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Abstract

This paper introduces a sharp interface method to simulate fluid-structure interaction (FSI) 

involving rigid bodies immersed in viscous incompressible fluids. The capabilities of this 

methodology are benchmarked using a range of test cases and demonstrated using large-scale 

models of biomedical FSI. The numerical approach developed herein, which we refer to as an 

immersed Lagrangian-Eulerian (ILE) method, integrates aspects of partitioned and immersed FSI 

formulations by solving separate momentum equations for the fluid and solid subdomains, as in a 

partitioned formulation, while also using non-conforming discretizations of the dynamic fluid and 

structure regions, as in an immersed formulation. A simple Dirichlet-Neumann coupling scheme is 

used, in which the motion of the immersed solid is driven by fluid traction forces evaluated along 

the fluid-structure interface, and the motion of the fluid along that interface is constrained to match 

the solid velocity and thereby satisfy the no-slip condition. To develop a practical numerical 

method, we adopt a penalty approach that approximately imposes the no-slip condition along the 

fluid-structure interface. In the coupling strategy, a separate discretization of the fluid-structure 

interface is tethered to the volumetric solid mesh via stiff spring-like penalty forces. Our fluid-
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structure coupling scheme relies on an immersed interface method (IIM) for discrete geometries, 

which enables the accurate determination of both velocities and stresses along complex internal 

interfaces. Numerical methods for FSI can suffer from instabilities related to the added mass 

effect, but the computational tests indicate that the methodology introduced here remains stable for 

selected test cases across a range of solid-fluid density ratios, including extremely small, nearly 

equal, equal, and large density ratios. Biomedical FSI demonstration cases include results obtained 

using this method to simulate the dynamics of a bileaflet mechanical heart valve in a pulse 

duplicator, and to model transport of blood clots in a patient-averaged anatomical model of the 

inferior vena cava.
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1. Introduction

Predictive numerical models of fluid-structure interaction (FSI) have long been of major 

interest in the scientific computing community. Numerical simulations of FSI problems can 

be characterized by the solution approach taken for the coupled system of momentum 

equations associated with the fluid and structure. Partitioned formulations of FSI describe a 

fluid-structure system using distinct, non-overlapping fluid and structure regions. 

Commonly used numerical methods of this type include well-known arbitrary Lagrangian-

Eulerian (ALE) schemes [1, 2, 3, 4]. These formulations can yield outstanding resolution of 

flows and stresses up to the fluid-structure interface. Despite their high accuracy, however, 

ALE methods for FSI can be constrained by the difficulties of body conforming grid 

regeneration and mesh morphing, which can make it challenging to use these approaches to 

simulate systems involving very large structural displacements or deformations, and to 

handle transient contact between moving structures. Overset methods using overlapping 

Chimera grid systems are another class of partitioned methods that have been used to 

simulate moving rigid and flexible bodies [5, 6, 7, 8, 9]. In these approaches, a complex 

domain is decomposed into multiple geometrically simple overlapping grids, and boundary 

information is exchanged between these grids through interpolation. Immersed formulations 
of FSI [10, 11, 12, 13] are alternatives to body-fitted methods. Many immersed approaches 

to FSI have been developed, including Peskin’s immersed boundary (IB) method [10] and 

various sharp-interface IB methods [14, 15, 16, 17, 18, 19, 20]. These methods commonly 

describe the fluid in Eulerian form (i.e. using fixed physical coordinates) and the structure in 

Lagrangian form (i.e. using material coordinates attached to the structure), and they use non-

conforming discretizations along the fluid-structure interface. Because these methods avoid 

using body-conforming discretizations of the interface, they are readily able to treat models 

with very large structural deformations or displacements, and they facilitate simulations that 

fundamentally involve contact or near-contact between structures [21, 13]. The method 

presented herein, which we call an immersed Lagrangian-Eulerian (ILE) method, combines 

a partitioned approach to FSI with an immersed coupling strategy.
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The key challenge in developing immersed methods for FSI is linking the Eulerian and 

Lagrangian variables. Peskin’s IB methods, for example, regularize singular forces and 

stress discontinuities along the fluid-structure interface, which enables straightforward 

discretization approaches but can yield low accuracy in the flows and stresses near those 

interfaces. Efforts have been made to improve the accuracy of the method, including the 

development of formally second-order IB methods that realize second-order accuracy when 

applied to specific problems [22, 23] and IB methods that use Cartesian grid adaptive mesh 

refinement to enhance spatial resolution near fluid-structure interfaces [24, 25]. For general 

FSI problems, however, formally second-order accurate IB methods still only realize first-

order convergence rates [23, 25]. Motivated by the goal of improving the accuracy of the 

original IB method, the immersed interface method (IIM) was introduced by LeVeque and Li 

[26] for elliptic PDEs with discontinuous coefficients and singular forces. The IIM 

subsequently was extended to the incompressible Stokes [27, 28] and Navier-Stokes [29, 30, 

31] equations, and it was combined with level set methods to represent the interface [32, 33, 

34]. When applied to the incompressible Navier-Stokes equations, the IIM sharply imposes 

interfacial stress discontinuities through an extended finite difference discretization that 

accounts for jump conditions induced by singular forces at the interface. Modern IIMs use 

generalized Taylor series expansions to extend the physical jump conditions from the 

interface to the finite difference discretization in the Eulerian domain while permitting the 

use of efficient linear solvers based on the unmodified finite difference discretizations [35, 

31]. The IIM has been used to simulate various phenomena, including acoustics and 

elastodynamic wave propagation [36], fluid interfaces with insoluble surfactants [34], the 

osmotic swelling of a deforming capsule [37], and vesicle electrohydrodynamics [38, 39, 

40]. Other sharp interface FSI methods have been developed [14, 15, 16, 18, 19, 20], and 

most of these methods achieve higher-order accuracy by adopting approaches that are 

similar to body-fitted discretization methods, such as local modifications to the finite 

difference stencils, to allow for the accurate reconstruction of boundary conditions in the 

vicinity of the immersed interface.

Many different IB methods have been developed to treat FSI problems involving rigid 

bodies. Differences between these approaches are mainly related to the way that the rigidity 

constraint is enforced to account for the effect of the structure in the fluid region. Previous 

IB approaches to rigid-body FSI that use regularized coupling operators include Lagrange-

multiplier-based fictitious-domain methods [41, 42, 43, 44, 45], direct forcing IB methods 

[46, 47, 48], projection-based methods [49, 50, 51], immersed finite element methods [52, 

53], methods based on computing exact Lagrange multipliers for the rigidity constraint [54, 

55], penalty immersed boundary methods [56], immersed boundary lattice Boltzmann 

methods [57, 58, 59, 60], and level set based approaches [61, 62]. Sharp-interface 

approaches designed for rigid body FSI include embedded boundary methods [63, 64], cut-

cell methods [11, 65, 66], and the curvilinear immersed boundary method [16, 19]. Unlike 

the IB approach introduced by Peskin, these methods all solve the fluid equations in the 

exterior regions surrounding the immersed object. Of the sharp-interface IB methods 

considered here, immersed interface methods are the most similar to Peskin’s IB method 

because they treat thin interfaces that are fully immersed in fluid, which enables the use of 

fast Cartesian grid fluid solvers. IIMs have been developed for bodies with prescribed 
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motion [17, 67, 31, 68], but they are more commonly used for thin flexible interfaces [31, 

69, 70, 71, 72]. To our knowledge, the few IIM models that treat volumetric rigid structures 

do not simulate fluid-structure interaction per se, but instead prescribe the motion of the 

immersed body [31, 73, 67, 74, 75]. Xu and Wang used a feedback control to construct the 

singular force density [17, 73]. Recent work by some of us introduced an IIM for discrete 

surfaces described by a general finite element mesh to sharply resolve fluid dynamics for 

problems with prescribed motion [68]. The present study uses this method to develop a new 

sharp interface approach to rigid-body FSI.

The present ILE method introduces a partitioned approach to FSI with an immersed 

coupling strategy that sharply resolves flow features up to the fluid-structure interface. Like 

partitioned formulations, the present approach uses distinct momentum equations for the 

fluid and solid regions. However, like immersed methods, and unlike typical partitioned 

methods, our ILE approach uses a non-conforming discretization of the dynamic fluid-

structure interface that does not require any grid regeneration or mesh morphing to treat 

large structural motions. The fluid and solid subproblems are solved in a partitioned manner 

using independent, non-conforming discretizations and are coupled only through interface 

conditions. The ILE equations of motion are first introduced using an exactly constrained 

formulation that exactly imposes kinematic interface conditions through a Lagrange 

multiplier force distribution applied along the fluid-structure interface. Solving the exactly 

constrained equations would require the solution of an extended saddle-point system 

involving an exact Lagrange multiplier force along with the Eulerian velocity and pressure 

fields. Developing efficient linear solvers for such systems is challenging even for 

conventional IB formulations with regularized delta functions [54, 55]. Consequently, to 

obtain a practical numerical method, we next reformulate this scheme using a penalty 

approach that relaxes the kinematic constraint, and we use this penalty ILE method in all of 

our numerical tests. Specifically, our penalty formulation uses two representations of the 

fluid-structure interface, including a surface mesh and the boundary of a bulk volumetric 

structural mesh, that are connected by forces that impose kinematic and dynamic interface 

conditions. The dynamics of the volumetric structural mesh are driven by the exterior fluid 

traction obtained from solving the equations of fluid dynamics. The surface mesh moves 

according to the local fluid velocity and locally exerts an approximate Lagrange multiplier 

force distribution back to the fluid generated from stiff spring-like penalty forces that link 

the surface mesh to the boundary of its volumetric counterpart. At least formally, in the limit 

of infinite spring stiffness, the two interface representations become exactly conformal in 

their motion. Results demonstrate that this approach is able to control these discrepancies 

effectively, and for sufficiently large penalty spring stiffnesses, the penalty formulation has 

little impact on the computed dynamics. To discretize the jump conditions, we leverage our 

recently developed IIM for discrete surfaces [68], which allows us to impose stress jump 

conditions along complex interfaces within a Cartesian grid framework and to use fast 

structured-grid solvers for the incompressible Navier-Stokes equations. This IIM 

formulation describes fluid dynamics on both sides of the fluid-structure interface. However, 

only the fluid forces exerted by the “exterior” fluid have a physical effect on the structural 

dynamics, and the motion of the structure determines the fluid velocity at the fluid-structure 

interface.
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Our approach also can be viewed as a sharp implementation of the distributed Lagrange 

multiplier (DLM) technique first introduced by Glowinski, Patankar, and coworkers for 

immersed rigid structures [41, 42]. In the DLM approach to FSI, a Lagrange multiplier force 

field is introduced to impose the kinematic condition at the fluid-structure interface. In the 

