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ABSTRACT

The highly migratory Atlantic bluefin tuna (ABFT) is currently managed as two
distinct stocks, in accordance with natal homing behavior and population structuring
despite the absence of barriers to gene flow. Larval fish are valuable biological
material for tuna molecular ecology. However, they have hardly been used to
decipher the ABFT population structure, although providing the genetic signal from
successful breeders. For the first time, cooperative field collection of tuna larvae
during 2014 in the main spawning area for each stock, the Gulf of Mexico (GOM)
and the Mediterranean Sea (MED), enabled us to assess the ABFT genetic structure
in a precise temporal and spatial frame exclusively through larvae. Partitioning of
genetic diversity at nuclear microsatellite loci and in the mitochondrial control region
in larvae spawned contemporarily resulted in low significant fixation indices
supporting connectivity between spawners in the main reproduction area for each
population. No structuring was detected within the GOM after segregating nuclear
diversity in larvae spawned in two hydrographically distinct regions, the eastern
GOM (eGOM) and the western GOM (wGOM), with the larvae from eGOM being
more similar to those collected in the MED than the larvae from wGOM. We
performed clustering of genetically characterized ABFT larvae through Bayesian
analysis and by Discriminant Analysis of Principal Components (DAPC) supporting
the existence of favorable areas for mixing of ABFT spawners from Western and
Eastern stocks, leading to gene flow and apparent connectivity between weakly
structured populations. Our findings suggest that the eastern GOM is more prone for
the mixing of breeders from the two ABFT populations. Conservation of this valuable
resource exploited for centuries calls for intensification of tuna ichthyoplankton
research and standardization of genetic tools for monitoring population dynamics.
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INTRODUCTION

Bluefin tuna are epipelagic oceanic species that have been exploited globally for centuries
(Muhling et al., 2017). Regional fisheries organizations manage Pacific bluefin Thunnus
orientalis (Temminck and Schlegel, 1844) as one stock, Southern bluefin T. maccoyii
(Castelnau, 1872) also as one stock, and Atlantic bluefin tuna (ABFT) T. thynnus
(Linnaeus, 1758) as two, Western and Eastern, stocks. Each of these stocks is considered a
distinct population (Kumar ¢ Kocour, 2015). Although individual juvenile and adult
fish are capable of trans-Atlantic migrations and share feeding grounds in the North
Atlantic Ocean, the Western ABFT primarily spawn in the Gulf of Mexico (GOM) and the
Eastern ABFT in the Mediterranean Sea (MED) (Muhling et al., 2017). Despite additional
spawning areas for ABFT have been recently discovered in the Slope Sea and the Bay
of Biscay (Richardson et al., 2016; Rodriguez, Johnstone ¢» Lozano-Peral, 2021), the GOM and
the MED are still considered the main grounds to which the adults return to breed, with
regional currents linking larval and juvenile nursery habitats (Muhling et al., 2017).
Overexploitation of this valuable fishery resource resulted in sharp decreases in
abundance from the 1960s onward. This led to the implementation of strict management
measures after 2007 by the International Commission for the Atlantic Tuna (ICCAT),
Madrid, Spain. The 2017 assessment results from the virtual population analysis (VPA)
indicated that the spawning stock biomass (SSB) exhibited a substantial increase from the
late 2000s (ICCAT, 2020), which has allowed to presently raise catch quotas, in spite
the species is still currently listed as endangered by the International Union for
Conservation of Nature (JUCN, 2020). Increasing our understanding of the connectivity
between ABFT populations is crucial for conservation of ABFT. The existence of weak
structuring between Western and Eastern stocks is supported by numerous studies that
have assessed the population structure of ABFT through different approaches such as
analysis of genetic diversity with multiple applications for conservation and fisheries
management (Abdul-Muneer, 2014; Ovenden et al., 2015; Cuéllar-Pinzén et al., 2016).
In particular, a variety of genetic markers have been employed to assess ABFT population
dynamics including the fast-evolving maternally inherited mitochondrial DNA (mtDNA)
(Carlsson et al., 2004, 2007; Alvarado Bremer et al., 2005; Boustany, Reeb & Block, 2008),
codominant highly polymorphic microsatellite loci (Carlsson et al., 2004, 2007; Riccioni
et al., 2010, 2013; Antoniou et al., 2017), and more recently high-throughput sequencing of
highly abundant single nucleotide polymorphisms or SNPs (Antoniou et al., 2017; Puncher
et al., 2018; Rodriguez-Ezpeleta et al., 2019). Subtle structuring of ABFT populations
across the Atlantic Ocean is the general conclusion of genetic studies, with significant Fgr
fixation indices that estimate partitioning of genetic diversity on a zero to one scale ranging
from 0.005 to 0.012 (Puncher et al., 2018). The analysis of the phylogenetic signal of
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mtDNA suggests a dramatic reduction in ABFT population size during Pleistocene
glaciations, followed by sudden population expansion with an increase in gene flow to
levels resulting in homogenization of stocks (Alvarado Bremer et al., 2005). Other
disciplines besides genetics have confirmed that the two ABFT populations are indeed
highly mixed. Estimation of natal origin through otolith microchemistry demonstrated
substantial intermingling of individuals from both populations in North Western Atlantic
waters (Rooker et al., 2003, 2008a); spatio-temporal distributions of electronically tagged
ABFT revealed overlapping of foraging grounds and provided evidence for spawning
fidelity to the MED (Block et al., 2005), and a fisheries model predicts that mixing depends
on season and location (Taylor et al., 2011). A recently developed population assignment
method combining genetic (SNPs) and environmental (otolith microchemistry) markers
revealed complexity in ABFT structure (Brophy et al., 2020). There is thus mounting
evidence supporting the highly-mixed nature of ABFT populations. Nevertheless, certain
questions still remain unresolved, including the level of gene flow or connectivity between
populations and the exchange rate between stocks.

