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ABSTRACT
Background  Currently, only a fraction of patients with 
non-small cell lung cancer (NSCLC) treated with immune 
checkpoint inhibitors (ICIs) experience a durable clinical 
benefit (DCB). According to NCCN guidelines, Programmed 
death-ligand 1 (PD-L1) expression status determined 
by immunohistochemistry (IHC) of biopsies is the only 
clinically approved companion biomarker to trigger the use 
of ICI therapy. Based on prior work showing a relationship 
between quantitative imaging and gene expression, we 
hypothesize that quantitative imaging (radiomics) can 
provide an alternative surrogate for PD-L1 expression 
status in clinical decision support.
Methods  18F-FDG-PET/CT images and clinical data 
were curated from 697 patients with NSCLC from three 
institutions and these were analyzed using a small-
residual-convolutional-network (SResCNN) to develop a 
deeply learned score (DLS) to predict the PD-L1 expression 
status. This developed model was further used to predict 
DCB, progression-free survival (PFS), and overall survival 
(OS) in two retrospective and one prospective test cohorts 
of ICI-treated patients with advanced stage NSCLC.
Results  The PD-L1 DLS significantly discriminated 
between PD-L1 positive and negative patients (area 
under receiver operating characteristics curve ≥0.82 in 
the training, validation, and two external test cohorts). 
Importantly, the DLS was indistinguishable from IHC-
derived PD-L1 status in predicting PFS and OS, suggesting 
the utility of DLS as a surrogate for IHC. A score generated 
by combining the DLS with clinical characteristics was 
able to accurately (C-indexes of 0.70–0.87) predict DCB, 
PFS, and OS in retrospective training, prospective testing 
and external validation cohorts.
Conclusion  Hence, we propose DLS as a surrogate or 
substitute for IHC-determined PD-L1 measurement to 
guide individual pretherapy decisions pending in larger 
prospective trials.

INTRODUCTION
The emergence of immune checkpoint inhib-
itors (ICIs) has revolutionized cancer treat-
ment and improved long-term survival among 
some patients with advanced stage non-small 
cell lung cancer (NSCLC), but durable 
clinical benefit (DCB) is only observed 

in 20%–50% patients.1 2 Because of the 
complexity and heterogeneity of response, 
NCCN guidelines recommend treatment 
based on expression of the checkpoint target, 
programmed death-ligand 1 (PD-L1), deter-
mined by immunohistochemistry (IHC).3 
Early studies showed that PD-L1 positivity is 
associated with significantly higher objec-
tive response rate, longer progression-free 
survival (PFS), and longer overall survival 
(OS).1 4 However, measuring PD-L1 by IHC 
requires surgical or biopsied tumor spec-
imens, which are collected through inva-
sive procedures and associated with risk of 
morbidities.5 Therefore, an alternative non-
invasive method of measuring PD-L1 status 
would have important implications for clin-
ical decision support, especially when tissues 
are not available or when the IHC fails.6

Radiomic analyses of quantitative image 
features based on shape, size, voxel intensity, 
and texture are strongly associated with gene 
and protein expression in NSCLC.7 8 Signa-
tures are typically extracted from the intratu-
moral region, but it is becoming increasingly 
appreciated that the peritumoral region,9 
encompassing the tumor-stroma interface, is 
also informative in predictive models, likely 
because this region contains information on 
immune infiltration and stromal inflamma-
tion. Intratumoral and peritumoral immune-
cell infiltration is necessary for inducing an 
immunotherapy response. Immune infiltra-
tion is associated with expression of cell check-
point markers including PD-L1,10 which is 
significantly correlated with metabolic rate,11 
GLUT-1 expression,12 pAKT levels,13 hypoxia, 
and acidosis.14 These observations suggest 
that PD-L1 expression might be tractable by 
radiomics analyses of Fluorine 18 (18F)−flu-
orodeoxyglucose (FDG)-Positron emission 
tomography (PET) scans. As a consequence, 
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others have investigated the relationship between FDG-
PET and PD-L1 status in NSCLC, but these analyses were 
limited to a few statistical associations.15 16 Our previous 
study demonstrated the utility of deep learning methods 
using intratumoral and peritumoral radiomics from PET/
CT images to predict epidermal growth factor receptor 
(EGFR) mutation status, which could be used to support 
the treatment decisions for EGFR-TKI and other thera-
pies, including ICI, which is generally more effective in 
EGFR wild-type cancers.17

In the current work, we utilized machine learning to 
develop and validate a deeply learned score (DLS) to 
measure PD-L1 expression status non-invasively using 
pretreatment 18F-FDG PET/CT images of a retrospec-
tive cohort accrued from Shanghai Pulmonary Hospital 
(SPH). Then, to validate the DLS in accordance with 
the FDA guidance document for the Clinical Evaluation 
of Software as a Medical Device (SaMD),18 clinical asso-
ciation analysis for scientific validity, analytic validation 

analysis for accuracy and reliability, and clinical validation 
analysis for identifying patients most likely to benefit from 
ICI treatment were performed using external test cohorts 
from the H Lee Moffitt Cancer Center and Research Insti-
tute (MCC) with both PD-L1 status and clinical follow-up 
information (ie, MCC PD-L1 cohort) or only with clinical 
follow-up information (ie, MCC ICI-treated retrospective 
and prospective cohorts). To determine the potential 
application for accurate quantitative prognostic predic-
tion, we developed DCB, PFS, and OS prediction models 
with the derived DLS using the MCC ICI-treated retro-
spective cohort. The models for all three endpoints were 
independently tested with the MCC ICI-treated prospec-
tive cohort. Finally, an external ICI-treated cohort from a 
third institution, James A Haley Veterans’ Administration 
(VA), was used to blindly validate the models mentioned 
above (details shown in figure 1 and online supplemental 
figure S1).

Figure 1  Study design, which contains three main phases. First, the SPH data comprised PD-L1 expression data and the 
corresponding imaging data was used to train and validate the deeply learned score (DLS). Then, according to FDA SaMD 
guideline, the DLS was evaluated through the clinical association and analytic validation on the two cohorts (MCC PD-L1 data 
and external VA PD-L1 data), which had both PD-L1 expression data and clinical follow-up information, as well as the clinical 
validation on three other cohorts (MCC ICI-treated retrospective, prospective, and external VA ICI-treated cohorts), which had 
clinical follow-up information. Third, in order to further test the application of DLS in guiding treatment, the well-validated DLS 
was utilized to develop prognosis prediction models with the MCC ICI-treated retrospective cohort, which was tested with MCC 
ICI-treated prospective and external VA ICI-treated cohorts. DCB, durable clinical benefit; ICI, immune checkpoint inhibitor; 
MCC, H Lee Moffitt Cancer Center and Research Institute; ROI, region of interest; SPH, Shanghai Pulmonary Hospital; VA, 
James A Haley Veterans’ Administration; EGFR, epidermal growth factor receptor; PD-L1, programmed death-ligand 1; FDA, 
Food and Drug Administration; PET/CT, positron emission tomography/computed tomography.
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Study population
In this multi-institutional study, five cohorts of patients 
were first accrued from two institutions: SPH, Shanghai, 
China, and MCC, Tampa, Florida. The detailed inclusion 
and exclusion criteria are provided in online supple-
mental figure S1 and methods S1. Among these, the 
SPH retrospective cohort, which was split into training 
(N=284) and validation (N=116) cohorts randomly by 
71%–29%, and the retrospective MCC cohort with PD-L1 
status (N=85) were used for training, validating, and 
testing the DLS to measure PD-L1 expression status non-
invasively; one ICI-treated retrospective cohort (N=128) 
and one ICI-treated prospective cohort (N=49) were used 
to validate the prognostic value of the DLS and investi-
gate the association of the DLS and clinical characteris-
tics on the clinical outcomes. Additionally, a sixth cohort 
(N=35) from the third institution, VA, Tampa, Florida, 
was curated as an external validation of the DLS and the 
prognostic models.