DLM literature, the Lagrange multiplier field (either exact or approximate) has typically 

been smoothed using, e.g., via regularized delta functions like those used in Peskin’s IB 

method. From this standpoint, our approach is different from other sharp interface immersed 

methods, in which the velocity matching condition is imposed directly, for example, through 

velocity reconstruction [16] or through cut-cell approaches [15]. These approaches forgo 

Lagrange multipliers entirely and instead solve the fluid momentum equations only within 

the fluid subdomain. In contrast, immersed approaches, including DLM methods, typically 

extend the fluid domain into the solid domain, so that the fluid momentum equation is 

solved on the entire computational domain. The fluid velocity determined within the solid 

region can be different from the actual solid velocity, although volumetric DLM 

formulations can impose the constraint that the fictitious fluid velocity matches the solid 

velocity within the overlapping region occupied by the structure. Ultimately, however, it is 

necessary only for the fluid and solid velocities to match along the fluid-structure interface. 

To our knowledge, the present method is the first DLM-type formulation to sharply impose 

this constraint. In addition, the current scheme uses a constant-coefficient flow solver and 

yet can readily treat immersed bodies that are lighter than the ambient fluid because it only 

imposes the kinematic condition along the fluid-solid interface. This is in contrast to 

volumetric DLM schemes, such as the approach of Nangia et al. [76], which approximately 

constrains fluid and solid velocities to match in the extended fluid domain and allows for 

solid-fluid mass density ratios less than one only through the use of a variable-density fluid 

solver [77].

Instabilities due to artificial added mass effect have been observed in weakly coupled FSI 

schemes in which the fluid and solid equations are linked via explicit time stepping schemes. 

Such instabilities can occur if the mass density of the solid ρs is comparable to or less than 

the mass density of the fluid ρf. Added mass effect instabilities have been discussed in both 

sharp-interface IB-type methods for FSI [19, 78, 79] as well as body-fitted methods, 

including ALE methods for FSI [80, 81, 4, 82]. Various approaches, including subcycling or 

using modified coupling conditions, have been developed to maintain stability [19, 80, 83, 

84]. Strong coupling schemes, in which the governing equations for the fluid and solid 

subdomains are simultaneously integrated in time [85, 86, 87], have been shown to improve 

the stability of these FSI formulations. In one common strong coupling approach, solutions 

are transferred between the fluid and structure multiple times within each time step (i.e. 

through subiterations) until convergence is achieved in the forces and displacements [2, 46, 

88, 82]. Using subiterations substantially increases the computational cost per time step, 

however. Further, instabilities at low density ratios have still been reported in some situations 

even if using strong coupling [89, 90, 19]. Substantial work has been devoted to 

understanding the sources of these instabilities and to developing methods to overcome these 

instabilities [80, 91, 92, 84, 93, 83, 94]. We computationally examine the performance of the 

ILE method across a broad range of density ratios and, at least for the examples considered 

herein, we do not detect added mass-related instabilities. Specifically, as described in the 
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following, we are able to use a simple Dirichlet-Neumann coupling scheme [84, 93, 95] 

while achieving reasonable time step sizes and avoiding the use of subcycling [2, 46, 88] or 

other iterative techniques for models involving extremely small, nearly equal, equal, and 

large mass density ratios.

To assess the robustness and accuracy of the proposed algorithm, results obtained using our 

ILE method are compared to experimental and computational data from benchmarks widely 

used to test numerical methods for FSI [3, 96, 97, 98, 99, 100]. We consider test cases in two 

and three spatial dimensions involving both smooth and sharp geometries, in various fluid 

conditions with Reynolds numbering reaching up to Re = 1147, and with different numbers 

of translational and rotational degrees of freedom. Finally, cases demonstrating the 

application of this methodology to biomedical models are presented, including to simulating 

the dynamics of a bileaflet mechanical heart valve in a pulse duplicator with a peak 

Reynolds number of 22600, and to modeling the transport of blood clots in a patient-

averaged anatomical model of the inferior vena cava with a peak Reynolds number of 1500.

2. Continuous Equations of Motion

This section outlines our ILE approach to fluid-structure interaction. Our methodology 

builds on a conventional partitioned formulation for FSI, detailed in Sec. 2.1, while 

leveraging a coupling scheme based on the immersed interface method.

2.1. Partitioned formulation of FSI

Typical partitioned formulations describe the fluid-structure system occupying a 

computational domain Ω via moving fluid and structure subdomains, respectively Ωt
f and Ωt

s

and indexed by time t, so that Ω = Ωt
f ∪ Ωt

s; see Fig. 1. The regions meet along the fluid-

structure interface, Γt
fs = Ωt

f ∩ Ωt
s. Fixed physical coordinates are x ∈ Ω. We describe the 

structural kinematics in Lagrangian form via reference coordinates X ∈ Ω0
s  attached to the 

solid, and we use the motion map ξ : (Ω0
s , t) Ωt

s to determine the physical position of a 

solid material point X at time t. In the absence of additional loading terms, the equations of 

motion are

ρf
Du
Dt (x, t) = ∇ ⋅ σf(x, t), x ∈ Ωt

f, (1)

∇ ⋅ u(x, t) = 0, x ∈ Ωt
f, (2)

∂ξ
∂t (X, t) = u(ξ(X, t), t), X ∈ Γ0

fs, (3)

d
dt∫Ω0

s ρs
∂ξ
∂t (X, t)dX = ∫Γtfs

τf(x, t) da, (4)
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d
dt∫Ω0

s (X − Xc) × (ρs
∂ξ
∂t (X, t)) dX = ∫Γtfs

(x − ξc(t)) × τf(x, t) da, (5)

in which u(x, t) is the fluid velocity, ρf is the mass density of the fluid, ρs is the mass density 

of the structure, ξc(t) and Xc are, respectively, the center of mass of the structure in the 

current and reference configurations, σf(x, t) is the fluid stress tensor,

σf(x, t) = − p(x, t)l + μf(∇u(x, t) + ∇uT(x, t)), x ∈ Ωt
f, (6)

p(x, t) is the fluid pressure, μf is the dynamic viscosity of the fluid, τf(x, t) = σf(x, t) ⋅ n(x, t) 

is the fluid traction, and n(x, t) is the unit normal vector pointing into Ωt
f along Γt

fs. Eq. (1) 

describes the fluid momentum in Eulerian form, Eq. (2) is the incompressibility constraint, 

Eq. (3) is the kinematic condition along the fluid-structure interface, which implies the no-

slip and no-penetration conditions, and Eqs. (4) and (5) describe the dynamics of the linear 

and angular momentum of the immersed rigid body in Lagrangian form. Eqs. (4) and (5) 

also account for the dynamic conditions at the fluid-structure interface because the rigid 

body forces are balanced by the fluid traction.

2.2. Immersed Lagrangian-Eulerian (ILE) formulation

We now introduce an immersed formulation of FSI that describes the same physical model 

as the partitioned formulation detailed in Sec. 2.1. As in that formulation, the computational 

domain is Ω, with x ∈ Ω indicating fixed physical coordinates. As in Sec. 2.1, the structural 

kinematics are described in Lagrangian form via reference coordinates X ∈ Ω0
s  attached to 

the solid, and we use the same motion map ξ : (Ω0
s , t) Ωt

s to determine the physical 

position of solid material point X at time t. In the immersed formulation, however, we solve 

the incompressible Navier-Stokes equations on the full computational domain Ω, including 

both the fluid and solid subdomains. We split the computational domain Ω into an exterior 

fluid region Ωt
f, +  and an interior fluid region Ωt

f, − , each parameterized by time t, with 

superscripts ‘+’ (‘−’) indicating values obtained from the ‘exterior’ (‘interior’) side of the 

fluid-structure interface. Using this notation, we have Ωt
f, − ≡ Ωt

s and Γt
fs = Ωt

f, + ∩ Ωt
f, − . 

We extend the definition of the fluid velocity u, pressure p, viscosity μf and stress tensor σf 

to hold in the entire computational domain Ω, so that the extended fluid stress tensor σf is

σf(x, t) = − p(x, t)l + μf(∇u(x, t) + ∇uT(x, t)), x ∈ Ω = Ωt
f ∪ Ωt

s . (7)

Our approach applies a singular surface force density along the fluid-structure interface to 

impose the kinematic constraint, which implies a discontinuity in the traction associated 

with the extended fluid stress, σf, along Γt
fs. A jump in a scalar field ψ(x, t) at position x = 

ξ(X, t) along the interface is denoted by

ψ(x, t) = lim
ϵ 0

ψ(x + ϵn(x, t), t) − lim
ϵ 0

ψ(x − ϵn(x, t), t) = ψ+(x, t) − ψ−(x, t), (8)
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in which ⟦⋅⟧ indicates the jump in the value across the interface, n(x, t) is the outward unit 

normal vector (into the exterior fluid region) along Γt
fs, and ψ+(x, t) and ψ−(x, t) are the 

limiting values approaching the interface position x from the exterior fluid region Ωt
f, +  and 

interior fictitious fluid region Ωt
f, − , respectively. By considering the jump in the extended 

fluid stress, the governing equations are

ρf
Du
Dt (x, t) = − ∇p(x, t) + μf ∇2u(x, t), x ∈ Ω, (9)

∇ ⋅ u(x, t) = 0, x ∈ Ω, (10)

σf(ξ(X, t), t) ⋅ n(ξ(X, t), t) = − J−1(X, t)F (X, t), X ∈ Γ0
fs, (11)

∂ξ
∂t (X, t) = u(ξ(X, t), t), X ∈ Γ0

fs, (12)

d
dt∫Ω0

s ρs
∂ξ
∂t (X, t)dX = ∫Γtfs

τf
+(x, t)da, (13)

d
dt∫Ω0

s (X − Xc) × (ρs
∂ξ
∂t (X, t))dX = ∫Γtfs

(x − ξc(t)) × τf
+(x, t)da, (14)

in which J(X, t) is the surface Jacobian determinant [68], F(X, t) is an interfacial surface 

force density that is the Lagrange multiplier to maintain the kinematic condition for the 

constraint in Eq. (12) applied along the fluid-solid interface Γt
fs, and τf

+(x, t) is the exterior 

fluid traction. Importantly, Eqs. (13) and (14), which account for the dynamic interface 

condition, imply that only the fluid momentum and stresses from the exterior fluid subregion 

have any physical effect in driving the dynamics of the structure.