Larval cooperative studies have provided insights into multiple aspects of tuna larval
ecology and biology, particularly growth and food web dynamics (Laiz-Carrion et al.,
2015; Malca et al., 2017; Laiz-Carrion et al., 2019). Intensification of cooperative
ichthyoplankton prospection surveys to collect ABFT larvae is currently required after the
incorporation of larval indexes into stock assessment (Ingram et al., 2017), providing a
valuable opportunity to gain further knowledge on other aspects such as tuna population
dynamics. As far as we are aware, ABFT population genetic structuring has not yet
been assessed exclusively from larval ABFT ensuring both correct geographical assignment
and representation of genetic features of successful breeders. The study of ABFT
population genetics has mostly focused on adults collected in Eastern and Western stocks
(Alvarado Bremer et al., 2005) or within the Mediterranean Sea (Riccioni et al., 2010, 2013;
Virias et al., 2011; Vella et al., 2016; Antoniou et al., 2017). Juveniles (young-of-the-year,
YOY) collected in nursery areas have occasionally been characterized exclusively or
together with adults (Boustany, Reeb ¢» Block, 2008), and with larvae in only a few
interesting studies (Carlsson et al., 2004, 2007; Puncher et al., 2018; Rodriguez-Ezpeleta
et al., 2019). The use of YOY juveniles collected in nursery habitats reduces the risk of
including migrants in the incorrect subpopulation. However, these juveniles are strong
swimmers and can move thousands of kilometres away from their spawning location.
Conveniently, the collection of larvae in spawning grounds completely eliminates this
potential error and provides the genetic signal of spawners. The movement of larval ABFT
(<20 days age) is physiologically limited by multiple factors, including a lack of
morphological development of fin complements and muscle required for locomotion
outside of the corresponding spawning grounds. Full sibling removal is, however,
recommended to accurately estimate genetic diversity, at least for larvae of other animals
(Goldberg & Waits, 2010). The aim of our study was to assess ABFT genetic structure in a
precise temporal and spatial frame exclusively through larvae collected in the two main
spawning grounds.
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Management and conservation of ABFT requires continuous research concerning the
population dynamics and exchange between Western and Eastern stocks that can be
achieved through tagging studies (Rooker et al., 2019) or genetic tools for traceability
(Puncher et al., 2018; Rodriguez-Ezpeleta et al., 2019). Genetic structure between ABFT
collected in Western and Eastern stocks is herein assessed by analyzing diversity in larvae
through two differently inherited markers, mtDNA control region sequences and nuclear
microsatellite loci, following the approach of Carlsson et al. (2007). Fast evolving mtDNA
is maternally inherited and provides the evolutionary signal for this highly migratory
species, for which past hybridization events with albacore have been reported (Alvarado
Bremer et al., 2005). Highly polymorphic nuclear microsatellite loci with Mendelian
inheritance allow evaluating population connectivity. We analyzed larvae collected only
during the 2014 spawning season to capture a snapshot of gene flow between ABFT
breeders in the main spawning ground of each stock without blurring the image by mixing
years with different stock mixing rates. Individual-based clustering analysis of larval ABFT
genetic diversity indicates apparent connectivity between the GOM and MED spawning
grounds that could support the hypothesis of mixing of breeders belonging to different
stocks.

MATERIALS & METHODS

Field collection of ABFT larvae

We conducted larval ABFT collections during the peak of the reproductive season in the
two main spawning areas for ABFT, the GOM and the MED (Fig. 1). The GOM was
divided into subregions separated at 90°W meridian and designated as eastern (eGOM)
and western (WGOM) (Muller-Karger et al., 2015). A total of 76 stations were sampled in
the GOM cruise “WS1405” (approved by the National Oceanic and Atmospheric
Administration, Washington, D.C., USA with Permit Number TUNA-SRP-14-02) carried
out from 28 April to 20 May 2014 aboard the R/V F.G. Walton Smith. The “BLUEFIN14”
cruise (approved by the Spanish Institute of Oceanography, Madrid, Spain (Instituto
Espafiol de Oceanografia) “BLUEFIN TUNA” project) explored a total of 123 stations and
took place from 13 June to 3 July 2014 in the western MED on board the R/V SOCIB, of the
Balearic Islands Coastal Observing and Forecasting System. Both cruises used similar
standardized methodologies for field collection of fish larvae as described previously
(Laiz-Carrion et al., 2015). Larvae were either frozen in liquid nitrogen or preserved in 96%
ethanol immediately upon retrieval.