The progression of the distinct ICI-treated cohorts used 
to investigate the association of the DLS and clinical char-
acteristics with the clinical outcome including DCB (PFS 
>6 months19), PFS, and OS, were defined using Response 
Evaluation Criteria in Solid Tumors (RECIST V.1.1).20 
The index date for both OS and PFS was the date of initi-
ation of immunotherapy.

The requirement for informed consent was waived by 
the IRBs, as no personal health information is reported.

18F-FDG PET/CT imaging
Detailed acquisition parameters for the 18F-FDG PET/CT 
imaging for each cohort are presented in online supple-
mental table S1. All PET images were converted into stan-
dardized uptake value (SUV) units by normalizing the 
activity concentration to the dosage of 18F-FDG injected 
and the patient’s body weight after decay correction.

PD-L1 expression by IHC
The detailed information of IHC staining for PD-L1 
expression is provided in online supplemental methods 
S2. For both SPH and MCC PD-L1 cohort, the platform of 
Dako Link 48 and the antibody of Dako 22C3 were used 
for PD-L1 staining to quantify the presence of PD-L1. 
The level of PD-L1 expression was presented as a tumor 
proportion score (TPS), which is the percentage of viable 
tumor cells showing membrane PD-L1 staining relative to 
all viable tumor cells and is given as 0%, 1%–49%, and 
≥50%, and PD-L1 positivity was defined as ≥1% of 
TPS.21 22 To compensate for reader bias, all the staining 
results were reviewed and analyzed by two experienced 
pathologists who were blinded to each other’s scores and 
unaware of the patients’ clinical information. When there 
was discrepancy, the two pathologists would have a mutual 
discussion to reach a consensus.

Development of the DLS
The architecture of the small-residual-convolutional-
network (SResCNN) model used for measuring PD-L1 

expression non-invasively is presented in online supple-
mental figure S2. For each patient, only the primary 
tumor was analyzed. A square or an irregular-shaped box, 
which was close to the boundary of the tumor, was delin-
eated manually in the aligned PET and CT images of the 
SPH cohort using ITK-SNAP23 software by experienced 
nuclear medicine radiologist (LJ). After dilation of the 
smallest square mask (SSM) including the selected region 
with a square of size 20 mm and resized to the size of 64×64 
pixels using cubic spline interpolation, the PET region of 
interest (ROI) and CT ROI with the entire tumor and 
its peripheral region included were automatically gener-
ated at the same size (online supplemental figure S3). To 
reduce the effect of the difference between the central 
slice and peripheral slices, the area of each SSM within 
each patient was calculated, and only the SSMs with area 
larger than 30% of the maximum value were used to 
generate valid ROIs, which further constructed a three-
channel hyper-images together with their fusion images 
(alpha-blending fusion,24 α=1, online supplemental figure 
S4). During the training of the model, 14,011 training 
hyper-images (6722 were PD-L1 positive and 7289 were 
PD-L1 negative) and 5291 validation hyper-images (2513 
were PD-L1 positive and 2778 were PD-L1 negative) were 
used as the input images, the PD-L1 expression status 
(positive=1 or negative=0) was used as the label. After 
training, a DLS representing the PD-L1 positivity status 
was generated after a sequential activation of convolu-
tion and pooling layers. To develop a robust measure-
ment, the average DLSs of all valid slices including tumor 
tissue fed into the SResCNN model with equal weight 
were regarded as the final PD-L1 positive probability of 
the tumor. Details of the building, training, optimization, 
and application methods were provided in online supple-
mental methods S3. The implementation of this model 
used the Keras toolkit and Python 3.5. The same pipeline 
(available at https://​doi.​org/​10.​5281/​zenodo.​4731166) 
was performed by an experienced radiologist (YS) on 
the three MCC cohorts and external VA cohort to obtain 
the DLS based on the guideline. Given there were minor 
differences between the different radiologists in selecting 
the ROIs, ROIs within the SPH validation cohort were 
also selected by YS again to validate the reproducibility 
of DLS. Regarding the importance of the hyper-image 
constructed with different modalities, similar SResCNN 
models using only PET or CT images were also trained.

Visualization of the SResCNN model
To further understand the measurement processing 
and explore the biological underpinnings of the deep 
learning features, intermediate activation layers were first 
visualized to assess how the network carries the informa-
tion from input to output.25 Additionally, the Gradient-
weighted Class Activation Mapping (Grad-CAM) was used 
to understand the importance of each neuron for a deci-
sion of PD-L1 positive or negative and produce a coarse 
localization map highlighting the important regions in the 
image for predicting the target concept (PD-L1 positive 
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or PD-L1 negative) by using the gradient information of 
target concept flowing into the last convolutional layer of 
the SResCNN model. And the reconstructed maps were 
named as positive and negative filter later, which were 
also used to evaluate the class discrimination.26 Besides, 
unsupervised hierarchical clustering was performed 
on the deeply learned features (ie, the output of global 
average pooling, N=256) to create a heatmap to show 
their distinguishable expression pattern among different 
patients. The clusters formed were based purely on the 
similarities and dissimilarities among the patients by the 
expressions of the deeply learned features.

Statistical analysis
The Wilcoxon signed-rank test and Fisher’s exact test 
were used to test the differences for continuous variables 
and categorical variables, respectively. The area under the 
receiver operating characteristics curve (AUC), accuracy 
(ACC), sensitivity (SEN), specificity (SPEC), and the 95% 
CI by the DeLong method27 were used to assess the ability 
of DLS in discriminating between positive and negative 
PD-L1 expression. The cutoff was established using the 
maximum Youden index (ie, Specificity +Sensitivity-1) 
in the SPH training cohort. To compare the prognostic 
value of DLS with that of IHC-based PD-L1 status, the 
difference between HRs for the DLS and PD-L1 status 
computed by Cox regression model was calculated and 
evaluated with bootstrapped 95% CI.28 The inter-rater 
agreement of DLS estimations was calculated by intra-
class correlation coefficient (ICC) between two radiolo-
gists. The bootstrapped mean value and SEs of the DLSs 
in different cohorts were also assessed for the similarity.

The correlation between DLS and different metadata 
(including age, body mass index, sex, stage, smoking 
status, Eastern Cooperative Oncology Group (ECOG) 
Performance Status, and SUVmax) and molecular 
features (including histology, PET/CT image-based 
necrosis, and PD-L1 TPS) were analyzed by Spearman’s 
rank correlation or point-biserial correlation. The details 
of necrosis quantification are shown in online supple-
mental methods S4. Comparison of the magnitude of 
two correlations was performed with a software package 
named cocor.29 Given prior research has suggested that 
PD-L1 expression is negatively correlated with EGFR 
mutation status,30 we contend that non-invasive methods 
of measuring PD-L1 and/or EGFR status would have 
clinical translational implications. Therefore, we also 
investigated whether the DLS was correlated with EGFR 
mutation status using point-biserial correlation and 
whether the DLS was affected by EGFR mutation status by 
comparing the performance in the subgroups divided by 
EGFR mutation status.