The jump discontinuity in Eq. (11) can be decomposed into discontinuities in the pressure 

and viscous stress, which in current coordinates are

p(x, t) = J−1(ξ−1(x, t), t) F (ξ−1(x, t), t) ⋅ n(x, t), x ∈ Γt
fs, (15)

μf
∂u
∂n (x, t) = − (l − n(x, t) ⊗ n(x, t))J−1(ξ−1(x, t), t) F (ξ−1(x, t), t), x

∈ Γt
fs .

(16)

Higher order jump conditions, including those associated with the first normal derivative of 

the pressure and the second normal derivative of the velocity, can be also derived [101, 35].
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2.3. A penalty approach to the ILE formulation

The formulation introduced in Sec. 2.2 requires the solution of a saddle-point system that 

couples the Eulerian and Lagrangian variables [54]. To develop a practical numerical 

method, we relax the kinematic constraint, Eq. (12), by introducing two representations of 

the fluid-structure interface and applying penalty forces to penalize displacements between 

the two representations. This penalty method determines an approximate Lagrange 

multiplier force instead of solving for the Lagrange multiplier to exactly impose the 

condition [54]. Specifically, along with the mapping ξ(X, t) that determines the kinematics 

of the structure, we introduce an explicit representation of the fluid-structure interface that is 

parameterized via χ(X, t) and that moves with the fluid, so that ∂χ(X, t)/∂t = u(χ(X, t), t); 
see Fig. 2. In this study, we use a penalty formulation similar to one proposed by Goldstein 

et al. [102], in which the rigidity constraint is approximately imposed through a linear 

spring-like force via

F (X, t) = κ(ξ(X, t) − χ(X, t)), X ∈ Γ0
fs . (17)

Here, κ is the spring stiffness penalty parameter. This force penalizes deviations from the 

constraint ξ(X, t) = χ(X, t) and, in the discretized equations, acts to ensure that the 

volumetric and surface meshes are at least approximately conformal in their motion. Note 

that it is possible to control the discrepancy between the two configurations because as κ → 
∞, the formulation exactly imposes the constraint that the two interfaces representations 

move together.

2.4. Rigid body dynamics

The general formulation for description of kinematics of a rigid body includes both 

translational and rotational motions of material points in the body. The kinematics in the 

current configuration coordinates of the solid can be written in terms of reference 

coordinates as

ξ(X, t) = ℚ(t) (X − Xc) + Xc + dc(t), (18)

in which Xc is the position of the center of mass in the reference coordinates, dc(t) is the 

displacement of the center of mass, and ℚ(t) is the rotation matrix. The rotation matrix ℚ(t)
can be expressed using the Euler angles, ϕ = ϕ(t), θ = θ(t), and ψ = ψ(t), as

ℚ(t) =

cos(ψ)cos(θ) −sin(ϕ)cos(ϕ) + cos(ψ)sin(θ)sin(ϕ) sin(ϕ)sin(ϕ) + cos(ψ)sin(θ)cos(ϕ)
sin(ψ)cos(θ) cos(ϕ)cos(ϕ) + sin(ψ)sin(θ)sin(ϕ) −cos(ϕ)sin(ϕ) + sin(ψ)sin(θ)cos(ϕ)

−sin(θ) cos(θ)sin(ϕ) cos(θ)cos(ϕ)

,

(19)
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here using the x-y-z convention in the rotation order. Following the approach of Akkerman 

et al. [103], we avoid explicitly forming the Euler angles except for cases where there is only 

one rotational degree of freedom. As will be presented in Sec. 3, in the time integration of 

the rigid body dynamics, the rotation matrix is an additional problem unknown that is 

integrated in time along with the displacement and rotational degrees of freedom. This 

significantly reduces the complexity of the calculation of the rotation angle for three degree 

of freedom (3-DOF) problems in two spatial dimensions and six degree of freedom (6-DOF) 

problems in three spatial dimensions. Using Eq. (18), the rigid body displacement and 

velocity are respectively defined as

d(X, t) = (ℚ(t) − l)(X − Xc) + dc(t) (20)

and

ḋ(X, t) = ℚ̇(t)(X − Xc) + ḋc(t) . (21)

Denoting the rigid body center of mass in the current configuration as ξc(t) = ξ(Xc, t) = Xc + 

dc(t), Eq. (21) becomes

ḋ(X, t) = ℚ̇(t)ℚ−1(t)(ξ(X, t) − ξc(t)) + ḋc(t) = Ω(t)(ξ(X, t) − ξc(t)) + ḋc(t), (22)

in which

Ω(t) = ℚ̇(t)ℚ−1(t) =
0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

(23)

is the skew-symmetric angular velocity matrix. The pseudovector ω(t) = (ω1(t), ω2(t), ω3(t)) 
can be extracted from this tensor matrix. Using the angular velocity vector, the rigid body 

velocity field in Eq. (22) can be re-written in terms of ω(t) as,

ḋ(X, t) = ω(t) × (ξ(X, t) − ξc(t)) + ḋc(t) . (24)

For a three-dimensional problem, the three components of the translational velocity of the 

center of mass d
.
c(t), together with the three components of the angular velocity ω(t), form 

the six degrees-of-freedom that completely determine the kinematics of the rigid body.

Linear and angular momentum conservation in the rigid body are described by a system of 

six ordinary differential equations,

d
dt (mḋc(t)) = F net(t), (25)

d
dt (J(t)ω(t)) = T net(t), (26)
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in which m is the mass of the solid object, Fnet(t) is the global force including the sum of all 

the forces exerted on the rigid body, and Tnet(t) is the net torque vector. J(t) is the inertia 

tensor of the solid body in the current configuration, which is defined in terms of the inertia 

tensor in the reference configuration, J0, via

J(t) = ℚ(t) J0 ℚT(t), (27)

in which J0 is

J0 = ∫Ω0
s ρs(X − Xc) ⋅ (X − Xc)ldX − ∫Ω0

s ρs(X − Xc) ⊗ (X − Xc)dX . (28)

In our fluid-structure interaction framework, the net force and torque vectors in Eqs. (25) 

and (26) are computed as

F net = (ρs − ρf)V g + ∫Γtfs
τf

+(x, t) da, (29)

T net = ∫Γtfs
(x − ξc(t)) × τf

+(x, t) da, (30)

in which V is the volume of the solid object, g is the gravity vector, and τf
+(x, t) is the 

exterior fluid traction vector exerted on the solid object by the fluid. In the penalty 

formulation of the ILE method, quantities on the left hand sides of Eqs. (29) and (30) are 

evaluated on Γt
fs, which moves with the local fluid velocity.

3. Discrete Equations of Motion

This section introduces numerical methods for the penalty formulation of the immersed 

Lagrangian-Eulerian method detailed in Sec. 2.3. This approach leverages our immersed 

interface method (IIM) for discrete surface representations [68]. We include only the key 

aspects of this method; for additional details and benchmarking studies of problems with 

prescribed motion, see Kolahdouz et al. [68]. Standard methods are used for the rigid body 

dynamics. A second order accurate Strang time step splitting approach [104] is used to 

obtain systems of equations that can be treated via efficient linear solvers.

3.1. Eulerian discretization

The incompressible Navier-Stokes equations are discretized on an adaptively refined 

Cartesian grid using a staggered-grid finite difference discretization [105] in which the 

pressure is approximated at the centers of the Cartesian grid cells and the components of the 

velocity are approximated at the centers of the edges (in two spatial dimensions) or faces (in 

three spatial dimensions) of the grid cells. Standard compact second-order accurate 

differencing schemes are used for the divergence, gradient, and Laplace operators. The 

discrete divergence of the velocity D ⋅ u is evaluated at the cell centers, whereas the discrete 
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pressure gradient Gp and the components of the discrete Laplacian of the velocity Lu are 

evaluated at the cell edges (in two spatial dimensions) or faces (in three spatial dimensions). 

For the nonlinear advection terms, a staggered-grid version [106, 105] of the xsPPM7 

variant [107] of the piecewise parabolic method (PPM) [108] is used. Physical boundary 

conditions are prescribed along the boundaries of the computational domain Ω as described 

previously [105, 109]. Adaptive computations use a discretization approach described by 

Griffith [109] that employs Cartesian grid adaptive mesh refinement (AMR).