Larvae were identified as ABFT following morphological, meristic and pigmentation
characters. Standard length (SL) was measured to the nearest 0.01 mm using Image J 1.44a
(National Institute of Health, Stapleton, NY, USA). Developmental stage was determined
following Richards (2005). ABFT-positive stations were first determined for each survey
(31 stations in the GOM and 63 in the MED), and a subset of stations was selected for
genetic analysis from each spawning ground (15 stations in the GOM and 14 in the MED,
see Fig. 1).
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Figure 1 Study area and larvae collection. Atlantic bluefin tuna (ABFT) larvae were collected with
plankton nets during 2014 in two main spawning areas for Thunnus thynnus: (A) the Gulf of Mexico
(GOM) and (B) the Mediterranean Sea (MED). Explored stations are indicated with crosses, positive
stations for ABFT are indicated with empty circles, and filled circles indicate stations where larvae
collected were genotyped. In the GOM larvae were collected in two areas, west and east of 90°W. In the
MED larvae were collected in the waters surrounding the Balearic Islands.

Full-size ] DOIL: 10.7717/peerj.11568/fig-1

Genetic analysis of ABFT larvae

A total of 112 ABFT larvae spawned contemporarily in the GOM (62 larvae, 30 from
eGOM and 32 from wGOM) and MED (50 larvae) were genotyped (Data S1). DNA
extraction from ABFT larval tissue was performed with the NucleoSpin® Tissue XS
(MACHEREY-NAGEL, Dueren, Germany), and PCR amplification of microsatellite loci
alleles was carried out as described in Uriarte et al. (2019) with modifications (Table S1).
Guts were removed prior to analysis to avoid interference from potential piscivory or
cannibalism as observed by Uriarte et al. (2019) (except for 18 individuals for which low
standard length excluded the possibility of piscivory).

We analyzed eight highly polymorphic microsatellite loci selected according to their
moderate-to-high allele count and compatible amplification in two multiplex PCR
reactions (Table S1). Allele calling after fragment analysis (STAB VIDA, Caparica,
Portugal) was performed with GeneMapper® software v4.0 (Applied Biosystems, Foster
City, CA, USA) by two independent readers. We used GeneScan™ 500 LIZ® (Applied
Biosystems, Foster City, CA, USA) as size standard. The internal threshold for missing
data per individual was 25% (six genotyped loci), which allows for an overall maximum
missing data of 13% for locus Tth16-2. A fragment of ~450 bp of the mitochondrial control
region (Vinias & Tudela, 2009), was sequenced in a subset of genotyped larvae (22 from
GOM and 21 from MED). Partial mtDNA control region sequences were assigned to
T. thynnus based on sequence similarity searches performed with the nucleotide Basic
Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/). Quality trimmed
sequences left a fragment of 361 bp aligned detecting 53 haploid binary sites with SNPs.
All sequences have been submitted to GenBank (accession numbers
MT912036-MT912078).

Statistical analysis of ABFT genetic diversity

Examination of microsatellite genetic data was based on allele frequency estimation
with GenAlEx software v6.5 (Peakall ¢» Smouse, 2012) to assess diversity through observed
(Ho) and expected (Hg) heterozygosity. Software Cervus v3.0.7 (Kalinowski, Taper &
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Marshall, 2007) was used to calculate the polymorphic information content (PIC) and to
obtain null allele frequencies using the Maximum Likelihood estimator of Summers &
Amos (1997). MICRO-CHECKER (Van Oosterhout et al., 2004) was used to further
assess null alleles and genotyping errors. GENEPOP 4.7 (Raymond & Rousset, 1995;
Rousset, 2008) was used to calculate the inbreeding coefficient Fig (Weir ¢ Cockerham,
1984) and compliance to equilibrium of Hardy-Weinberg (HW). We followed Weir (1996)
correcting probability values due to low counts for certain genotypes with the Markov
Chain Monte Carlo (MCMC) approximation (involving 10,000 dememorization steps,
1,000 batches and 10,000 iterations per batch). The presence of full siblings was screened
through replicate sibship analyses with multilocus genotypes excluding individuals with
missing data. Analyses were run with COLONY (Wang, 2004; Jones & Wang, 2010),
assuming an inbreeding polygamous model, performing ten very long runs to assess
maximum likelihood sibship. Genotype accumulation curves were explored in R free
software (R Team, 2018) in RStudio (RStudio Team, 2019) with the “poppr” package
(Kamvar, Tabima & Grunwald, 2014).

The software GenAlEx v6.5 (Peakall ¢ Smouse, 2012) calculated fixation indexes to
assess partitioning of genetic diversity at microsatellite loci and at the mtDNA control
region within subpopulations relative to the total population. The Wright’s F statistic
Fsr, G"s1 (Meirmans ¢ Hedrick’s (2011) standardized Ggr further corrected for bias for
small k populations), and Jost’s (2008) D estimate of differentiation were calculated, and
the associated probability (p) was obtained based on a 999 data permutation test.

For ABFT mtDNA haplotypes the Fsr analogous Phipy was obtained through Analysis
of Molecular Variance (AMOVA) of genetic distances. Spatial genetic analysis of both
nuclear and mitochondrial diversity was studied performing a Mantel test with GenAlEx
software v6.5 (Peakall ¢» Smouse, 2012). Mantel correlation coefficient Rxy for matrix and
spatial autocorrelation within distance classes were performed calculating r by
bootstrapping.