In the ICI-treated cohorts, the patients were clustered 
into high DLS and low DLS groups with the obtained 
cutoff, and survival analyses were performed using 
Kaplan-Meier method and Cox proportional hazards 
model. Using the MCC ICI-treated retrospective cohort, 
multivariable models, including the risk factors selected 

in univariate analysis according to the significance, were 
developed for the prediction of DCB, PFS, and OS, which 
were tested using the MCC ICI-treated prospective cohort 
as well as external VA ICI-treated retrospective cohort 
and were evaluated with C-indices. Z test was applied 
to compare the differences between different models. 
To rigorously assess the quality of the study design, the 
radiomic quality score was calculated31 (online supple-
mental methods S5 and table S2). Two-sided p values of 
less than 0.05 were regarded as significant, 10,000 repli-
cations were performed in bootstrap analyses, and all 
statistical analyses were conducted with IBM SPSS Statis-
tics 25 (Armonk, New York, USA), R 3.6.3 (R Foundation 
for Statistical Computing, Vienna, Austria), and MATLAB 
R2019a (Natick, Massachusetts).

RESULTS
Patients characteristics
The clinical characteristics of the patients used to train 
and test the non-invasive measurement of the PD-L1 status 
are presented in table 1 (online supplemental table S3 for 
external VA patients). The SPH training, SPH validation, 
and external MCC PD-L1 test cohorts used to train, vali-
date, and test the SResCNN model had a prevalence of 
PD-L1 positivity by IHC of 29.93%, 30.17%, and 56.47%, 
respectively. The external VA patients had a significant 
higher PD-L1 positivity of 82.76% (within the 29 patients 
who had IHC PD-L1 expression).

The clinical characteristics of the patients used to 
test the clinical utility of DLS are presented in table  2. 
The retrospective MCC ICI-treated cohort included 128 
patients with a median PFS and OS of 7.43 and 21.77 
months, respectively, and 53.91% of the patients had 
DCB. The prospective MCC ICI-treated patients included 
49 patients with a DCB rate of 65.31%, median PFS and 
OS of 10.50 and 17.00 months, respectively. For the 
external VA patients with a median PFS and OS of 8.13 
and 13.10 months, 68.57% of the patients showed PD-L1 
positive, and 54.29% of patients obtained DCB.

Association between DLS, PD-L1, and metadata
The DLS exhibited statistically significant differences 
between the PD-L1-positive and PD-L1-negative tumors 
in all three cohorts (p<0.001), and four examples are 
shown in figure  2 (adapted from Mu et al17). The DLS 
was also positively correlated with the original PD-L1 TPS 
in both SPH (Spearman’s rho=0.60, p<0.001) and MCC 
PD-L1 test (Spearman’s rho=0.59, p<0.001) cohorts, 
which was significantly higher compared with the correla-
tion between the SUVmax and the TPS with rho of 0.30 
(p<0.001) and 0.29 (p=0.009), respectively. Using analysis 
of variance, the DLS was significantly different between 
groups with PD-L1 TPS <1%, 1%–49%, and ≥50% (SPH 
cohort: p<0.001; MCC PD-L1 test cohort: p<0.001). The 
least squares difference (LSD) post hoc analysis showed 
significantly higher values of DLS in patients with PD-L1 
TPS ≥50% than TPS 1%–49% group (LSD: SPH cohort: 
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p<0.017; MCC PD-L1 test cohort: p≤0.027) and TPS 
<1% group (LSD: SPH cohort: p<0.001; MCC PD-L1 test 
cohort: p<0.001) (details are shown in online supple-
mental figure S5). As such, the increased PD-L1 TPS 
scores correlated to the DLS.

Additionally, the DLS was positively correlated with 
SUVmax (Spearman’s rho=0.43, p<0.001), squamous cell 
carcinoma (SCC) (point-biserial rhopb=0.27, p<0.001), 
male sex (point-biserial rhopb=0.19, p<0.001), smoking 
status (point-biserial rhopb=0.20, p<0.001), and negatively 
correlated with EGFR status (point-biserial rhopb=−0.20, 
p<0.001) for the whole SPH cohort. In the MCC PD-L1 
test cohort, the only positive significant correlation was 
with SUVmax (Spearman’s rho=0.34, p<0.001) and nega-
tive with EGFR status (point-biserial rhopb=−0.25, p=0.035). 
Further, multivariable linear regression (adjusted r2=0.15, 
F=15.31, p<0.001) showed that only SUVmax (coeffi-
cient=0.32, p=0.005) was independently associated with 
the DLS. Only 15% of DLS variability could be explained 
by the SUVmax, indicating that DLS originated mainly 
from other image information.

Through the visualization of the SResCNN model, the 
necrotic region was identified as self-learned important 
area for classifying PD-L1 status (figure  2A). Quantita-
tively, for all the SPH patients with necrotic regions, a 
significant correlation was observed between the necrosis-
to-global volume ratio of the PET images and DLS with 
Spearman’s rho of 0.50 (p<0.001) (online supplemental 
figure S6). Further, univariable linear regression (adjusted 
r2=0.24, F=15.92, p<0.001) showed that the necrosis (coef-
ficient=0.49, p<0.001) was independently associated with 
DLS and could explain 24% of DLS variability. There-
fore, necrosis potentially played an important role in 
predicting PD-L1 status.

Finally, the DLS was not correlated with tumor volume, 
neither in the entire SPH cohort (rho=0.082, p=0.10) and 
nor in the MCC PD-L1 test cohort (rho=−0.066, p=0.55), 
which indicates the T stage has a limited effect on DLS in 
this study.

Analytical validation of DLS in predicting PD-L1 status
To discriminate PD-L1-positive from PD-L1-negative 
expression, the DLS yielded AUCs of 0.89 (95% CI: 0.84 
to 0.94; p<0.001), 0.84 (95% CI: 0.76 to 0.92; p<0.001), 
and 0.82 (95% CI: 0.74 to 0.89; p<0.001), accuracies 
of 81.69% (95% CI: 77.11% to 85.91%), 78.45% (95% 
CI: 71.55% to 85.30%), and 77.65% (95% CI: 69.41% 
to 85.88%), sensitivities of 84.71% (95% CI: 76.47% to 
91.76%), 77.43% (95% CI: 57.14% to 85.71%), and 
68.75% (95% CI: 55.26% to 81.25%), specificities of 
80.40% (95% CI: 74.87% to 85.67%), 81.48% (95% CI: 
72.84% to 88.89%), and 89.19% (95% CI: 78.38% to 
97.30%) in the SPH training, SPH validation, and MCC 
PD-L1 test cohorts, respectively, with a cutoff value of 
0.55 (figure 3 and online supplemental table S4). For the 
external VA PD-L1 patients, the DLS generated an AUC of 
0.82 (95% CI: 0.65 to 0.98; p=0.028), accuracy of 79.31% 
(95% CI: 62.07% to 93.10%), sensitivity of 83.33% (93% C

ha
ra

c-
te

ri
st

ic

S
P

H
 t

ra
in

in
g

 c
o

ho
rt

 (N
=

28
4)

S
P

H
 v

al
id

at
io

n 
co

ho
rt

 (N
=

11
6)

M
C

C
 P

D
-L

1 
te

st
 c

o
ho

rt
 (N

=
85

)

P
D

-L
1+

P
D

-L
1−

P
 v

al
ue

s
P

D
-L

1+
P

D
-L

1−
P

 v
al

ue
s

P
D

-L
1+

P
D

-L
1−

P
 v

al
ue

s

 �
N

o 
(%

)
85

 (2
9.