To account for the jump conditions along the fluid-solid interface that occur in the ILE 

formulation, we modify the definitions of Gp and Lu for those stencils that cross the 

immersed interface. Using generalized Taylor series expansions [29, 35], it can be shown 

that if the interface cuts between two Cartesian grid points at location xo = (xo, yo, zo), such 

that xi,j,k ≤ xo < xi+1,j,k, with xi,j,k ∈ Ωf,−, and xi+1,j,k ∈ Ωf,+, then for a piecewise 

differentiable quantity ψ, we have

∂ψ
∂x (xi + 1

2, j, k) = ψi + 1, j, k − ψi, j, k
Δx + sgn{nx}

Δx ∑
m = 0

2 (d+)m

m!
∂mψ
∂xm x∘

+ O(Δx2), (31)

∂2ψ
∂x2 (xi, j, k) = ψi + 1, j, k − 2ψi, j, k + ψi − 1, j, k

Δx2 + sgn{nx}
Δx2 ∑

m = 0

3 (d+)m

m!
∂mψ
∂xm x∘

+ O(Δx2),
(32)

in which Δx is the grid spacing in the x direction, ψi,j,k = ψ(xi,j,k), d+ = xi+1,j,k − xo > 0, and 

nx is the x-component of the normal vector n = (nx, ny, nz) at the intersection point xo. The 

full implementation of this approach to the three-dimensional incompressible Navier-Stokes 

equations, including the application of the jump corrections to the stencils of the pressure 

and the viscous terms and algorithms for identifying intersections between the finite 

difference stencils and the discrete interface representation, is detailed in our earlier work 

[68].

3.2. Lagrangian discretization

Let Tℎ be a triangulation of Ω0
s , the reference configuration of the volumetric rigid body, 

composed of elements Ue such that Tℎ = ∪e Ue, in which e indexes the mesh elements. We 

take {Xl}l = 1
M  to be the positions of the M nodes of the mesh in the reference configuration, 

{ξl(t)}l = 1
M  to be the current positions of the nodes, and {ϕl(X)}l = 1

M  to be the corresponding 

interpolatory nodal (Lagrangian) basis functions. A continuous description of the 

configuration of the structure is defined by

ξℎ(X, t) = ∑
l = 1

M
ξl(t)ϕl(X), X ∈ Ω0

s . (33)
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The configuration of the fluid-structure interface representation that moves with the fluid is 

described by the mapping χ : (Γ0
fs, t) Γt

fs. To obtain a discrete representation of this 

interface, we use a surface mesh that corresponds to the restriction of the volumetric solid 

mesh to ∂Ω0
s ≡ Γ0

fs. For the discrete representation of the fluid-structure interface we have

χℎ(X, t) = ∑
l = 1

M
χl(t)ϕl(X), X ∈ Γ0

fs, (34)

except that in practice, we only need to evaluate this sum over the lower-dimensional subset 

of nodes that are located on surface mesh, and not over all of the nodes in the volumetric 

representation. The reason is that the interpolatory (nodal) basis functions associated with 

interior nodes vanish on the surface. Similarly, the surface force density is determined by

Fℎ(X, t) = ∑
l = 1

M
F l(t)ϕl(X), X ∈ Γ0

fs . (35)

Again, this sum only needs to be evaluated using the Mfs surface nodes. In an 

implementation, it is straightforward to use separate data structures for the volumetric and 

surface structural meshes. For the remainder of the paper, we adopt the convention that all 

computations involving the surface representation are performed using only a surface mesh 

with appropriate nodal degrees of freedom and surface-restricted basis functions.

Stress jump conditions are imposed by evaluating the correction terms from the interfacial 

forces and interface configuration (i.e. generalizations of Eqs. (31) and (32)). Geometrical 

quantities, including the surface normals and surface Jacobian determinant, that are needed 

by the IIM discretization, are obtained by directly differentiating Eq. (33). Note, however, 

that the standard nodal basis functions are C0 but not C1 at element boundaries, and so 

quantities that are obtained in terms of ∂χh/∂X are discontinuous in both the reference and 

current configurations. In particular, the pointwise jump conditions determined from the 

mesh geometry and the surface Jacobian J are generally discontinuous between the elements. 

Following the approach introduced in our prior work [68], we obtain a continuous 

approximation to the jump conditions through the L2 projection. Briefly, given a function 

ψ ∈ L2(Γ0
fs), its L2 projection Phψ onto the subspace Sℎ = span{ϕl(X)}l = 1

Mfs
 is defined by 

requiring Phψ to satisfy

∫Γ0
fs (ψ(X) − Pℎψ(X)) ϕl(X)dA = 0, ∀l = 1, …, Mfs . (36)

The L2 projection of a vector-valued quantity is determined component-wise. Because the 

L2 projection is defined via integration, the function ψ does not need to be continuous or 

even to have well-defined nodal values. By construction, however, Phψ will inherit any 

smoothness provided by the subspace Sh. In particular, for C0 Lagrangian basis functions, 

Phψ will be at least continuous. In our numerical scheme, we separately compute the 
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projection of the normal and tangential components of the surface force per unit current 

area, J−1Fh(X, t), onto Sh, as needed to specify the conditions for the pressure and the 

viscous stress. We drop the subscript “h” in the remainder of the paper to simplify notation. 

To solve for the projected jump conditions, linear systems of equations involving the mass 

matrix ℳ need to be solved, in which ℳ has components ℳkl = ∫ ϕkϕl dA. Eq. (36) is 

evaluated using seventh-order Gaussian quadrature. Notice that these projections are 

computed only along the fluid-solid interface and involve only surface degrees of freedom. 

Consequently, the computational cost of evaluating these projections is asymptotically 

smaller than the solution of the fluid equations. Note also that similar to the conventional IB 

method, a force-spreading operator S = S[χ] can be defined to evaluate and apply the 

correction terms S[χ]F  to the Eulerian discretization via a discrete Eulerian force density 

f = S[χ]F  [68].

The velocity of the fluid-structure interface representation that moves with the fluid is 

determined by evaluating the Eulerian velocity u(x, t) on the interface. As detailed 

previously [68], it is possible to interpolate the discretized Eulerian velocity field u to the 

Lagrangian interface mesh using a corrected bilinear (or, in three spatial dimensions, 

trilinear) interpolation scheme that accounts for the known discontinuities in ∂u/∂n. In 

general, however, the basic interpolation scheme will produce an interface velocity field that 

is not in the space of the nodal basis functions, which implies that it cannot be used directly 

to update the configuration of the interface. To obtain a suitable surface mesh velocity field, 

we project the interpolated velocity field onto the space spanned by the nodal basis functions 

using Gaussian quadrature. This procedure implicitly defines a velocity-restriction operator 

J = J[χ, F ], so that U = J[χ, F ]u.

The FSI coupling approach used herein crucially relies on the accurate evaluation of the 

exterior fluid traction. This requires evaluating the exterior fluid pressure and exterior 

viscous shear stress. To evaluate the exterior pressure at a position x ∈ Γt
fs, we use

pℎ
+(x, t) = p(x, t) + ℐ[p](x−, t), (37)

in which p− = ℐ[p](x−, t) is the interior pressure interpolated to a position x− away from the 

interface in the opposite direction of the normal vector n and at a distance equal to 1.3 times 

the diagonal size of one grid cell. This factor has been chosen on an empirical basis [68]. 

Here, ℐ is the unmodified bilinear (or trilinear) interpolation operator involving quantities 

on one side of the interface. To evaluate the exterior wall shear stress, a one-sided 

approximation to the normal derivative of the velocity is calculated using the same 

interfacial velocity reconstruction procedure that is used to determine the interface velocity 

along with the velocity value at a neighboring location in the direction of the normal vector 

x+. As with the pressure, unmodified bilinear (or trilinear) interpolation is used to obtain the 

velocity away from the interface. A one-sided finite difference formula is used to calculate 

the normal derivative,
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∂u
∂n ℎ

+
(x, t) = ℐ[u](x+, t) − u(x, t)

ℎ
, (38)

in which the distance ℎ is chosen to be slightly larger than the diagonal size of the Cartesian 

mesh (1.05 times the diagonal size), so that regular bilinear (or trilinear) interpolation can be 

used to evaluate ℐ[u](x+, t, ℎ) ensuring that the interpolation only uses values on one side of 

the interface. It is possible to use a second-order formula with a three-point stencil which 

requires interpolating an additional point in the normal direction, but preliminary numerical 

experiments (data not shown) suggest the computation using only two points is more stable. 

Moreover, as shown previously [68], this simple scheme is adequate to achieve a point-wise 

first-order accurate approximation to the wall shear stress. Note that as with velocity 

interpolation, the pressure and wall shear stress can be evaluated at arbitrary locations along 

the interface. We also use a surface-restricted L2 projection to obtain nodal values of these 

interfacial quantities.

3.3. Time integration scheme

In advancing from time step n at time t to time step n + 1 at time t + Δt, we define a vector of 

variables Υ that includes all of the Eulerian and Lagrangian quantities that need to be 

updated as Υ = [u, p, χ, dc, dc, ω, ℚ, J]. We use the second order Strang splitting scheme 

[104], in which within three steps we: 1) solve the rigid body dynamics equations over a half 

time step Δt/2, treating the fluid traction as constant in time; 2) solve the IIM/FSI equations 

over a full time step Δt, treating the configuration of the solid as constant in time; and 3) 

solve the rigid body dynamics equations over a final half time step Δt/2, treating the fluid 

traction as constant in time. The details of the time stepping for the rigid body dynamics 

equations, the IIM/FSI equations, and the overall algorithm are given below.