Two approaches, Bayesian algorithms and Discriminant Analysis of Principal
Components (DAPC), proportionally assigned individuals to population clusters inferred
from the microsatellite genetic data. In the Bayesian approach, STRUCTURE v2.3.4
software (Pritchard, Stephens ¢ Donnelly, 2000) was used to analyze ABFT larvae
genotyped at six microsatellite loci assuming an ancestry admixture correlated allele
frequency model (Falush, Stephens & Pritchard, 2003), and considering prior sampling
location information. Running parameters were set to a burn-in of 2.5 x 10* followed by a
MCMC simulation of 5 x 10* runs simulating K 1 to 3 populations in 25 iterations.
STRUCTURE results were explored with Structure Harvester (Earl ¢» vonHoldt, 2012).
Clumpak (Kopelman et al., 2015) was used to detect the consensus solutions for two K
clusters that best fit the Bayesian algorithm used by STRUCTURE. In the DAPC approach
we used the R package adegenet (Jombart, 2008) to study differences among clusters
identified from ABFT larvae genotyped at six microsatellite loci, and also from
polymorphisms in mtDNA.
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RESULTS

Field collection and genetic characterization of ABFT larvae

During the 2014 spawning season, approximately half of the stations explored were
positive for ABFT larvae (Fig. 1), 43% for GOM and 55% for MED. We genetically
characterized a total of 112 ABFT larvae spawned contemporarily in the GOM (62 larvae)
and MED (50 larvae), excluding overlap in generations. In the GOM, two sample subsets
were separated east (30 larvae) and west (32 larvae) of 90°W according to oceanographic
features known to influence ABFT catches (Teo ¢ Block, 2010; Muller-Karger et al., 2015),
with the eGOM dominated by the Loop Current shedding large anti-cyclonic eddies,
which generate mesoscale cyclonic and anti-cyclonic eddies that are the key features of
the wGOM, preferred by breeding ABFT, and influencing larval fish distribution
(Lindo-Atichati et al., 2012). Mean SL and standard deviation in mm were 4.94 + 1.05
(MED) and 4.55 + 0.64 (GOM) (WGOM 4.49 + 0.49 and eGOM 4.62 + 0.77).

The mean number of larvae genotyped at eight microsatellite loci are shown in Table S2,
for each of the two spawning areas (GOM and MED), or for the three separate
geographical regions (WGOM, eGOM and MED again). The number of individuals was
sufficient to adequately quantify allele frequencies (Hale, Burg ¢ Steeves, 2012) and further
analyze diversity through heterozygosity. The overall number of alleles ranged from six for
locus Tth157 to 25 for locus Tth208 (see Table S2), with the highest polymorphic
information content (PIC) score (PIC 0.9) obtained for loci Tth208 and Tth1-31. Scoring
errors due to stuttering or large allele dropout were excluded with MICRO-CHECKER
(Van Qosterhout et al., 2004), whereas null alleles may be present at loci Tthol and
Tth16-2 according to homozygote excess and null allele frequency (Table S2). Deviations
from expected proportions in large populations in HW equilibrium imply non-random
mating, selection for certain genotypes, mutations, or small population sizes. Under
the assumptions of HW equilibrium, the inbreeding coefficient (Fjs) varies between —1
and +1, measuring the difference between expected heterozygosity (Hg) and observed
heterozygosity (Hp) according to allele frequencies. Significant deviations from HW
proportions and homozygote excess (positive Fis) were obtained for loci Tth16-2 and
Tthol (Table 1), as expected from their null allele frequencies (Table S2). Locus Tth16-2
is the microsatellite that deviated most from HW proportions in all populations and
areas (Table 1). Close to zero Fis and low null allele frequency did not explain deviation
from proportions expected in HW equilibrium for loci Tth157 and Ttho7 in the GOM
dataset (Table 1).

Characterization of genetic diversity in larval ABFT may be biased if closely related
individuals are collected during plankton sampling. The full-likelihood method
implemented in COLONY (Wang, 2004; Jones & Wang, 2010) can perform sibship
analysis to detect full siblings, and is better than other software for parentage analysis in
natural populations (Harrison et al., 2013). In both spawning areas, sibship was inferred
from ~50 replicate multilocus genotype datasets and the resulting parameters averaged
(Table S3). The hypothesized numbers of families were high and very similar between
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Table 1 Genetic diversity of Atlantic bluefin tuna (ABFT) larvae genotyped at eight microsatellite loci.
Pop' GOM MED

wGOM eGOM GOM (WGOM and eGOM)

