

shortened scan time; 7.5 seconds per slice). The right column in Figure 6 shows the T1 and 

T2 maps obtained using the deep learning model with prospective acceleration from the 

same subject at the same slice location as the ground truth. With only 7.5-second scan time, 

the proposed method using deep learning provides results similar to the ground-truth maps, 

which took approximately 3 minutes to acquire. It is also worth noting that the errors yielded 

by the proposed RCA-U-Net for the pediatric subject (Figure 6, with 4.7% for T1 and 8.3% 
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for T2) are similar to those obtained from the adult subject (Figure 5, with 4.5% for T1 and 

7.8% for T2), which suggests similar performance achieved for both adult and pediatric 

subjects with the proposed method.

Figure 7 shows axial T1 and T2 maps obtained from the other pediatric subject at multiple 

brain locations with the proposed high-resolution MRF approach. Success was found in 

conveying minute structural details of the brain, which, in hand with other results, 

demonstrates the potential of the proposed method for fast and high-resolution pediatric 

quantitative imaging.

The quantitative T1 and T2 values obtained from multiple brain regions for both adult and 

pediatric subjects are summarized in Table 2. For adult subjects, the mean percentage errors 

of the deep learning result compared with the ground truth are 2.4% ± 3.4% for T1 and 3.2% 

± 3.2% for T2, respectively. The values for different brain regions are consistent with those 

reported in the literature.29,30

3.5 | Processing time for tissue quantification

We also compared the processing times of the template matching approach and our deep 

learning approach for T1 and T2 quantification. When both methods were performed with 

the CPU, a 5-fold acceleration (26.0 versus 5.1 seconds per slice) was achieved by the deep 

learning approach as compared with the template matching. The processing time can be 

further improved by 40-fold (0.12 seconds per slice) when using the GPU for the deep 

learning approach.

3.6 | Effect of the proposed deep learning network on spatial resolution

We further calculated the proportion of energy in the high-frequency domain of MRF maps, 

and the results obtained using U-Net and RCA-U-Net are presented in Table 3. Compared 

with the ground-truth maps, both deep learning methods led to some level of spatial 

smoothing in the estimated tissue maps. Compared with the conventional U-Net, RCA-U-

Net results in a significantly higher proportion of energy in the high-frequency domain for 

T2 quantification (P < .001), which demonstrates that the residual channel attention block 

helps preserve more high-resolution details in the estimated T2 maps.

4 | DISCUSSION

In this study, a fast 2D high-resolution MRF technique was developed using deep learning–

based tissue quantification. This technique allows fast and high-quality T1 and T2 

quantification with 0.8-mm in-plane resolution in 7.5-second scan time per slice. The 

method was developed and validated using the data acquired from normal adult subjects and 

then applied for fast imaging with pediatric subjects. Our results demonstrate that the 

proposed deep learning model achieves higher quantification accuracy as well as shorter 

computation times as compared with the standard template-matching approach.

Compared with the 2D MRF approach developed in the current study, high-resolution MRF 

has also been explored with 3D acquisitions in the literature.31 Although MRF with 

volumetric imaging can provide better spatial coverage and higher SNR to improve spatial 
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resolution, it typically requires longer scan times and is more sensitive to subject motions, 

especially with pediatric populations. The proposed fast MRF method can provide high-

resolution quantitative imaging while minimizing potential motion artifacts. In the future, 

our proposed method can be further combined with simultaneous multislice imaging 

techniques32 to improve spatial coverage and SNR for potentially higher spatial resolutions.

To achieve robust tissue quantification using the deep learning approach, it is critical to 

obtain accurate ground-truth maps to train the network. In this study, instead of acquiring 

just 1 spiral arm as the standard MRF method, 4 spiral arms were acquired for each MRF 

image to reduce the aliasing artifacts. Previous studies have shown that, with a spatial 

resolution of 1.2 × 1.2 × 5 mm3, accurate T1 and T2 measurement was achieved using only 1 

spiral arm (in-plane reduction factor of 48).4,22 However, when targeting at higher spatial 

resolutions, our results suggest that acquiring more spiral arms could improve the quality of 

tissue property maps and provide more solid ground truth to train the deep learning model. 