3.3.1. Rigid body time integration scheme—Although we ultimately employ a time 

step splitting approach that advances the rigid body configuration in two half-steps, to 

simplify the discussion, the approach for a fixed time step size Δt is detailed here. Denote by 

ℒΔt the action of the Lagrangian rigid body dynamics solver over the time increment Δt that 

acts on a solution vector Υ. This solution vector includes all of the Eulerian and Lagrangian 

variables, but only advances the volumetric structural variables dc, d
.
c, ω, ℚ, and J while 

keeping the remaining variables fixed. Briefly, discretizations of Eqs. (26)–(27) are solved 

over the time increment Δt to obtain dc
n + 1, d

.
c
n + 1, ωn+1,k, and ℚn + 1, k via

mḋc
n + 1 − ḋc

n

Δt = ∫Γtfs
τf

+(x) da, (39)

dc
n + 1 − dc

n

Δt = 1
2(ḋc

n + 1 + ḋc
n), (40)
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ℚn + 1, kJ0(ℚn + 1, k)Tωn + 1, k − ℚnJ0(ℚn)Tωn

Δt = ∫Γtfs
(x − ξc) × τf

+(x) da, (41)

ℚn + 1, k − ℚn

Δt = 1
4(Ωn + 1, k + Ωn)(ℚn + 1, k + ℚn) . (42)

Eqs. (41) and (42) can be solved through a few subiterations to obtain the new rotation 

matrix ℚn + 1 and the angular velocity ωn+1; starting from ℚn + 1, k = 1 ≡ ℚn, and ωn+1,k=1 ≡ 
ωn at each time step, subiterations are performed by looping over k until 

∥ ℚn + 1, k − ℚn + 1, k − 1 ∥ ∞ ≤ ∊ or ∥ ωn + 1, k − ωn + 1, k − 1 ∥ ∞ ≤ ∊ with ϵ = 10−8. These 

iterations are inexpensive, and between one and three are typically needed to reach the 

convergence criteria. Seventh-order Gaussian quadrature rules are used to approximate 

integrals on the left side of Eqs. (40) and (42). The updated configuration of ξ(X, t) is then 

evaluated using Eq. (18). Similarly, the moment of inertia is determined using a 

discretization of Eq. (27),

Jn + 1 = ℚn + 1J0(ℚn + 1)T . (43)

3.3.2. IIM time integration scheme—Starting from χn and un at time tn and pn − 1
2  at 

time tn − 1
2 , we compute χn+1, un+1, and pn + 1

2 . Denote by ℰΔt the action of the IIM solver 

over a full time step that acts on the solution vector Υ that includes all of the Eulerian and 

Lagrangian variables but only advances u, p, and χ. Briefly, using the discrete velocity 

restriction operator Jn = J[χn, F n], we first obtain initial approximations to the interface 

position at time tn + 1
2  via

χn + 1 = χn + Δt
2 Jnun, (44)

χn + 1
2 = χn + 1 + χn

2 . (45)

Next, we solve for χn+1, un+1, and pn + 1
2  via

ρ un + 1 − un

Δt + An + 1
2 = − G pn + 1

2 + μfL
un + 1 + un

2 + S F n + 1
2 , (46)

D ⋅ un + 1 = 0, (47)
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χn + 1 − χn

Δt = Un + 1
2 = Jn + 1

2 un + 1 + un

2 , (48)

in which An + 1
2 = 3

2An − 1
2An − 1 is obtained from a high-order upwind spatial discretization 

of the nonlinear convective term u ⋅ ∇u [105], and Jn + 1
2 = J[χn + 1

2 , F n + 1
2] is the velocity 

restriction operator at the half time step configuration. This time stepping scheme requires 

only linear solvers for the time-dependent incompressible Stokes equations. We solve this 

system of equations by the flexible GMRES (FGMRES) algorithm with a preconditioner 

based on the projection method that uses inexact subdomain solvers [105]. In the initial time 

step, a two-step predictor-corrector method is used to determine the velocity, deformation, 

and pressure; see Griffith and Luo [110] for further details.

3.3.3. Fluid-structure interaction time stepping scheme—For the solution vector 

Υ over one time step using the Strang splitting scheme we have,

Υn + 1 = ℒΔt/2ℰΔtℒΔt/2Υn . (49)

With this time-staggered approach, the overall algorithm to solve the fluid-structure problem 

is

Step I: Solve the rigid body dynamics in Eqs. (39)–(42) over a half time step Δt/2 to 

advance from step n to n + 1
2  and obtain dc

n + 1
2 , d

.
c
n + 1

2 , ωn + 1
2  and ℚn + 1

2 , and the 

new position of the volumetric Lagrangian mesh.

Step II: Calculate the penalty force using the most recent position of the volumetric 

solid mesh and the surface mesh that moves with the fluid.

Step III: Solve for the IIM subsystem in Eqs. (46)–(48) over a full time step and 

obtain the updated Eulerian velocity field un+1 and pressure pn + 1
2  as well as the the 

Lagrangian velocity Un + 1
2  and positions χn+1 of the surface mesh and the exterior 

fluid traction forces τf
+.

Step IV: Using the exterior fluid traction force τf
+ from Step III, solve the rigid 

body dynamics in Eqs. (39)–(42) over a half time step Δt/2 to advance from step 

n + 1
2  to n + 1 and obtain dc

n+1, d
.
c
n + 1, ωn+1 and ℚn + 1.

Step V: Move the Lagrangian mesh of the bulk solid and obtain the new positions 

ξn+1.

4. Numerical examples

This section presents computational examples to characterize the performance of the present 

methodology in two and three spatial dimensions. As a demonstration of the method’s 
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ability to tackle more challenging problems, applications to two biomedical models are also 

presented, including simulations of the dynamics of a bileaflet mechanical heart valve in a 

pulse duplicator system and the transport of blood clots in a patient-averaged anatomical 

model of the inferior vena cava. Where possible, comparisons are made to available 

experimental or computational results. We begin by considering model problems involving a 

limited number of translational, but not rotational, degrees of freedom (DOF). We 

systematically increase the complexity of the tests by incorporating additional translation 

and rotational degrees of freedom. We also consider both smooth immersed structures as 

well as structures with sharp corners. The fluid-solid interface representation that moves 

with the fluid is discretized either by piecewise-linear (P1) elements for two-dimensional 

cases, or by piecewise linear (P1) or piecewise bilinear (Q1) elements for three-dimensional 

cases. Unless otherwise noted, the structural meshes are constructed so that the ratio of the 

Lagrangian element size to the Eulerian grid spacing, denoted by Mfac, is Mfac ≈ 2 at least 

along the fluid-structure interface. In all cases, the Eulerian domain is discretized using an 

adaptively refined grid. The Cartesian grid spacing on the finest level of the locally refined 

grid is hfinest = r−(N−1)hcoarsest, in which hcoarsest is the grid spacing on the coarsest level, r is 

the refinement ratio, and N is the number of refinement levels. The spring penalty 

parameters are computationally determined as approximately the largest values allowed by 

our explicit time stepping algorithm at the time step sizes used in the simulations. In each 

case, the penalty parameter values are tuned using bisection. Unless otherwise noted, 

centimeter-gram-second (CGS) units are used. For models involving gravitational forcing, 

gravitational acceleration is set to g = 981 cm · s−2. The large scale three-dimensional 

simulations in Secs. 4.4, 4.6, 4.7, and 4.8 were performed using the Dogwood cluster 

provided by the Research Computing Division of University of North Carolina at Chapel 

Hill Information Technology Services. Each node is comprised of 2.4 GHz Intel Xeon 

E5-2699Av4 processors with the Broadwell-EP micro-architecture, 512 GB memory, and 44 

cores per node, and nodes are connected by a high bandwidth Infini-band EDR switching 

fabric. The smaller benchmark models are run on a workstation with two 32-core Intel Xeon 

E5-2680 v3 2.5 GHz processors and 32 GB of memory.

4.1. Vortex-induced vibration of a cylinder

The problem of viscous flow past an elastically mounted two-dimensional cylinder 

undergoing vortex-induced vibration (VIV) has been widely studied both numerically and 

experimentally because of its broad range of engineering applications and its interesting 

vortex dynamics. This problem has also seen substantial use in benchmarking FSI 

algorithms [3, 111, 19, 88, 112, 113]. Here we consider two separate cases in two spatial 

dimensions, one using a single vertical degree of freedom, and the second with two degrees 

of freedom (2-DOF). The governing equations for the 2-DOF cylinder motion are

Msd̈c
x + Csḋc

x + Ksdc
x = fx, (50)

Msd̈c
y + Csḋc

y + Ksdc
y = fy, (51)
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in which dc
x and dc

y are the horizontal and vertical displacements of the center of mass, Ms is 

the mass per unit length of the cylinder, Cs and Ks are the damping and stiffness constants 

characterizing the spring, and fx and fy are the instantaneous drag and lift forces, 

respectively. To facilitate comparisons to previous work, we define the non-dimensional 

horizontal and vertical displacements of the cylinder center in the streamwise and transverse 

directions, respectively, as dc
x = dc

x D and dc
y = dc

y D, in which D is the diameter of the 

cylinder. Taking U∞ as the free stream flow velocity, the mass ratio and reduced velocity are 

respectively defined as m* = ρs/ρf and U* = U∞/(fnD), in which fn = Ks Ms (2π) is the 

natural frequency of the structure. The damping ratio is ζ = Cs (2 KsMs).

4.1.1. 1-DOF transverse oscillation—We first consider the benchmark problem of a 

circular cylinder undergoing VIV with a single vertical degree of freedom. We are interested 

in capturing the well characterized vortex “lock-in” phenomenon observed in previous 

studies [114, 3, 19, 111]. Within the lock-in regime, the vortex shedding frequency is close 

to the natural frequency of the structure, which results in large amplitude vibrations. 

Physical parameters are selected to match benchmark results in the literature. A schematic of 

the simulation setup is shown in Fig. 3(a). The computational domain is Ω = [−30 cm, 45 

cm] × [−30 cm, 30 cm], a rectangle of size Lx × Ly = 75 cm × 60 cm. The cylinder has 

diameter D = 1 cm, is initially at rest and centered at the origin. A uniform inflow velocity U 
= (U∞ = 1 cm ⋅ s−1, 0 cm ⋅ s−1) is imposed on the left boundary (x = −30 cm), and zero 

normal traction and tangential velocity outflow conditions are imposed at the right boundary 

(x = 45 cm). Along the bottom (y = −30 cm) and top (y = 30 cm) boundaries, zero normal 

velocity and tangential traction are imposed. The domain is discretized using N = 6 nested 

grid levels, with coarse grid spacing hcoarsest = Ly/64 = 0.9375 cm and refinement ratio r = 2 

between levels, leading to hfinest ≈ 0.029 cm. With Mfac = 2, this results in approximately 54 

linear elements around the perimeter of the disk. The time step size is Δt = (0.1 s ⋅ cm−1) 

hfinest with a penalty spring constant κ = (0.00125 g ⋅ cm−2)/Δt2. The Reynolds number Re = 

ρfU∞D/μf is fixed at 150, the damping is set to zero (ζ = 0), and the mass ratio is m* = 8/π.