Locuss Ho Hy Fg HW> Ho Hp Fyg HW? Ho Hy Fyg HW? Ho Hp Fyg HW?
Tth208 0.867 0.906 0.060 0702 0900 0.930 0.049 0.315 0.883 0.926 0.054 0407 0940 0917 -0.015 0.589
Tth1-31 0938 0.877 -0.053 0932  0.867 0.883 0.035 0776 0903 0.886 -0.012 0.982 0.840 0.871 0.046  0.402
Ttho7  0.815 0.837 0.046 0239  0.821 0.845 0.046 0.157  0.818 0.844 0.039 0.006*° 0.820 0.836 0.030  0.707
Tth34  0.688 0.693 0.024 0354 0.667 0.668 0.019 0.368 0.677 0.688 0.023 0130 0740 0770 0.049  0.491
Ttho4  0.688 0.764 0.115 0273  0.800 0.726 -0.085 0.751 0.742 0.755 0.026 0.899 0640 0.738 0.143 0.278
Tthol 0594 0.687 0.151 0462 0400 0.534 0267 0.019° 0500 0.625 0208 0.025° 0440 0.638 0319  0.005"
Tth157 0.633 0.646 0.036 0.022° 0433 0457 0.068 0.077 0533 0562 0059 0.004* 0.660 0.594 -0.102 0.943

Tth16-2 0.333 0.584 0.447 0.002"* 0217 0.549 0.618 0.000°** 0.277 0.577 0.529  0.000""* 0.280 0.523 0.472  0.000"**

Notes:
' Pop refers to each area in which ABFT larvae were collected.
? Significance after Bonferroni correction (a 0.05) for multiple comparisons at p < 0.0016.
“p < 0.05.
“p<0.01.
p < 000.1.
Genetic diversity indicated for each area in which ABFT larvae were collected (Pop), and measured as Hp, observed heterozygosity; Hg, expected heterozygosity; or Fig
inbreeding coefficient calculated according to Weir ¢» Cockerham (1984). HW indicates probability p value obtained with the exact probability test for Hardy-Weinberg
equilibrium calculated by the Markov chain method (10,000 dememorization, 1,000 batches, 1,0000 iterations per batch) and level of significance.

spawning areas, 45 + 4 in the GOM and 47 + 1 in the MED, supporting unbiased
characterization of genetic diversity.

Spatial structuring of ABFT genetic diversity

Structuring of genetic diversity between ABFT spawning areas was assessed from
multilocus genotypes considering all genotyped microsatellite loci or excluding those with
null alleles (Tth16-2 and Tthol). Partitioning of the total expected genetic diversity
between subpopulations or groups under the assumption of equilibrium was quantified
through several statistics ranging from 0 to +1. We calculated the general or most
frequently used fixation index Fqr, originally established by Wright for two allele systems,
and we also obtained Meirmans e¢» Hedrick’s (2011) standardized G”gr and Jost’s (2008)
D estimate of differentiation, which are standardized relative to marker heterozygosity
and are thus more appropriate estimators for highly polymorphic microsatellite loci. When
we only consider genotypes at six microsatellite loci, excluding the two loci with null
alleles, genetic differentiation is captured by the value of G”sr and D. Close to zero values
with significant associated probabilities for deviation of homogeneity or equilibrium were
obtained for GOM versus MED comparisons (Table 2). Genetic diversity partitioning
between MED and the two subregions wGOM and eGOM, resulted in higher estimator
values and levels of significance for MED versus the wGOM, in support of greater
connectivity between ABFT breeding in the MED and in the eGOM during 2014. Pairwise
comparisons of WGOM and eGOM genotypes supported genetic homogeneity, with
non-significant probabilities associated with close to zero statistics Fgr, G”sr and D,
excluding structuring of genetic diversity within the GOM spawning area.
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Table 2 Pairwise comparison of diversity for indicated spawning areas obtained from ABFT larvae genotypes at indicated number of

microsatellite loci.

Genotype' Fsr G’sr D p>
8 loci 6 loci 4 loci 8 loci 6 loci 4 loci 8 loci 6 loci 4 loci 8loci 6loci 4loci

GOM vs. MED 0.009 0.010 0.011 0.029 0.047 0.070 0.021 0.037 0.059 - -
(0.019) (0.001) (0.001) (0.019) (0.001) (0.001) (0.018) (0.001) (0.001)

wGOM vs. MED 0.013 0.012 0.014 0.044 0.055 0.087 0.033 0.045 0.073  * -
(0.012)  (0.005)  (0.003)  (0.014)  (0.005) (0.003) (0.012) (0.005)  (0.003)

eGOM vs. MED 0.010 0.011 0.012 0.020 0.041 0.056 0.015 0.032 0.047 n.s.
(0.106) (0.014) (0.019) (0.109) (0.017) (0.019) (0.109) (0.017) (0.019)

wGOM vs. eGOM 0.011 0.009 0.009 0.013 0.004 0.008 0.009 0.003 0.006 n.s n.s n.s
(0.239) (0.404) (0.339) (0.239) (0.401) (0.339) (0.239) (0.401) (0.339)

Notes:

! Data sets including genotypes for eight microsatellite loci (Tth208, Tth1-31, Ttho7, Tth34, Ttho4, Tthol, Tth157 and Tth16-2), for six loci excluding Tth16-2 and Tthol
due to null alleles, and at four loci conserving microsatellites in HW equilibrium with higher PIC (Tth208, Tth1-31, Tth34 and Ttho4).
* Significance after Bonferroni correction (a 0.05) for multiple comparisons at p < 0.0042 is indicated underlined.

p < 0.05.
“p <00l

Genetic diversity estimators Fer, G”st (Hedrick’s standardized Ggr further corrected for bias for small k populations) and Jost’s D estimate of differentiation. Associated
probability (p) indicated in brackets obtained through 999 data permutations and summarized in the last column as non-significant (n.s.) or according to significance

levels of p < 0.05 (*) and p < 0.01 (*¥).