Although this approach increases the data sampling time, this only applies to the acquisition 

of the training data set, and not the prospectively accelerated scans. It is worth noting that 

ground-truth maps obtained with more spiral arms (>4) per MRF time point could 

potentially provide better map quality. However, this is achieved at a cost of longer scan 

times, and the results are more prone to subject motions. To balance between map quality 

and scan time, 4 spiral arms were chosen to acquire the ground-truth maps in this study. 

Compared with the standard template matching methods, 1 shortcoming of the proposed 

deep learning method is the need to acquire an additional training data set. When applying 

the proposed method to a new acquisition protocol (e.g., with a different scan time, k-space 

sampling pattern, or MRF flip angle pattern), a new network needs to be trained with a new 

training data set acquired. Cohen et al showed that the training data can be generated using 

the MRF dictionary.15 Although the approach has been proven to be effective for fully 

sampled data acquired using an EPI sequence, its application to highly aliasing MRF data 

remains to be evaluated. Another potential solution to mitigate this problem is to simulate 

the training data based on some prior knowledge of tissue property maps and MRF 

dictionary. With this approach, some key components associated with the actual imaging 

acquisition, such as noise distribution, aliasing artifacts and multicoil sensitivity maps, need 

to be considered in the simulation—a feasibility that will be explored in the future.

To apply the deep learning approach for high-resolution MRF, a network that combined U-

Net and RCABs, was proposed in this study. Findings in a previous study have shown that 

using the standard U-Net for spatially constrained tissue quantification in MRF can 

potentially degrade the spatial resolution of tissue maps due to spatial smoothing.22 To 

overcome this limitation, we proposed adding RCABs to the conventional U-Net to enhance 

the high-resolution details in the output tissue maps. Early studies with residual blocks and 

channel attention have demonstrated that this modification can preserve the high-frequency 

information in the intermediate feature maps and lead to superior performance in various 

image processing tasks (e.g., super-resolution imaging).25,33 Specifically, residual blocks 

enable the network to focus more on the differences between block input and output, which 

typically contain rich high-frequency components, and facilitate the gradient 

backpropagation during training. In addition, the channel attention module adaptively 

assigns larger weights to more informative feature channels with high-frequency 
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information, enhancing the high-frequency components in the quantification results. As a 

result, the proposed residual channel attention U-Net preserves more high-resolution details 

in the tissue maps than the conventional U-Net model.

In the current study, image patches of size 64 × 64, instead of full-scale images, were used 

for training due to the large size for the MRF data set and limited GPU memory. Previous 

deep learning studies have been performed to use full-scale images for MR tissue mapping. 

For example, Liu et al24 proposed a deep learning model called MANTIS to convert 

undersampled images to quantitative parametric maps for efficient MR parameter mapping. 

This is an end-to-end mapping technique based on UNet and can achieve high-quality T2 

mapping with high acceleration rates. In the future, the training with full-scale MRF images 

can be explored with the proposed method when more computational resources are 

available.

Although template matching has been used widely for tissue property quantification in MRF, 

1 potential drawback of this approach is its high computational demand. Both memory and 

computation time requirements grow exponentially with the number of tissue parameters to 

be estimated. Consistent with the findings in the literature,15,16 this study achieves rapid 

tissue quantification using deep learning–based tissue quantification. For quantification of 

both T1 and T2 for a 2D slice with a matrix size of 304 × 304, the deep learning–based 

method is about 5 times faster than the template matching using a CPU for computation. 

Moreover, the deep learning method can be directly implemented on a GPU, which allows 

further acceleration in computation. The memory and time requirements of the deep learning 

approach grow only linearly with the number of tissue parameters in this study, which is 

particularly desirable for quantification of a large number of tissue properties simultaneously 

using MRF. This method also holds great potential for 3D MRF applications, in which more 

computational demand is expected with volumetric coverages.

There are some limitations to this study. Some network parameters used in this study, such 

as the numbers of convolution layers, down-sampling/up-sampling layers and feature 

channels, were adopted from the previous study for 2D MRF.22 Although reasonable results 

have been achieved, these network parameters can be further optimized to improve the 

quantification accuracy of the proposed deep learning model for high-resolution MRF. 