93
)

19
9 

(7
0.

07
)

35
 (3

0.
17

)
81

 (6
9.

83
)

48
 (5

6.
47

)
37

 (4
3.

53
)

*M
ea

n 
p

 v
al

ue
 <

0.
05

. T
he

 c
om

p
ar

is
on

 o
f a

ge
 a

nd
 S

U
V

m
ax

 b
et

w
ee

n 
tw

o 
gr

ou
p

s 
w

as
 p

er
fo

rm
ed

 w
ith

 W
ik

co
xo

n 
si

gn
 r

an
k 

te
st

, a
nd

 t
he

 r
es

t 
va

ria
b

le
s 

w
er

e 
co

m
p

ar
ed

 w
ith

 F
is

he
r’s

 e
xa

ct
 t

es
t.

 
Th

e 
d

em
og

ra
p

hi
c 

an
d

 c
lin

ic
al

 c
ha

ra
ct

er
is

tic
s 

of
 e

xt
er

na
l V

A
 p

at
ie

nt
s 

ar
e 

p
ro

vi
d

ed
 in

 o
nl

in
e 

su
p

p
le

m
en

ta
l t

ab
le

 S
2.

A
D

C
, a

d
en

oc
ar

ci
no

m
a;

 A
LK

, a
na

p
la

st
ic

 ly
m

p
ho

m
a 

ki
na

se
; E

G
FR

, e
p

id
er

m
al

 g
ro

w
th

 fa
ct

or
 r

ec
ep

to
r;

 IH
C

, i
m

m
un

oh
is

to
ch

em
is

tr
y;

 M
C

C
, H

 L
ee

 M
of

fit
t 

C
an

ce
r 

C
en

te
r 

an
d

 R
es

ea
rc

h 
In

st
itu

te
; 

N
aN

, n
ot

 a
va

ila
b

le
; P

D
-L

1,
 p

ro
gr

am
m

ed
 d

ea
th

-l
ig

an
d

 1
; R

O
S

1,
 c

-r
os

 o
nc

og
en

e 
1,

 r
ec

ep
to

r 
ty

ro
si

ne
 k

in
as

e;
 S

C
C

, s
q

ua
m

ou
s 

ce
ll 

ca
rc

in
om

a;
 S

P
H

, S
ha

ng
ha

i P
ul

m
on

ar
y 

H
os

p
ita

l; 
S

U
V,

 
st

an
d

ar
d

iz
ed

 u
p

ta
ke

 v
al

ue
; T

N
M

, t
um

or
, n

od
e,

 m
et

as
ta

se
s;

 V
A

, J
am

es
 A

 H
al

ey
 V

et
er

an
s’

 A
d

m
in

is
tr

at
io

n.

Ta
b

le
 1

 
C

on
tin

ue
d

https://dx.doi.org/10.1136/jitc-2020-002118
https://dx.doi.org/10.1136/jitc-2020-002118
https://dx.doi.org/10.1136/jitc-2020-002118
https://dx.doi.org/10.1136/jitc-2020-002118
https://dx.doi.org/10.1136/jitc-2020-002118
https://dx.doi.org/10.1136/jitc-2020-002118


7Mu W, et al. J Immunother Cancer 2021;9:e002118. doi:10.1136/jitc-2020-002118

Open access

Ta
b

le
 2

 
D

em
og

ra
p

hi
c 

an
d

 c
lin

ic
al

 c
ha

ra
ct

er
is

tic
s 

fo
r 

IC
I-

tr
ea

te
d

 p
at

ie
nt

s

C
ha

ra
ct

er
is

ti
c

R
et

ro
sp

ec
ti

ve
 M

C
C

 IC
I-

tr
ea

te
d

 p
at

ie
nt

s 
(N

=
12

8)
P

ro
sp

ec
ti

ve
 M

C
C

 IC
I-

tr
ea

te
d

 p
at

ie
nt

s 
(N

=
49

)

A
ll

D
ee

p
ly

 le
ar

ne
d

 s
co

re

P
 v

al
ue

s
A

ll

D
ee

p
ly

 le
ar

ne
d

 s
co

re

P
 v

al
ue

s
H

ig
h 

(N
=

43
)

Lo
w

 (N
=

85
)

H
ig

h 
(N

=
31

)
Lo

w
 (N

=
18

)

A
ge

 (y
ea

rs
)

0.
09

9
0.

20

 �
M

ea
n±

S
D

65
.4

8±
13

.2
4

67
.3

5±
13

.7
1

64
.5

4±
12

.8
0

66
.8

±
10

.0
4

64
.7

7±
8.

87
70

.2
8±

10
.7

0
 �



B
M

I
0.

43
0.

48

 �
M

ea
n±

S
D

26
.1

4±
5.

08
25

.6
0±

4.
79

26
.4

2±
5.

17
26

.0
6±

5.
02

26
.0

5±
5.

46
26

.0
8±

4.
00

 �


S
ex

, N
o 

(%
)

0.
38

0.
56

 �
M

al
e

81
 (6

3.
28

)
24

 (5
5.

81
)

57
 (6

7.
06

)
25

 (5
1.

02
)

17
 (5

4.
84

)
8 

(4
4.

44
)

 �


 �
Fe

m
al

e
47

 (3
6.

72
)

19
 (4

4.
19

)
28

 (3
2.

94
)

24
 (4

8.
98

)
14

 (4
3.

75
)

10
 (5

5.
56

)
 �



TN
M

 s
ta

ge
0.

63
0.

39

 �
III

25
 (1

9.
53

)
11

 (2
5.

58
)

14
 (1

6.
47

)
6 

(1
2.

24
)

5 
(1

6.
13

)
1 

(5
.5

6)
 �



 �
IV

10
3 

(8
0.

47
)

32
 (7

4.
42

)
71

 (8
3.

53
)

43
 (8

7.
76

)
26

 (8
3.

87
)

17
 (9

4.
44

)
 �



H
is

to
lo

gy
 (b

as
el

in
e)

, N
o 

(%
)

0.
09

6
0.

23

 �
A

D
C

80
 (6

2.
50

)
23

 (5
3.

49
)

57
 (6

7.
06

)
28

 (5
7.

14
)

20
 (6

4.
52

)
8 

(4
4.

44
)

 �


 �
S

C
C

48
 (3

47
.5

0)
20

 (4
6.

51
)

28
 (3

2.
94

)
21

 (4
2.

86
)

11
 (3

5.
48

)
10

 (5
5.

56
)

 �


E
G

FR
, N

o 
(%

)
1.

00
1.

00

 �
M

ut
at

io
n

8 
(6

.2
5)

2 
(4

.6
5)

6 
(7

.0
6)

2 
(4

.0
8)

2 
(6

.4
5)

0
 �



 �
W

ild
85

 (6
6.

41
)

28
 (6

5.
12

)
57

 (6
7.