Unique individuals were completely discriminated with four loci according to a
genotype accumulation curve (Fig. S1). We obtained diversity estimators from ABFT
larvae genotypes at the four most informative loci (PIC > 0.7) that were neutral or in
accordance with HW proportions, thus informing of homogeneity of diversity between
larval groups. Table 2 shows that four neutral microsatellite loci: Tth208, Tth1-31, Ttho4
and Tth34; detected structuring between larvae spawned in breeding grounds of each
ABFT stock, underlining the power of resolution of microsatellite loci as markers for this
tuna species. Even multilocus genotypes for only the two loci with the highest PIC were
able to significantly detect structuring between GOM and MED larvae (data not shown).

Pairwise comparison of MED and GOM larvae haplotypes at 53 mtDNA control region
variable sites (SNPs) through AMOVA resulted in a PhiPT value of 0.029 (with a
significant associated data randomization probability of 0.019 with 999 permutations).
Phylogenetic analysis of mtDNA sequences to infer evolutionary relationships from a
common ancestor failed to separate larvae spawned in the MED and in the GOM (data not
shown), as previously reported (Alvarado Bremer et al., 2005; Carlsson et al., 2007).

ABFT genetic diversity partitioning, assessed herein exclusively through larvae resulted
in fixation indexes within the ranges reported thus far, analyzing polymorphism in ABFT
mtDNA sequences, microsatellite loci or SNPs, in samples of certain (larvae) or almost
certain (juveniles) origin (Carlsson et al., 2007; Puncher et al., 2018; Rodriguez-Ezpeleta
et al., 2019) (Table 3). We collected ABFT larvae in a precise spatial and temporal frame,
and our results are consistent with other genetically characterized juvenile ABFT and
larvae collected in different years and areas compiled in Table 3. Besides Fsr, we report
other genetic diversity estimators, G"gp (Meirmans ¢ Hedrick’s (2011) standardized Ggr
further corrected for bias for small k populations) and D (Jost’s et al. (2018) estimate of
differentiation), as they show a higher variance, and are complementary measures of
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Table 3 Summary of studies assessing ABFT genetic structuring between main spawning areas (GOM and MED) through individuals of early
life stages (larvae or young-of-the-year YOY) ensuring correct management unit assignment.

Reference

Genetic tool

ABFT stock*

Western Atlantic

Eastern Atlantic

Fixation index’

(Carlsson et al., 2007)

mtDNA sequence’

Microsatellite loci’

Gulf of Mexico (GOM)
Larvae (40)
Year 2003

GOM
Larvae (40)
Year 2003

Mediterranean Sea (MED)
YOY (107)

Years 1998, 1999, 2000, 2001, 2002.

MED
YOY (280)

Years 1998, 1999, 2000, 2001, 2002.

0.013*

0.006"** (8 loci)

(Puncher et al., 2018)  SNP panel’ GOM (64) and Cape Hatteras (16) MED 0.008" (95 SNP panel)
Larvae (64) and YOY (16) Larvae (63) and YOY (350) 0.014" (58 SNP panel)
Years 2007, 2008, 2009, 2010. Years 2008, 2011, 2012, 2013. 0.034""* (24 SNP panel)
(Rodriguez-Ezpeleta SNP panel’ GOM (26) and Slope Sea (13) MED 0.004 (n.i.)
et al.,, 2019) Larvae (26) and YOY (13) Larvae (48) and YOY (117)
Years 2007, 2008, 2009, 2010. 2008, 2011, 2012, 2013.
This study mtDNA sequence’ GOM MED 0.029*
Larvae (22) Larvae (21)
Year 2014 Year 2014
Microsatellite loci>  GOM MED 0.009* (8 loci)
Larvae (62) Larvae (50) 0.010"* (6 loci)
Year 2014 Year 2014 0.011%%(4 loci)
Notes:

" The control region was sequenced in 847 bp (Carlsson et al., 2007) or 361 bp (this study).

2 Loci Tth5, Tth8, Tth10, Tth21, Tth34, Ttho-1, Ttho-4, and Ttho-7 were genotyped in Carlsson et al. (2007), and for this study we analyzed loci Tth208, Tth1-31, Ttho7,

Tth34, Ttho4, Tthol, Tth157, and Tth16-2.
* SNPs derived from genomewide search for spatially informative loci by restriction site-associated DNA sequencing (RAD-seq).
* Phase of early life stage (number of individuals) and collection year.

® Significant probability obtained by 999 random permutations (*p < 0.05, **p < 0.01 and

*p < 000.1), n.i. not indicated. For nuclear markers Fgr is indicated.

For mtDNA Phigr was calculated in Carlsson et al. (2007), we calculated analogous Phipy for this study.

p <0.05.
p <0.01.
 p <000.1.

For each study the genetic tool and features of the collection of ABFT individuals used to characterize genetic diversity are summarized. The reported fixation indexes
from pairwise comparison between ABFT collected in Western or Eastern stocks is compiled in the last column.

fixation and allelic differentiation (Bird et al., 2011), arguing against the generalized

exclusive use of Fgr.