Besides, the longest T2 value was set at 500 msec in the MRF dictionary. Further 

improvement in T2 measurement, especially for tissues with long T2 values (such as CSF in 

the brain), is needed with the MRF method. The sample size for our network training is 

relatively small. Our experiments show that an insufficient training data set could potentially 

lead to a decrease in the performance of T1 and T2 quantification (Supporting Information 

Table S1). A future study will be performed to evaluate the proposed model with a larger 

training data set and with more pediatric subjects across different ages. The current study is 

focused on quantitative characterization of normal brain tissues. When applied to patients 

with different pathologies, more training data sets from both normal and abnormal tissues 

are likely needed to train the proposed network.
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5 | CONCLUSIONS

A rapid and high-resolution MRF technique was developed using deep learning–based tissue 

quantification, which enables high-quality T1 and T2 mapping with 0.8-mm in-plane 

resolution in 7.5-second acquisition time per slice. The proposed residual channel attention 

U-Net can better preserve high-resolution details in quantitative tissue property maps. In 

addition, the computation of tissue property maps with the deep learning model was also 5 

times faster than the standard template matching approach.
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FIGURE 1. 
A, Diagram of data-processing procedures. The MR fingerprinting (MRF) images were first 

reconstructed using data from all 4 spiral arms to compute the ground-truth tissue maps with 

template matching. The images reconstructed with 1 spiral arm and reduced time points 

were obtained and used as input of the deep learning model for tissue quantification. B, 

Diagram of the proposed deep learning model for tissue quantification. First, the feature 

extraction (FE) module extracts a lower-dimensional feature vector from each signal 

evolution. A spatially constrained quantification (SQ) module is applied to estimate the 

tissue maps from the extracted feature maps with spatial information. Abbreviations: FNN, 

fully connected neural network; RCA-U-Net, residual channel attention U-Net

Fang et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
The structure of the proposed RCA-U-Net used in the SQ module. A, Overall architecture of 

RCA-U-Net. B, Structure of a residual channel attention block
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FIGURE 3. 
Representative T1 and T2 maps obtained with data from 4 spiral arms versus 1 spiral arm 

using template matching. All approximately 2300 time points were used for tissue 

quantification, and the results were obtained from an adult subject
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FIGURE 4. 
Representative T1 and T2 maps obtained by the proposed deep learning approach using 

different acceleration rates. Both the ground-truth and the deep learning results obtained 

with acceleration rates of 2, 4, and 8 (i.e., using 1152, 576, and 288 time frames, 

respectively) are plotted. The corresponding sampling time is also listed at the bottom of 

each image. Here, A denotes the acceleration rate
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FIGURE 5. 
Comparison of the proposed method with several existing methods for MRF tissue mapping 

(4-times shortened scan time). Representative T1 and T2 maps and their corresponding error 

maps from an adult subject are plotted. Abbreviation: SVD, singular value decomposition
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FIGURE 6. 
(Left 3 columns) Representative T1 and T2 maps and their corresponding error maps yielded 

by the proposed deep learning method and the standard template-matching method using 

retrospectively accelerated data from a pediatric subject (4-times shortened scan time). The 

ground-truth maps are also presented for comparison. (Right column) T1 and T2 maps 

obtained at the same slice location using the prospectively accelerated MRF scan
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FIGURE 7. 
Representative T1 and T2 maps yielded by the proposed deep learning method using 

prospectively accelerated data from the other pediatric subject. Approximately 570 time 

frames were acquired, and the scan time for each slice was 7.5 seconds
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TABLE 3

Proportion of energy in high-frequency domain of the T1 and T2 maps estimated by U-Net and RCA-U-Net

Ground truth U-Net RCA-U-Net

T1 1.52 ± 0.37 1.23 ± 0.26 1.23 ± 0.26

T2 3.25 ± 0.99 1.54 ± 0.56 1.71 ± 0.61

Note: The values from the ground-truth tissue maps are also presented as a reference.
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