06
)

37
 (7

5.
51

)
23

 (7
4.

19
)

14
 (7

7.
78

)
 �



A
LK

, N
o 

(%
)

1.
00

N
aN

 �
M

ut
at

io
n

2 
(1

.5
6)

0
2 

(2
.3

5)
0

0
0

 �


 �
W

ild
89

 (6
9.

53
)

27
 (6

2.
79

)
62

 (7
2.

94
)

39
 (7

9.
59

)
24

 (7
7.

42
)

15
 (8

3.
33

)
 �



R
O

S
1,

 N
o 

(%
)

N
aN

N
aN

 �
M

ut
at

io
n

0
0

0
0

0
0

 �


 �
W

ild
35

 (2
7.

34
)

7 
(1

6.
28

)
28

 (3
2.

94
)

33
 (6

7.
35

)
20

 (6
4.

52
)

13
 (7

2.
22

)
 �



S
m

ok
e,

 N
o 

(%
)

0.
78

0.
74

N
ev

er
49

 (3
8.

28
)

18
 (4

1.
86

)
31

 (3
6.

47
)

14
 (2

8.
57

)
10

 (3
2.

26
)

4 
(2

2.
22

)
 �



Fo
rm

er
79

 (6
1.

72
)

25
 (5

8.
14

)
54

 (6
3.

53
)

35
 (7

1.
43

)
21

 (6
7.

74
)

14
 (7

7.
78

)
 �



E
C

O
G

 s
ca

le
, N

o 
(%

)
0.

43
0.

49

 �
0

29
 (2

2.
66

)
7 

(1
6.

28
)

22
 (2

5.
88

)
10

 (1
6.

33
)

5 
(1

6.
13

)
5 

(2
7.

78
)

 �


 �
1

91
 (7

1.
09

)
34

 (7
9.

07
)

57
 (6

7.
06

)
38

 (8
1.

63
)

25
 (8

0.
65

)
13

 (4
2.

22
)

 �


 �
≥2

8 
(6

.2
5)

2 
(4

.6
5)

6 
(7

.0
6)

1 
(2

.0
4)

1 
(3

23
)

0 
(0

)
 �



S
U

V
m

ax
0.

01
4*

0.
15

C
on

tin
ue

d



8 Mu W, et al. J Immunother Cancer 2021;9:e002118. doi:10.1136/jitc-2020-002118

Open access�

C
ha

ra
ct

er
is

ti
c

R
et

ro
sp

ec
ti

ve
 M

C
C

 IC
I-

tr
ea

te
d

 p
at

ie
nt

s 
(N

=
12

8)
P

ro
sp

ec
ti

ve
 M

C
C

 IC
I-

tr
ea

te
d

 p
at

ie
nt

s 
(N

=
49

)

A
ll

D
ee

p
ly

 le
ar

ne
d

 s
co

re

P
 v

al
ue

s
A

ll

D
ee

p
ly

 le
ar

ne
d

 s
co

re

P
 v

al
ue

s
H

ig
h 

(N
=

43
)

Lo
w

 (N
=

85
)

H
ig

h 
(N

=
31

)
Lo

w
 (N

=
18

)

 �
M

ea
n±

S
D

11
.8

2±
6.

98
13

.4
4±

5.
83

11
.0

0±
7.

32
14

.5
9±

9.
53

14
.4

9±
6.

37
14

.7
7±

13
.1

3
 �



C
lin

ic
al

 b
en

efi
t,

 N
o 

(%
)

<
0.

00
1*

0.
00

5*

 �
D

C
B

69
 (5

3.
91

)
34

 (7
9.

07
)

35
 (4

1.
18

)
32

 (6
5.

31
)

25
 (8

0.
65

)
7 

(3
8.

89
)

 �


 �
N

D
B

59
 (4

6.
09

)
9 

(2
0.

93
)

50
 (5

8.
82

)
17

 (3
4.

69
)

6 
(1

9.
35

)
11

 (6
1.

11
)

 �


P
ro

gr
es

si
on

-f
re

e 
su

rv
iv

al
<

0.
00

1*
0.

01
5*

 �
M

ed
ia

n
 �

(9
5%

 C
I)

7.
43

(6
.3

9 
to

 
8.

47
)

15
.8

0
(9

.4
9 

to
 2

2.
11

)
5.

50
(2

.8
7 

to
 8

.1
3)

10
.5

0
(6

.3
6 

to
 

14
.6

4)

14
.3

3
(8

.5
7 

to
 2

0.
10

)
5.

00
(2

.8
4 

to
 7

.1
6)

 �


O
ve

ra
ll 

su
rv

iv
al

0.
02

1*
<

0.
00

1*

 �
M

ed
ia

n
 �

(9
5%

 C
I)

21
.7

7
(1

3.
50

 t
o 

30
.0

3)

27
.6

0 
(N

R
)

19
.7

7
(1

3.
82

 t
o 

25
.7

2)

17
.0

0 
(N

R
)

N
R

11
.2

3
(6

.6
9 

to
 1

5.
78

)
 �



D
ee

p
 le

ar
ni

ng
 s

co
re

<
0.

00
1*

<
0.

00
1*

 �
M

ed
ia

n
 �

(IQ
R

)
0.

48
(0

.0
1–

0.
93

)
0.

63
(0

.6
0–

07
1)

0.
42

(0
.3

2–
0.

48
)

0.
55

(0
.1

4–
0.

86
)

0.
59

(0
.5

6–
06

4)
0.

34
(0

.3
1–

0.
45

)
 �



*p
 v

al
ue

<
0.

05
. T

he
 c

om
p

ar
is

on
 o

f a
ge

, B
M

I, 
an

d
 S

U
V

m
ax

 b
et

w
ee

n 
tw

o 
gr

ou
p

s 
w

as
 p

er
fo

rm
ed

 w
ith

 W
ilc

ox
on

 s
ig

n 
ra

nk
 t

es
t,

 P
FS

 a
nd

 O
S

 w
er

e 
co

m
p

ar
ed

 w
ith

 lo
g-

ra
nk

 t
es

t,
 a

nd
 t

he
 r

es
t 

va
ria

b
le

s 
w

er
e 

co
m

p
ar

ed
 w

ith
 F

is
he

r’s
 e

xa
ct

 t
es

t.
A

D
C

, a
d

en
oc

ar
ci

no
m

a;
 A

LK
, a

na
p

la
st

ic
 ly

m
p

ho
m

a 
ki

na
se

; B
M

I, 
b

od
y 

m
as

s 
in

d
ex

; D
C

B
, d

ur
ab

le
 c

lin
ic

al
 b

en
efi

t;
 E

C
O

G
, E

as
te

rn
 C

oo
p

er
at

iv
e 

O
nc

ol
og

y 
G

ro
up

 P
er

fo
rm

an
ce

 S
ta

tu
s;

 E
G

FR
, 

ep
id

er
m

al
 g

ro
w

th
 fa

ct
or

 r
ec

ep
to

r;
 IC

I, 
im

m
un

e 
ch

ec
kp

oi
nt

 in
hi

b
ito

r;
 M

C
C

, H
 L

ee
 M

of
fit

t 
C

an
ce

r 
C

en
te

r 
an

d
 R

es
ea

rc
h 

In
st

itu
te

; N
D

B
, n

on
-d

ur
ab

le
 b

en
efi

t;
 N

R
, n

ot
 r

ea
ch

ed
; S

C
C

, s
q

ua
m

ou
s 

ce
ll 

ca
rc

in
om

a;
 T

N
M

, t
um

or
, n

od
e,

 m
et

as
ta

se
s.