We assessed whether genotypes were more similar when comparing larvae collected in
the same spawning area than when comparing larvae from different spawning areas.
Spatial genetic analyses were performed by analyzing the autocorrelation between
geographic and genetic data through a Mantel test. Close to zero autocorrelation statistics
resulted from analyzing genotypes for six loci (R 0.127, p 0.001) and mtDNA control
region binary haplotypes (R 0.051, p 0.022). Genetic structuring within different distance
classes (within the same or different spawning areas) was explored through multivariate
spatial autocorrelation analysis. Autocorrelation for microsatellite genotypes resulted in
a positive r value of 0.024 (with confidence limits of 0.005 and —0.004) for distance classes
within the same spawning area and a negative r value of —0.020 (with U of 0.003 and L
of —0.004) for distance classes belonging to different spawning areas, in agreement with a
weak but significant spatial structuring of genetic diversity.
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Figure 2 Clustering of ABFT larvae genetic diversity. Genotypes at six microsatellite loci (Tth208,
Tth1-31, Ttho7, Tth34, Ttho4 and Tth157) were used to characterize genetic diversity of ABFT larvae
spawned in the MED (black), and GOM (grey). GOM can be segregated into wGOM (light grey) and
eGOM (dark grey). (A-C) Bayesian clustering of ABFT larvae performed with STRUCTURE v2.3.4
(Pritchard, Stephens & Donnelly, 2000) software through admixture modeling considering prior infor-
mation on ancestry from the collection area. For each larva the proportion of ancestry (q) for each of two
population clusters is plotted considering prior ancestry information fitting 68% (A), 20% (B), or 12% of
the data (C). (D) Discriminant Analysis of Principal Components (DAPC) performed with R package
adegenet to show probability membership to three clusters through one discriminant function with an
eigen value of 130.6 (40 principal components accumulating 0.925 variance). (E-G) Two discriminant
functions obtained from DAPC (with eigen values of 64.72 and 29.34). Dot plot (E) and density plots
(F, G) for each function are represented to illustrate overlapping of MED and GOM genetic diversity.

Full-size K&] DOT: 10.7717/peerj.11568/fig-2

We investigated connectivity and structuring of genetic diversity through assignment of

individual ABFT larvae to two K clusters through a Bayesian analysis of multilocus

genotypes in an admixture model considering prior location information (Figs. 2A-2C).

In two out of three consensus solutions, representing 32% of all simulations, a gradient

from wGOM to MED was observed in the proportion of assignment of each larva to two
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clusters, with eGOM appearing as an intermediate or mixing area (Figs. 2B and 2C).
Figure S2 shows the statistic AK (deltaK) proposed by Evanno, Regnaut ¢» Goudet (2005) to
detect the real number of clusters based on the rate of change of probabilities between
successive K values, and that for our data is necessarily only obtained for K = 2. A different
clustering approach is multivariate DAPC analysis that is applied to discriminate clusters
through discriminant analysis performed on data previously transformed through
principal components analysis (Jombart, Devillard & Balloux, 2010). Assignment of
individual ABFT larvae to clusters performing DAPC with one discriminant function (DF)
clearly separated larvae spawned in the GOM and in the MED (Fig. 2D). DAPC analysis of
variable sites found in the mtDNA control region sequences also separated larvae spawned
at Eastern and Western stock reproduction areas (Fig. S3). In Fig. 2D, the similar
proportion of assigned individuals to the wGOM and the eGOM supports absence of
structuring within the GOM spawning area. Retaining 0.925 variance in two DFs separated
ABFT spawned in wGOM, eGOM and MED in three overlapping clusters (Fig. 2E). DAPC
is thus in accordance with the wGOM to MED gradient observed through Bayesian
clustering, and supports apparent connectivity between the ABFT Western and Eastern
stocks. Separate density plots (Figs. 2F and 2G) for DF1 (eigen value 64.72) and DF2 (eigen
value 29.34) also illustrate homogeneity between larvae spawned in the GOM.

DISCUSSION

This initial study analyzes ABFT genetic structure exclusively through larvae spawned
contemporarily in the GOM and in the MED, and to our knowledge structuring within the
ABFT GOM spawning grounds is hereby investigated for the first time. In accordance
to previous studies summarized in Table 3, we conclude that there is weak genetic
structuring between ABFT stocks through nuclear microsatellites and mitochondrial
sequences, which excludes philopatric dispersal of ABFT, as no differences were found
between markers inherited biparentally (microsatellites) or through the breeding females
(mtDNA). In contrast, in other highly migratory marine species, sex-biased gene flow
does result in complex population structure. This is the case of the loggerhead turtle, a
species in which population structuring is detected to increase with life stages according to
maternally inherited mtDNA, as opposed to absence of differentiation in microsatellite
loci due to the constant gene flow driven by the males during migration (Bowen et al.,
2005). For the case of highly migratory tuna populations with high levels of gene flow, this
study supports the use of larvae and microsatellites for population genetics, detecting
weak structuring between larvae spawned in the main breeding grounds of large sized and
highly mixed populations with only four neutral loci. The use of microsatellites in
population genetics has diminished due to the emergence of high throughput sequencing
technologies (Ovenden et al., 2015; Cuéllar-Pinzon et al., 2016), with certain studies
reporting that 4-12 SNPs are equivalent to one microsatellite locus (Guichoux et al., 2011).
Two studies have analyzed SNPs in ABFT collections detecting weak structuring between
management units with as few as 36 SNPs (Rodriguez-Ezpeleta et al., 2019) or 24 SNPs
(Puncher et al., 2018), with Fgr obtained from GOM-MED comparisons ranging from
0.004 to 0.034, respectively. Antoniou et al. (2017) characterized ABFT adult samples
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collected in the MED through genome-wide SNPs and 16 microsatellite loci, but only
found statistically significant close to zero Fgr values for microsatellite multilocus
genotypes. Studies addressing identification of microsatellites in ABFT are scarce with
some of the loci selected for the present study assessed in different ABFT collections
(Carlsson et al., 2004, 2007; Riccioni et al., 2010, 2013; Vella et al., 2016; Antoniou et al.,
2017). For future monitoring of ABFT population dynamics genetic tools ought to be
standardized.