First, the effect of the reduced velocity on the maximum displacement of the cylinder is 

studied by systematically varying U* within the range 3 ≤ U* ≤ 8. Vortex shedding occurs in 

all cases. Fig. 3(b) shows the maximum displacement with respect to U*. These results 

demonstrate that for U* ∈ [4, 7] there is a large increase in the vibration amplitude. Fig. 3(b) 

also compares results obtained by our method to previous numerical studies, including a 

geometrically conservative finite volume ALE method [3], a curvilinear immersed boundary 

method [19], and a finite element based ALE approach [111]. Excellent agreement is 

obtained over the full range of U* values considered here.

In addition, we perform a grid refinement study using the reduced velocity with the largest 

maximum displacement (i.e. U* = 4) while fixing the previous values of all other 

parameters. To achieve this in our AMR framework, we vary the number of refinement 

levels N between 5 and 7. Fig. 4 shows the time-history of the maximum displacement for N 
= 5, 6, and 7 levels of refinement. The displacement values obtained for N = 6 and 7 closely 

match each other, whereas the coarser case, using N = 5 levels of refinement, under-predicts 

the maximum displacement in the vortex shedding region. Notice that these results indicate 
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that using N = 6 levels of refinement provides essentially grid-converged results for this 

benchmark problem.

4.1.2. 2-DOF oscillation—The 2-DOF oscillation is studied using the same physical 

parameters as Blackburn and Karniadakis [114], who used a spectral element approach. The 

size of the computational domain, the cylinder diameter and initial position, and the physical 

boundary conditions are all the same as the 1-DOF example in Sec. 4.1.1. The Reynolds 

number is Re = 200, the reduced velocity is U* = 0.5, the damping ratio is ζ = 0.01, and the 

mass ratio is m* = 4/π.

We use this example to investigate the order of spatial convergence of the difference in the 

displacement between the two Lagrangian representations (i.e. the fluid-structure interface 

representation that moves with the fluid, and the surface of the volume mesh). As discussed 

in Sec. 2.3, the two representations are tethered together by spring-like forces that penalize 

relative motion between them. The Cartesian grid spacing on the coarsest level for all four 

cases is hcoarsest = 60/64 cm. We consider four sets of discretizations, ranging from a very 

coarse composite grid with N = 4 levels of refinement to a reasonably fine grid with N = 7 

levels of refinement, using refinement ratio r = 2 between levels. The penalty spring constant 

is κ = (0.125 g·s−2)/h2, and a small constant time step size Δt = 0.001 s is chosen for all 

cases. In our recent work [68], it was shown that the present IIM algorithm yields second-

order convergence in the displacement of the interface in both L2 and L∞ with suitable 

scalings for the penalty parameter κ. As in our previous work, for the choice of the κ used 

here, pointwise second order convergence is also expected for the displacement between the 

positions of the two interface representations. Fig. 5 shows ‖ξ(X, t) − χ(X, t)‖∞, the L∞ 

norm of the discrepancy between the Lagrangian points at the surface mesh and the 

corresponding points on the boundary of the volume mesh. Fig. 5(a) indicates that the 

method converges at second order in the maximum norm at t = 55 s. To investigate the 

change of the L∞ norm of the error over time, this value is plotted on a semi-log scale in 

Fig. 5(b) for the four discretizations. The overall behavior of the error norm remains 

consistent for all discretizations throughout the entire simulation. Note that the difference 

shown in ξ(X, t) − χ(X, t) is proportional to the tethering penalty force that connects the two 

representations. Because of the periodic “figure-of-eight” nature of the cylinder’s dynamics, 

a undulatory pattern in the loading force is to be expected over time. This pattern is expected 

to be present in ‖ξ(X, t) − χ(X, t)‖ difference as well due to its proportionality with the force. 

Specifically if we wish to achieve ‖ξ(X, t) − χ(X, t)‖ = O(h2), it is necessary that the penalty 

parameter κ also satisfies κ = O(1/h2), so that an applied penalty force of the form F = 

κ(ξ(X, t) − χ(X, t)) satisfies ‖F‖ = O(1) under grid refinement [68].

As another verification, the centerline displacement response of the cylinder is compared to 

the numerical results of Blackburn and Karniadakis [114]. It is expected that the vortex 

shedding of the oscillating cylinder will lead to a periodic “figure-of-eight” behavior. This is 

shown in Fig. 6 for three locally refined Cartesian grids with N = 5, 6, and 7 levels along 

with the solution from Blackburn and Karniadakis [114]. The trajectory clearly converges 

under grid refinement. Moreover, the trajectory of the cylinder for the finest discretization 

agrees extremely well with the spectral element solution [114]. The origin of oscillations xc, 

which is defined as the intersection point in the periodic figure-of-eight trajectory of the 
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cylinder’s center of mass, and the Strouhal number, which is calculated as St = fD/U∞ with f 
representing the oscillation frequency, are reported in Table 1 for the finest ILE computation 

(N = 7) along with the results of Blackburn and Karniadakis and several other studies. The 

center of oscillations agrees very well with the original work of Blackburn and Karniadakis 

[114]. Moreover, the Strouhal number matches the values reported from studies by Yang et 

al. [88], Yang and Stern [112], Kim et al. [113], and Qin et al. [59]. The centerline trajectory 

and the dimensionless displacement-velocity phases of x/D − ux/U∞ and y/D − uy/U∞ for 

this case are shown in Fig. 7. The phase response obtained from our solution agrees well 

with previous observations reported by Yang and Stern [115] and Liu and Hu [116].

4.1.3. 2-DOF oscillation with low mass ratio—We now briefly consider 

significantly lower mass ratios than the one studied above. We first consider a case with 

density ratio of m* = 0.4/π, which is 10 times smaller than the first example. The remainder 

of the simulation parameters are identical to the finest case in the previous example (Sec. 

4.1.2). Fig. 8(a) shows that the cylinder travels more than 7 diameters downstream before 

undergoing the same periodic figure-of-eight motion. Fig. 8 also reveals that the oscillations 

for this light cylinder occur at a higher amplitude and with larger horizontal and, to a lesser 

extent, vertical velocity magnitudes. Fig. 9 shows the instantaneous vorticity contours 

around this light structure at six time points. Vortex shedding is observed, with two vortices 

shed during one cycle of the quasi-periodic oscillation. The wake footprint and the 

associated vorticity patterns also indicate that the cylinder is undergoing periodic motion. 

Notice that previous work has reported severe instabilities in computing such cases using 

both weak and strong coupling approaches [113]. The present method appears to remain 

stable even for extremely light structures. Table 2 reports the center of oscillations along the 

x-axis for a wide range of mass ratios along with the results of Kim et al. [113], the only 

other study that we are aware of to also consider such low mass ratios. To the authors’ 

knowledge, results obtained using mass ratios smaller than 0.3 have not been previously 

reported for this benchmark case. The present method yields a slightly larger distance than 

the work of Kim et al. [113] for the origin of the oscillations. In the work of Kim et al. [113], 

the mass ratio of m* = 0.3 was reported as the lowest ratio for a stable solution using a 

strong coupling approach. The present method is able to predict the dynamics at 

substantially smaller mass ratios (nearly two orders of magnitudes smaller) as shown for m* 

= 0.005 in Table 2. Although stable results were obtained for lower density ratios, the 

accuracy of the dynamics requires further validation that can be performed once additional 

experimental data are available. Note that to accommodate the extended horizontal 

movement of the cylinder for m* < 0.1, the computational domain for these cases was 

changed to Ω = [−120 cm, 180 cm] × [−120 cm, 120 cm], a rectangle of size Lx × Ly = 300 

cm × 240 cm. To keep the grid spacing the same as before, N = 8 nested grid levels were 

used, and the Cartesian grid spacing on the coarsest level was set to hcoarsest = Ly/64.

4.1.4. Stability and sensitivity studies for κ—Because we use an explicit time 

stepping approach to couple the fluid and solid degrees of freedom, if we fix the spatial and 

temporal discretization parameters, there will be a largest stable value of the penalty spring 

parameter κ. As mentioned at the beginning of Sec. 4, in practice, we compute using values 

of κ close to the stability limit, which we approximately determine using the method of 
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bisection. To study the sensitivity of the numerical algorithm to the penalty parameter κ and 

the influence of this parameter on the accuracy of the computed solution, we reconsider the 

2-DOF vortex-induced vibration of a light cylinder with density ratio of m* = 0.4/π (Sec. 

4.1.3). Except for the values of κ and the time step size Δt, all other simulation parameters 

are the same as Sec. 4.1.3. We use a locally refined grid with N = 7 levels of refinement, and 

the final simulation time is t = 200 s, which is long after vortex induced vibration has been 

established. We computationally determine minimum and maximum values of κ that 1) 

satisfy a minimum threshold in displacement between the two Lagrangian representations, 

and 2) remain stable. Accuracy thresholds are determined to be the minimum values of κ 
required to achieve tolerances of 0.1 hfinest, which is commonly used in IB models of rigid 

structures, along with a tighter tolerance of 0.06 hfinest. The maximum stable value of κ 
determines a stability threshold. Fig. 10(a) shows the computationally determined accuracy 

and stability thresholds for this case. Because it is not practical to determine the precise 

values of these thresholds across all time step sizes, error bars indicate the small uncertainty 

in the lower and upper bounds. For the smallest time step size considered here, the range of 

values of κ that satisfy both criteria spans nearly three orders of magnitude, from the 

minimum value that achieves the minimum accuracy criterion to the maximum value that 

results in a stable computation with 0.06 hfinest displacement threshold. For the largest time 

step, there is at least about three-fold difference between the minimum and maximum values 

of κ. Fig. 10(b) shows the effect of κ on the ratio between the maximum norm of the two 

Lagrangian representations and the finest grid spacing for three stable spring constants of κ 
= 500, 1000, and 1400 using the time step Δt = 0.001. Notice that the maximum 

displacement between the representations scales like κ−1. Fig. 10(c) shows the trajectory of 

the center of mass of the cylinder for the same three κ values. Deviations in the trajectories 

are small and converge as κ increases. It is worth noting that the maximum discrepancies for 

the highest and lowest choices of κ are less than the spacing on the finest grid level, hfinest.