Ta
b

le
 2

 
C

on
tin

ue
d



9Mu W, et al. J Immunother Cancer 2021;9:e002118. doi:10.1136/jitc-2020-002118

Open access

CI: 66.67% to 95.83%), and specificity of 60.00% (95% 
CI: 20.00% to 100%) (figure 3C and online supplemental 
table S4).

As another meaningful quantitative index associ-
ated with PD-L1 expression validated in other studies,32 

SUVmax showed poorer performance to discriminate 
between PD-L1-positive and PD-L1-negative expression 
with AUCs of 0.69 (95% CI: 0.62 to 0.75; p<0.001), 0.68 
(95%CI: 0.57 to 0.78; p<0.001), 0.66 (95%CI: 0.53 to 0.77; 
p=0.014), and 0.56 (95%CI: 0.28 to 0.84; p=0.69) in the 

Figure 2  NSCLC histology subtypes and PD-L1 expression. Squamous cell carcinoma (SCC) patients with positive PD-L1 
expression (A) and negative PD-L1 expression (B). Adenocarcinoma (ADC) patients with positive PD-L1 expression (C) and 
negative PD-L1 expression (D), respectively. For (A)–(D), the first line is the CT, PET, and fusion images, the first and second 
columns of the second and third line show the response of the fourth ResBlock, which shows the self-learned important 
areas in expressing PD-L1 status (peritumoral and necrosis regions), the third column of the second and third line shows the 
response of the negative filter and the positive filter in the PD-L1 positive–negative tumors (the CT images were overlapped 
to reveal the location of the response), the last line shows the pathological examination of the resected mass demonstrating 
PD-L1 expression (left, ×100; right, ×200). (E) The heatmap generated with unsupervised hierarchical clustering of all the SPH 
patients and MCC PD-L1 patients on the horizontal axis and deeply learned features expression (ie, the output of the last 
activation filters, N=256) on the vertical axis. There were four distinct subgroups obtained. Groups G1 and G2 (including more 
PD-L1− patients) had similar feature expression, which is opposite to the feature expression of G3 and G4 (including more PD-
L1+ patients). Furthermore, some features of G1 and G2 (or G3 and G4) are different. G1 and G3 had more patients with SCC, 
while G2 and G4 had more patients with ADC. The χ2 test showed the significant association of the four kinds of deep learning 
expression patterns with PD-L1 expression (SPH patients: p<0.001, MCC patients: p<0.001) and different histology (SPH 
patients: p<0.001, MCC patients: p=0.061). The similar patterns of the external MCC PD-L1 cohorts further showed the stability 
of the deep learning features. ADC,adenocarcinoma; PD-L1, programmed death-ligand 1; SUV, standardized uptake value; 
DLS, deeply learned score; MCC,H Lee Moffitt Cancer Center and Research Institute; NSCLC, non-small cell lung cancer; 
SCC,squamous cell carcinoma; SPH, Shanghai Pulmonary Hospital

https://dx.doi.org/10.1136/jitc-2020-002118
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SPH training, SPH validation, external MCC PD-L1 test 
and VA PD-L1 test cohorts, respectively.

Since histology was found to be significantly associ-
ated with PD-L1 status (p<0.01), a stratified analysis was 
conducted to assess the SResCNN model in predicting 
PD-L1 status by histology (online supplemental table S4). 
The results from these analyses indicated this model also 
performed well in both adenocarcinoma (ADC) and SCC 
lung cancers. Additionally, although there was significant 
negative association between DLS and EGFR mutation 
status, the DLS yielded high AUCs of 0.90 (95% CI: 0.84 
to 0.98), 0.87 (95% CI: 0.73 to 1.00), and 0.80 (95% CI: 
0.42 to 1.00) in patients with an EGFR mutation and also 
high, but not statistically significant different AUCs of 0.88 
(95% CI: 0.83 to 0.94, DeLong test p=0.71), 0.85 (95% CI: 
0.75 to 0.95, DeLong test p=0.61), and 0.82 (95% CI: 0.70 
to 0.93, DeLong test p=0.93) in patients with wild type 
of EGFR in the SPH training, SPH validation, and MCC 
PD-L1 test cohorts, respectively.

Performance of the PD-L1 DLS was further investigated 
by comparing its prognostic to that of PD-L1 IHC. Among 
85 patients in the MCC PD-L1 test cohort and 29 patients 
in the external VA test cohort that have PD-L1 IHC data, 
the DLS achieved AUCs of 0.70 (95% CI: 0.60 to 0.82) 
and 0.68 (95% CI: 0.47 to 0.89) in DCB prediction for 
MCC and VA, respectively. These were nearly identical to 
DCB prediction by PD-L1 IHC, which exhibited AUCs of 
0.67 (95% CI: 0.55 to 0.78, DeLong test p=0.45) and 0.69 
(95% CI: 0.49 to 0.90, DeLong test p=0.94), respectively. 
Among patients in the MCC PD-L1 test cohort, the HRs 
for PFS and OS in the high DLS subgroup (DLS ≥0.55) 
were 0.39 (95% CI: 0.22 to 0.69, p=0.001) and 0.26 (95% 
CI: 0.11 to 0.62, p=0.002), which had small difference of 
0.048 (95% CI: 0.001 to 0.18) and 0.038 (95% CI: 0.00 
to 0.13) compared with that of PD-L1-positive group 
(HR for PFS: 0.42 (95% CI: 0.26 to 0.73, p=0.002); HR 
for OS: 0.30 (95% CI: 0.14 to 0.64, p=0.002)), respec-
tively. Similar results were observed among the external 

VA test cohort where the difference between the HRs of 
high DLS (HR=0.35 (95% CI: 0.12 to 1.06, p=0.063)) and 
positive IHC-based PD-L1 status (HR=0.21 (95% CI: 0.060 
to 0.77, p=0.018)) for PFS was as small as 0.14 (95% CI: 
0 to 0.69). The HRs of high DLS for OS was 0.26 (95% 
CI: 0.079 to 0.87, p=0.029), which had also small differ-
ence of 0.056 (95% CI: 0 to 0.22) compared with that of 
positive IHC-based PD-L1 status with HR of 0.21 (95% CI: 
0.057 to 0.76, p=0.018). Therefore, the ability of the DLS 
and IHC metrics was indistinguishable in their ability to 
predict PFS and OS in response to ICI.

Regarding the stability of the DLS, though accurate 
segmentations were not needed, radiologists had to delin-
eate a rough ROI that contained the tumors and some 
surrounding tissue. To investigate the effect of the minor 
differences between the different radiologists in selecting 
the rough ROIs, the ROIs of the SPH validation patients 
(n=116 cases) were generated by two radiologists, and two 
DLSs were obtained accordingly. The ICC of these two 
DLSs was as high as 0.85 (95% CI: 0.80 to 0.90, p<0.001). 
Further, similar bootstrapped mean values of the DLSs 
were found across the five patient cohorts (online supple-
mental figure S7).

The resulting DLSs of PET-based SResCNN model and 
CT-based SResCNN model, respectively, achieved AUCs 
of 0.81 and 0.78 in the training cohort, 0.73 and 0.70 
in the validation cohort, which were significantly worse 
(DeLong test p<0.001) than those generated using the 
hyper-images.