The use of early life stages for population genetics in highly migratory species such as
ABFT, that lack barriers to gene flow, is important as it provides the genetic signal from
successful breeders. Sibship analysis did not reveal impartiality in sampling related
individuals when collecting larvae in GOM or MED spawning areas, which is consistent
with previous studies reporting highly unrelated collections of ABFT larvae and juveniles
(Puncher et al., 2018). The larvae analyzed in this study belonged to a single generation and
were theoretically drawn from single and randomly mating units with cluster analysis
supporting detectable connectivity between eGOM and MED spawning areas. Our
separation of wGOM and eGOM data to assess HW equilibrium was artificial and no
structuring between GOM subregions was found. However, proportions expected in HW
for loci Ttho7 and Tth157, with increased significant deviation for pooled data, could be
interpreted as a recent sign of non-random mating between reproducing adults within
the GOM. A hypothetical resident population of breeding ABFT in the wGOM would
agree with increased gene flow between stocks in the eGOM, as suggested by pairwise
genetic diversity estimators corrected for multiple comparisons. Bearing in mind we did
not find structuring within the GOM, the fact that clustering presents the eGOM as an
intermediate overlapping area between MED and wGOM also supports the existence
of mixing areas for breeders from each stock, which we propose would occur in the eGOM.
A scenario with ABFT adults migrating from the MED or the eastern northern Atlantic
Ocean to spawn in the eGOM would be plausible considering their larger population
size and the observed spatial patterns demonstrating transoceanic migrations, in addition
to the similar trophic baselines reported for the eGOM and MED environments
(Laiz-Carrién et al., 2015).

Conservation and management of ABFT demand continuous research into connectivity
between Western and Eastern ABFT stocks, with variable rates of movement and
population exchange in mixing hotspots in the North Atlantic Ocean (Rooker et al., 2019),
and discrepancy between environmental and genetic profiles reported recently for some
adults (Brophy et al., 2020). Several studies have in fact shown there is more movement
from the Eastern to the Western stock than vice versa (Block et al., 2005; Rooker et al.,
2008b; Taylor et al., 2011), and reproductive mixing between stocks is proposed to occur in
the Slope Sea (Richardson et al., 2016). Puncher et al. (2018) and Rodriguez-Ezpeleta et al.
(2019) evaluated the assignment power of their respective traceability SNP panels that
were specifically selected based on their capacity to differentiate stocks analyzing YOY and
larvae (in lower or similar numbers to this study, see Table 3). In agreement with our
results indicating connectivity between eGOM and MED, they found incorrect assignment
for certain individuals of known natal origin. Puncher et al. (2018) found the proportion of
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larvae and YOY juveniles poorly assigned was higher in the western Atlantic Ocean
compared to the MED. Rodriguez-Ezpeleta et al. (2019) found higher percentage of
incorrect assignment for GOM (10%) than for MED (2%); and more intriguingly, assigned
larvae from the Slope Sea to both management areas, which could be in agreement with
interbreeding of GOM and MED tuna in that region, and according to our results this
hypothetical scenario would extend to the eGOM. In summary, genetic tools are able to
detect weak ABFT population structuring by analyzing biological material obtained from
larval stages, indicating apparent connectivity between GOM and MED spawning
grounds, and calling for future research into areas favorable for mixing of breeders of
separate management units to ensure conservation of genetic diversity.

CONCLUSIONS

A cooperative effort allowed collection of tuna larvae during the 2014 reproductive season
in the GOM and the MED, the main spawning areas for the Western and the Eastern
ABFT stocks correspondingly. Genetic diversity was characterized for the first time
exclusively from larval individuals of known origin that provide the signal of successtul
breeders. Significant genetic structuring between larvae spawned in each spawning ground
was found, in agreement with previous studies. Segregation of ABFT larval individuals
within the GOM according to oceanographically distinct features in eGOM and wGOM
does not indicate structuring. Fixation indices and clustering analysis indicated weak but
detectable connectivity between ABFT that breed in the MED and in the eGOM was
stronger than between adults spawning in the MED and the wGOM, calling for future
research into areas favorable for mixing of breeders belonging to different stocks.
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