4.2. Galloping rectangular structure

This example uses a rectangular plate undergoing galloping motion to test the accuracy of 

the method for models involving only rotational degrees of freedom. Flow-induced 

rotational galloping oscillations occur in many areas of structural [117], aeronautical [118], 

and mechanical [119] engineering applications. This problem has also been widely used as a 

benchmark problem to validate numerical algorithms [96, 115, 112]. In this section, only a 

single rotational degree of freedom is used, and the translational heave (horizontal) and 

surge (longitudinal) motions are eliminated. The governing equation for the mass-spring-

damper model with one rotational degree of freedom is

Is
θθ̈ + Cs

θθ̇ + Ks
θθ = Mθ, (52)

in which θ is the rotational angle of the body, Is
θ is the rotational moment of inertia, Cs

θ is the 

torsional damping constant, Ks
θ is the torsional spring constant, and Mθ is the moment acting 

on the rigid structure from exterior fluid forces. In our simulations, we consider a 

rectangular structure with a width-to-thickness ratio of Λ = L/H = 4. To enable comparisons 

with prior studies, we define the non-dimensional moment of inertia by Is
∗ = Is

θ (ρsH4), the 
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non-dimensional damping ratio by ζs
θ = Cs

θ (2 Ks
θIs

θ), and the reduced velocity by U* = 

U∞/(fθH). In the latter formula, U∞ is the free stream velocity and fs
θ = Ks

θ Is
θ 2π is the 

natural frequency of the body. Following the work of Robertson et al. [96], the non-

dimensional parameters are taken to be Is
∗ = 400, U* = 40, and ζs

θ = 0.25. A schematic of the 

computational setup and the boundary conditions is given in Fig. 11(a). The rectangular 

structure is centered at the origin with an initial zero angular velocity and a non-zero angle 

of θ0 = 1°. The computational domain is Ω = [−32 cm, 96 cm] × [−32 cm, 32 cm], a 

rectangle of size Lx × Ly = 128 cm × 64 cm. The domain is discretized using N = 4 nested 

grid levels, with coarse grid spacing hcoarsest = Ly/32 = 2.0 cm and refinement ratio r = 4 

between levels, leading to hfinest = 0.0625 cm. A uniform inflow velocity of U = (U∞ = 1 cm 

· s−1, 0 cm · s−1) is imposed on the left boundary (x = −32 cm). Using the free stream 

velocity, the Reynolds number Re = ρfU∞H/μf is set to 250. A penalty spring constant of κ 
= 400 g · cm−2 · s−2 is used, and the time step size is Δt = (0.02 s · cm−1) hfinest. Zero normal 

traction and tangential velocity are imposed at the right boundary (x = 96 cm). Along the 

bottom (y = −32 cm) and top (y = 32 cm) boundaries, the normal velocity and tangential 

traction are set to zero. Fig. 11(b) shows the time history of the pitch angle of the galloping 

rectangle for the damped oscillation of the structure. Once the vortex shedding state is 

established, the structure starts to undergo a periodic rotation with well-characterized 

frequency and upper bound of the maximum angle. This behavior is clearly captured by the 

present method. Fig. 11 panels (c)–(e) show snapshots of the structural rotation along with 

the vortex structure of the flow at three different times.

To demonstrate the ability of the algorithm in modeling larger rotational angles, an 

additional case is considered with ζs
θ = 0. The initial angle is set to θ0 = −5°. All the other 

parameters, including the time step size and penalty spring constant, are the same as before. 

As seen in Fig. 12(a), the method generates periodic behavior with maximum galloping 

amplitude of approximately θmax = 124°. Fig. 12 panels (b)–(d) show the flow patterns 

around the structure at three different times.

To compare the rotational response of the structure with previous work, the maximum pitch 

angle and frequency for the above two cases are reported in Table 3 along with values from 

other studies. The work of Robertson et al. [96] uses a body-fitted spectral element method 

in a non-inertial reference frame. The methods used by Yang and colleagues [115, 112] are 

different variations of a strongly-coupled direct forcing approach with a field extension 

strategy for the pressure/velocity derivatives. Table 3 demonstrates excellent quantitative 

agreement of both vortex shedding characteristics of θmax and the galloping frequency fθ for 

the two cases in comparison with other numerical studies.

4.3. Freely falling rectangular plate

We now consider a model of a falling rigid plate in a water tank that is based on the 

experiments by Andersen et al. [97]. This example tests the action of the instantaneous fluid 

forces on an object with sharp corners that leads to extremely complex trajectories. This 

benchmark case has also been investigated in the context of fluid-structure interaction 

algorithms in prior studies [120, 115, 116]. We consider two cases from Anderson et al. [97], 
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one undergoing fluttering motion at Re = 1147 and the other undergoing tumbling motion at 

Re = 837. Different modes of fluttering and tumbling motions are captured in both the 

experiments [97] and the simulations.

4.3.1. Fluttering motion—For the case of a freely fluttering plate, the plate thickness is 

taken to be H = 8.1 × 10−2 cm with width-to-thickness ratio of Λ = L/H = 14. The density of 

the plate and fluid are ρs = 2.7 g · cm−3 and ρf = 0.997 g · cm−3, respectively. To achieve a 

Reynolds number of Re = 1147, the fluid viscosity is set to μf = 8.87 × 10−3 g · cm−1 · s−1. A 

schematic of the problem setup is shown in Fig. 13(a). The computational domain is Ω = 

[−40 cm, 40 cm] × [−56 cm, 24 cm], a square of size Lx × Ly = 80 cm × 80 cm. The center 

of the plate is initially located at (x0, y0) = (5 cm, 0 cm) with an initial angle of θ0 = 60° 

with respect to the x-axis. Zero normal traction and tangential velocity conditions are 

imposed at the top boundary. Along the left and right boundaries zero normal velocity and 

tangential traction are imposed. The no-slip condition is imposed at the bottom boundary.

The domain is discretized using N = 6 nested grid levels, with coarse grid spacing hcoarsest = 

Ly/16 = 5 cm and refinement ratio r = 4 between levels, leading to hfinest = 0.00488 cm. 

Using Mfac = 1.8, this leads to the thickness of the plate being discretized by approximately 

10 linear elements. A constant time step size of Δt = 0.01 ms is used, and the penalty spring 

constant is κ = 7.45 × 105 g · cm−2 · s−2. Figs. 13(b) and 13(c) shows the overall dynamics 

of the plate during its fluttering free fall. Fig. 13(b) shows the vortex structure over the 

course of the simulation. Periodic fluttering motion is clearly observed. Fig. 13(c) shows the 

trajectory of the center of mass along with the experimental data of Andersen et al. [97]. 

Overall, our numerical results are in good agreement with the experimental data for the 

gliding motion of the plate from side to side as it flutters in its free fall. Discrepancies 

around turning points can be, in part, attributed to the interaction of the complex vortex 

dynamics with sharp corners of the rectangular object. There are also uncertain differences 

in the simulation and experimental operating conditions that could explain these differences. 

Future studies should further investigate the accuracy of the present IIM coupling strategy 

for objects with sharp corners, including assessing grid sensitivity.

Fig. 14 shows close-up views of the fluttering plate at six different time points. With a low 

angle of attack, the plate glides from a turning point on one side to reach a new turning point 

on the opposite side. Towards the end of its glide and before it changes direction, there is a 

sharp increase in the magnitude of the angular velocity. Because of the sharp edge of the 

structure, the flow separates on the lower surface (Fig. 14(c)) and shortly thereafter flow 

separation also occurs on the upper surface as well (Fig. 14(d)). As the plate pitches upward, 

it begins to glide in the opposite direction, and this process repeats itself in a periodic 

manner. The interaction of vortices in the locations where the plate reverses direction creates 

a complex pattern of vortices, as shown in the figure. Fig. 15 shows the time history of the 

horizontal and vertical velocity components as well as the angular velocity along with a 

comparison to the experimental results [97]. Overall, there is very good agreement between 

the two results despite the complex dynamics. Although the algorithm is able to correctly 

predict the periodic dynamics, small deviations from measured data are observed 

particularly around troughs and crests of both translational and angular velocity plots. We 

speculate that these deviations could potentially be due to sensitivity of the results to the 
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complex interaction of the shed vortices with the sharp corners, or possibly other 

uncertainties that are not accounted for in the comparison.

4.3.2. Tumbling motion—For the tumbling case, the plate thickness is kept fixed at H = 

8.1 × 10−2 cm, but the width-to-thickness ratio is changed to Λ = L/H = 8. The initial 

location and angle of attack are (x0, y0) = (−20 cm, 0 cm) and θ0 = −45°, respectively. Note 

that because of the different width of the plate in this example, the Reynolds number is Re = 

837. The penalty spring constant is κ = 5.5 × 105 g · cm−2 · s−2. The remaining simulation 

parameters, including the computational domain extent and size, spatial resolution, time step 

size, boundary conditions, and fluid properties, are identical to the fluttering case; see also 

the schematic in Fig. 16. Fig. 17 shows the overall dynamics of the tumbling plate. As 

shown in Fig. 17(a), the complex vortex structure of the tumbling plate is well resolved by 

the simulation. After the plate is released, it begins a gliding motion. Shortly after, it pitches 

upward, similar to the fluttering case. Because of the large angular momentum, however, at 

the turning point the plate rotates more than 90° clockwise. This large rotation, creates a 

large restoring moment that causes the plate to rotate slightly counter-clockwise and then 

continue falling, with an inclination to the right side. The plate travels a path towards the 

bottom-right corner of the computational domain by a sequence of descending and 

accelerating motions. At the turning points, the plate undergoes a full 360° tumbling 

rotation, such that the lower surface during the gliding re-configures as upward facing. Fig. 