Clinical prognostic validation of DLS in ICI treatment
The DLS in the patients experiencing DCB was signifi-
cantly higher compared with those who did not in both 
the MCC ICI-treated retrospective (0.54 vs 0.43, p<0.001) 
and prospective (0.57 vs 0.45, p=0.025) cohorts. The 
AUCs of the DLS to identify the DCB patients were 0.70 
(95% CI: 0.63 to 0.77, p<0.001) and 0.72 (95% CI: 0.62 
to 0.84, p=0.014) in the retrospective and prospective 

Figure 3  Performance of the DLS in predicting PD-L1 status. (A) The distribution of DLS between PD-L1-positive (+) and 
PD-L1-negative (−) groups in SPH training, SPH validation, and external MCC PD-L1 test cohorts. (B) The receiver operating 
characteristic curves of DLS and SUVmax in SPH training, SPH validation, and external MCC PD-L1 test cohorts. (C) The 
quantitative performance metrics in SPH training, SPH validation, external MCC PD-L1 test, and external VA test cohorts. 
ACC,accuracy; AUC, area under receiver operating characteristics curve; DLS, deeply learned score; PD-L1, programmed 
death-ligand 1; SUV, standardized uptake value; MCC,H Lee Moffitt Cancer Center and Research Institute; SEN,sensitivity; 
SPEC, specificity; SPH, Shanghai Pulmonary Hospital; VA, James A Haley Veterans’ Administration.
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patients (figure  4A,B), respectively. Similar results were 
obtained in the external VA test cohort with an AUC of 
0.70 (95% CI: 0.52 to 0.88, p=0.040) (figure 4C).

For the retrospective patients, the PFS and OS were 
significantly longer among patients with high DLS (≥0.55) 
versus patients with low DLS (PFS: HR=0.41 (95% CI: 0.25 
to 0.67, p=0.001); OS: HR=0.48 (95% CI: 0.25 to 0.91, 
p=0.024); figure 4A). Among patients with high DLS, the 
median PFS and OS were 15.80 months and 27.60 months 
compared with 5.37 months and 19.77 months for patients 
with low DLS (PFS: p<0.001; OS: p=0.021). Similar results 
were also observed in the prospective patients with high 
to low DLS ratio-based HRs of 0.38 (95% CI: 0.18 to 0.85, 
p=0.019) and 0.13 (95% CI: 0.033 to 0.49, p=0.003) for 
PFS and OS, respectively (figure 4B). High DLS patients 

had a longer median PFS of 14.33 months compared with 
5.00 months in the low DLS patients (p<0.001). Notably, 
a median time to an OS event was not reached in the high 
DLS group and was 11.23 months in the low DLS group 
(p<0.001). The external VA test patients further validate 
the prognostic value of DLS with HRs of 0.35 (95% CI: 
0.12 to 0.99, p=0.047) and 0.23 (95% CI: 0.07 to 0.72, 
p=0.020) for PFS (9.30 vs 2.37 months, p=0.038) and OS 
(15.53 vs 4.93 months, p=0.007), respectively (figure 4C).

Multivariable analysis for clinical outcomes prediction
Univariable logistic and Cox regression analyses of the 
clinical characteristics (online supplemental tables S5–
S8) and gene mutation showed that none of three gene 
mutations were associated with clinical outcome and that 

Figure 4  Performance of the DLS in prognosis prediction. (A) The ROC curve of DLS in DCB prediction, and the PFS and 
OS relative to the DLS (DLS cutoff: 0.55) in the retrospective MCC ICI-treated patients. (B) The ROC curve of DLS in DCB 
prediction, and the PFS and OS relative to the DLS (DLS cutoff: 0.55) in the prospective MCC ICI-treated patients. (C) The ROC 
curve of DLS in DCB prediction, and the PFS and OS relative to the DLS (DLS cutoff: 0.55) in the external VA test patients. P 
value was from log rank test. AUC, area under the receiver operating characteristic curve; DCB, durable clinical benefit; DLS, 
deeply learned score; HDLS, high DLS; ICI, immune checkpoint inhibitor; LDLS, low DLS; MCC,H Lee Moffitt Cancer Center 
and Research Institute; OS,overall survival; PFS, progression-freesurvival; ROC, receiver operating characteristic; VA, James A 
Haley Veterans’ Administration.

https://dx.doi.org/10.1136/jitc-2020-002118
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patients with lower ECOG status and ADC showed signifi-
cantly longer OS and PFS. Stratified analyses by histology 
and ECOG performance status were thus performed to 
investigate the ability of DLS to predict outcomes in these 
subgroups. Among patients with ADC, the DCB rates 
were 91.3% and 100% in patients with high DLS versus 
50.88% and 62.5% in patients with low DLS in both retro-
spective and prospective cohorts (p<0.001), respectively 
(figure 5). Among SCC patients, though the DCB rates 
were lower compared with ADC, the patients with higher 
DLS still had a significantly higher DCB rates in both 
retrospective and prospective cohorts. Congruously, the 
PFS and OS of high DLS group were also longer than the 
low DLS group in both ADC and SCC subgroups (online 
supplemental table S9). The results of the stratified anal-
ysis based on ECOG status (online supplemental table 
S10) also showed that low DLS was still associated with 
poor outcomes among patients with high ECOG status 
(≥1). The above results demonstrated the added value of 

DLS to the clinical prognostic markers in more accurate 
quantitative prognosis prediction.

Multivariable logistic regression and Cox proportional 
hazards regression analyses were conducted to adjust 
for potential confounding variables. Models including 
DLS, histology, and ECOG status were developed using 
the MCC ICI-treated retrospective cohort, which demon-
strated high performance statistics (online supplemental 
table S11 and figure S8) with C-indices of 0.87 (95% CI: 
0.83 to 0.92, p<0.001) and 0.82 (95% CI: 0.72 to 0.92, 
p<0.001) in DCB prediction, 0.73 (95% CI: 0.68 to 0.78, 
p<0.001) and 0.74 (95% CI: 0.67 to 0.87, p<0.001) in 
PFS prediction, 0.77 (95% CI: 0.71 to 0.84, p<0.001) and 
0.70 (95% CI: 0.50 to 0.87, p<0.001) in OS prediction for 
the MCC ICI-treated retrospective cohort and indepen-
dent MCC ICI-treated prospective cohort, respectively, 
showing better performance than clinical characteristics 
only models (including ECOG and histology) (p≤0.05, 
online supplemental table S12). These models also 

Figure 5  Stratification analysis of the performance of the DLS in prognosis prediction. (A) The DCB rates of the different 
subgroups of the MCC retrospective and prospective ICI-treated patients. (B) The PFS relative to the DLS and histology in the 
MCC retrospective and prospective ICI-treated patients. (C) The OS relative to the DLS and histology in the MCC retrospective 
and prospective ICI-treated patients. Note: HADC is short for HDLS ADC, meaning ADC patients with high DLS; LADC is short 
for LDLS ADC, meaning ADC patients with low DLS; HSCC is short for HDLS SCC, meaning SCC patients with high DLS; and 
LSCC is short for LDLS SCC, meaning SCC patients with low DLS, the high DLS versus low DLS defined by 0.55. P value was 
from log rank test. ADC, adenocarcinoma; DCB, durable clinical benefit; DLS, deeply learned score; ICI, immune checkpoint 
inhibitor; MCC, H Lee Moffitt Cancer Center and Research Institute; OS,overall survival; PFS, progression-freesurvival; SCC, 
squamouscell carcinoma.
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demonstrated high performance statistics with C-indices 
of 0.81 (95% CI: 0.70 to 0.93, p<0.001), 0.70 (95% CI: 
0.59 to 0.80, p<0.001), and 0.70 (95% CI: 0.59 to 0.81, 
p<0.001) in DCB, PFS, and OS prediction, respectively, 
in the independent external VA patients. The calibra-
tion curves of the different models on MCC ICI-treated 
retrospective cohort, independent MCC ICI-treated 
prospective cohort, and the external VA cohort provided 
in online supplemental figure S9 also showed good agree-
ments between the predictions and actual observation.

DISCUSSION
PD-L1 expression status based on IHC is currently used 
as a clinical decision-making tool to support the use of 
checkpoint inhibitors in patients with NSCLC. Because 
this relies on invasive biopsies, an alternative non-invasive 
method to predict PD-L1 status would be useful. In 
this study, we developed a deep learning model using 
standard-of-care PET/CT images to measure PD-L1 status 
non-invasively and showed that the DLS could discrim-
inate between positive and negative expression with an 
AUC of 0.89 in the SPH training cohort, 0.84 in the SPH 
validation cohort, and 0.82 in the two independent MCC 
PD-L1 and VA PD-L1 test cohorts. When the DLS was 
combined with clinical covariates and tested for clinical 
utility by identifying patients most likely to benefit to 
immunotherapy, we found high C-indices of 0.81–0.87 for 
predicting DCB, but somewhat attenuated C-indices of 
0.70–0.77 for the DLS to predict PFS and OS in the MCC 
ICI-treated retrospective and two independent MCC ICI-
treated prospective and VA ICI-treated cohorts.

Others have investigated the utility of radiomics as 
a non-invasive approach to predict PD-L1 expression 
status.33 34 The current work is a significant advance over 
these prior studies, which were limited to a single institu-
tion, did not validate against independent cohorts, and 
used cohorts with many early-stage cancers included that 
are not candidates for ICI therapy. Further, our statistical 
power outperformed both of these prior studies, which 
generated AUCs of 0.86 and 0.73, respectively. As an 
alternative to PD-L1 as a companion biomarker, it should 
be recognized that tumor mutational burden (TMB), 
defined as the number of mutations per DNA megabase, is 
also promising biomarker for predicting immunotherapy 
responses in patients with advanced stage lung cancer.35 
He et al36 developed and tested a non-invasive CT-based 
TMB predictor with 327 patients, which yielded high 
prognostic value in PFS and OS prediction of immuno-
therapy in patients with advanced NSCLC. Despite these 
findings, TMB is not yet a clinically approved diagnostic 
biomarker attributed in part to the lack of harmonization 
in panel-based TMB quantification, adequate methods 
to convert TMB estimates across different panels, and 
robust predictive cutoff points.37

We and others have developed radiomic models to 
predict lung cancer immunotherapy treatment response 
regardless of PD-L1 status.38–41 Some of these have higher 

accuracies than do the current model in predicting DCB, 
PFS, or OS following ICI therapy. However, it is important 
to note that there is a distinction between the develop-
ment and application of a completely new companion 
biomarker such as these, compared with one that 
provides an alternative assay to assess a currently approved 
companion biomarker as in the current study. We contend 
that a radiomic biomarker that predicts PD-L1 status will 
be more readily accepted into clinical practice compared 
with a radiomic biomarker that bypasses this known 
pathway. The current work is the first to develop a PD-L1 
radiomic signature and then to use this for response 
prediction. Additionally, these prior studies were mostly 
limited to CT and required explicit tumor segmentation, 
which can render the results to be operator dependent. 
By contrast, our study utilized deep learning, which did 
not require accurate tumor segmentation or hard-coded 
feature extraction and was conducted using rigorous 
training and validation in multiple cohorts from three 
institutions. The current study is the single largest multi-
institutional radiomic study population of patients with 
NSCLC to date treated with immunotherapy to predict 
PD-L1 status and subsequent treatment response using 
18F-FDG PET/CT.

In radiomics, it is critical to relate the findings to an 
underlying biology. One of the high-response areas of 
the middle layer of the SResCNN model recognized the 
necrotic region (activation_8_filter_8 in figure  2A,B) 
through the visualization,26 suggesting that some final 
discriminant deeply learned features originate from 
necrotic regions, which is consistent with the correla-
tion between necrosis and DLS and Jreige’s results.11 
This could be explained with the presence of hypoxia, 
which can lead to necrotic cell death42 and upregulate 
PD-L1 via hypoxia-inducible factor-1α.43 Additionally, 
peritumoral regions were also highlighted as informa-
tive (activation_8_filter_8 and positive/negative filter 
in figure  2C,D), which is supported by prior work that 
higher levels of PD-L1+ staining in cells of peritumoral 
areas.44 These findings revealed an advantage of deeply 
learned models, which can agnostically capture features 
from the tumor and peritumoral microenvironments. 
One possible reason for the significant better predic-
tive ability of the hyper-image compared with PET or 
CT alone may be these two important regions could be 
better and easier localized by utilizing both metabolic 
and anatomical information as reflected by PET and CT 
images, respectively.

We do acknowledge some limitations of this study. 
First, the PD-L1 prediction training data were limited to 
a single institution and EGFR mutations were highly prev-
alent in the Asian patient population at 40% compared 
with only 7% in whites. This concern is somewhat miti-
gated by the observation of no significant association 
between ethnicities and PD-L1 status,45 and the insignif-
icant different AUCs between mutated EGFR subgroups 
and wild-type EGFR subgroups. Second, compared with 
other PD-L1 level detection methods, such as ELISA,46 
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immunofluorescence,47 and flow cytometry,48 only IHC 
was used in this study to detect PD-L1 expression levels 
based on the recommendation in the NCCN Clinical Prac-
tice Guidelines,3 its ease of use, strong repeatability, and 
high accuracy.49 50 Comparison among different detec-
tion methods should be considered in future research 
although these other methods are also dependent on 
biopsy. Third, the patient cohorts were heterogeneous 
in terms of PET/CT image acquisition. However, this can 
be viewed as a strength, as this heterogeneity decreases 
the possibility of overfitting to a specific subset of tumors 
or imaging parameters, and thus will result in a model 
that is more robust and transportable. Fourth, the stage 
distribution was different between the SPH and the MCC 
cohorts, as the MCC cohort contained more advanced 
stage patients. To investigate this, we measure the DLS 
among the subset of SPH patients with advanced stage 
and obtained high AUCs of 0.90 (95% CI: 0.85 to 0.97, 
p<0.001), suggesting that stage does not dramatically 
affect the final DLS prediction.

CONCLUSION
In conclusion, an effective and stable deeply learned 
score to measure PD-L1 expression status non-invasively 
was identified and may serve as a prognostic biomarker 
to guide immunotherapy. Because images are routinely 
obtained and are not subject to sampling bias per se, we 
propose that the individualized risk assessment informa-
tion provided by these analyses may be useful as a future 
clinical decision support tool pending in larger prospec-
tive trials.
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