17(b) compares the vortex structure and trajectory of the tumbling plate to experimental 

measurements [97]. As in the fluttering case, the results are in very good agreement with the 

experimental data, and the trajectory of the plate agrees very well for the portion of the 

trajectory where experimental data are available. Fig. 18 shows enlarged views of the 

vorticity field at different times. Flow separation on the lower side of the plate is clearly 

observed in Fig. 18(c). This is followed by separation of the flow on the opposite side as the 

plate rotates (Fig. 18(d)). The gliding and diving towards the bottom left resumes at the end 

of each tumbling motion, as seen in Fig. 18(f).

Fig. 19 shows the time history of translational and rotational velocities. Unlike the fluttering 

case, in which the vertical velocity appeared to have twice as larger frequency than the other 

two velocities, here the number of periods demonstrates that approximately the same 

frequency is observed among all velocities. In addition, the significantly larger angular 

velocity in this case compared to the fluttering case in Fig. 15 indicates faster rotation near 

the turning points. The average horizontal and vertical velocity components and the average 

angular velocity obtained from three full cycles of the present simulation are found to be 

ux = 15.87 cm ⋅ s−1, uy = − 11.32 cm ⋅ s−1, and ωz = 15.95 rad ⋅ s. For comparison, the 

experimental measurements of Andersen et al. [97] for the same average velocities are 

ux = 15.94 cm ⋅ s−1, uy = − 11.5 cm ⋅ s−1, and ωz = 14.5 rad ⋅ s−1. The relative discrepancies in 

these quantities are 0.19%, 1.57%, and 9.93%, respectively.

4.4. Free falling of a dense sphere

This section investigates the dynamics of a freely falling steel bead in water using an 

unconstrained rigid-body structure model. This problem follows the experimental setup of 

Mordant and Pinton [98]. The density of the steel bead is ρs = 7.85 g · cm−3, and the 
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diameter is D = 0.1 cm. The Reynolds number is Re = (ρfV
‒ D) μf = 430, and a terminal 

velocity of V‒ = 38.3 cm ⋅ s−1 is reported in the original work. With a fluid density of ρf = 997 

g · cm−3, this results in a dynamic viscosity of μf = 8.88 × 10−3 g · cm−1 · s−1. The 

computational domain is Ω = [−16D, 16D] × [−448 D, 64 D] × [−16 D, 16 D], a rectangular 

cuboid of size Lx × Ly × Lz = 32D × 512D × 32D; see Fig. 20(a) for a schematic of the 

problem setup. Zero normal traction and tangential velocity conditions are imposed at the 

top boundary. Along the peripheral walls zero normal velocity and tangential traction are 

imposed. The no-slip condition is imposed at the bottom boundary. The domain is 

discretized using N = 3 nested grid levels, with coarse grid spacing hcoarsest = Lx/64 = 0.05 

cm and refinement ratio r = 4 between levels, leading to hfinest = 0.003125 cm. The 

volumetric mesh of the sphere consists of hexahedral elements leading to a surface mesh 

composed of bilinear quadrilateral elements with Mfac = 2. A fixed time step size of Δt = 

0.01 ms is used, and the penalty spring constant is κ = 5 × 105 g · cm−2 · s−2. The center of 

the sphere is initially positioned at the origin and released with zero initial translational and 

angular velocities. Fig. 20(b) shows the time history of the vertical velocity. After being 

released, the steel bead starts to accelerate until reaching its terminal velocity. The 

acceleration of the bead is in good agreement with the experimental data of Mordant and 

Pinton [98], and the terminal velocity is also in excellent agreement with the experimental 

measurement. Fig. 20(c)–(e) show isosurfaces of the Q-criterion [121] to visualize the vortex 

dynamics. Note that there is no constraint in the motion of the sphere, and that all of the 

degrees of freedom including the rotational ones are included in the solution. Shortly after 

the sphere reaches its terminal velocity V‒ = 38.3 cm ⋅ s−1, the flow behind the sphere 

becomes irregular due to the moderately large Reynolds number. Although small lateral 

movements are observed in the simulation with the deviation of center of mass reaching to 

about 0.25D = 8hfinest, no consistent pattern of “zig-zagging” motion is apparent. Fig. 20 

also compares our results to two other numerical studies [115, 116].

4.5. Free fall of a sphere with near-unity density ratio

This section explores the performance of the ILE methodology with respect to two 

challenging aspects of FSI: the influence of the wall and the ability of the method to handle 

near-unity density ratios in a fully unconstrained rigid-body motion. This case is based on 

the experimental data reported by ten Cate et al. [99] of a sphere settling in a confined flow 

chamber. The sphere has diameter D = 1.5 cm and density ρs = 1.120 g · cm−3, which is 

close to that of the surrounding fluid; see Table 4. The Reynolds number is Re = ρsV
‒ D μf, 

in which the terminal velocity V  is taken to be the settling velocity in an infinite domain. 

Two different cases with Reynolds numbers of Re = 1.5 and Re = 31.9 are considered, which 

are achieved in the experiments by varying the density and viscosity of the fluid. The 

computational domain is Ω = [−5 cm, 5 cm] × [−12 cm, 4 cm] × [−5 cm, 5 cm], a rectangular 

cuboid of size Lx × Ly × Lz = 10 cm × 16 cm × 10 cm. The sphere is initially positioned in 

the x-z mid-plane and towards the top of the box at a height of 12 cm, measured from the 

bottom of the sphere to the bottom of the box; see Fig. 21(a). Zero normal traction and 

tangential velocity conditions are applied at the top boundary while no-slip condition is 

imposed at all other boundaries.
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The domain is discretized using N = 3 nested grid levels, with coarse grid spacing hcoarsest = 

Lx/32 = 0.3125 cm and refinement ratio r = 2 between levels, leading to hfinest = 0.078125 

cm. The volumetric mesh of the sphere consists of hexahedral elements leading to a surface 

mesh composed of bilinear quadrilateral elements with Mfac = 2. A fixed time step size of Δt 
= 0.5 ms is used, and the penalty spring constant is κ = 5 × 104 g · cm−2 · s−2. Because of the 

confinement effect of the walls, we expect the settling of the sphere to be different from a 

free falling sphere in an infinite medium. Upon release, the particle accelerates until 

reaching its terminal velocity, which occurs quickly in the lower Reynolds number case. The 

sphere then starts to decelerate as it approaches to the bottom the flow chamber. Fig. 21 

panels (b)–(c) show the time histories of the non-dimensional vertical gap between the 

sphere and bottom wall (h/D) and the vertical velocity of the sphere (V ) for both cases. The 

method yields excellent agreement with the experimental measurements of ten Cate et al. 

[99] for both the gap size over time and the terminal velocity. Specifically, the present 

method captures the dynamics of the sphere while also remaining stable even as the sphere 

reaches the bottom of the box. For the lower Reynolds number case, the sphere has more 

time to travel through the box because of its lower speed, and this results in a larger flat 

region, when the sphere experiences a nearly constant downward velocity, before it starts to 

decelerate as it approaches the bottom wall. Indeed, at Re = 1.5, we observe stable 

sedimentary motion of the sphere in the simulation even past the latest time reported in the 

experiment. At Re = 31.9, the sphere does not experience an extended period of time at 

terminal-like velocity as it quickly reaches the bottom of the box. The simulation is also 

stable for this case even after the sphere impacts the bottom; see Fig. 21(b).

4.6. Freely rising sphere

This section considers a rising sphere using a fully unconstrained rigid-body structural 

model. Such problems can pose substantial challenges to FSI algorithms using weak 

coupling schemes, which can become unstable [116]. Experimental results of Horowitz and 

Williamson [100] are used as a benchmark to validate the dynamics generated by our 

numerical method. We consider a challenging case in which the parameters are chosen such 

that the sphere oscillates periodically and vigorously in a “zig-zag” trajectory within a tight 

vertical plane. The sphere has diameter D = 1.3 cm and mass ratio m* = 0.11. The 

experiments are at Re = ρfU D/μf = 450. To match the experimental Reynolds number, the 

dynamic viscosity is μf = 0.125 g · (cm·s)−1. The computational domain is Ω = [−16 D, 16 

D] × [−112 D, 16D] × [−16 D, 16 D]; see the schematic in Fig. 22. The domain is 

discretized using N = 3 nested grid levels, with coarse grid spacing hcoarsest = Lx/64 = 0.65 

cm and refinement ratio r = 4 between levels, leading to hfinest ≈ 0.04 cm. The volumetric 

mesh of the sphere consists of hexahedral elements leading to a surface mesh composed of 

bilinear quadrilateral elements with Mfac = 2. The center of the sphere is initially positioned 

at (0, −96 D, 0) and is released with zero initial translational and angular velocity. Zero 

normal traction and tangential velocity conditions are imposed at the top boundary. The no-

slip condition is imposed at the bottom boundary. Along the peripheral walls zero normal 

velocity and tangential traction are imposed. The no-slip condition is imposed at the bottom 

boundary. A fixed time step size of Δt = 0.01 ms is used, and the penalty spring constant is κ 
= 5.2 × 105 g · (cm · s)−2.
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Fig. 23 demonstrates that the sphere motion is approximately planar, and captures the 

periodic zig-zag trajectory observed experimentally. We emphasize that in our simulation, no 

constraints are imposed on the motion of the sphere. Specifically we do not impose either 

planar motion or the zig-zag trajectory. According to Horowitz and Williamson [100], the 

periodic motion of the sphere at this particular density ratio resembles the dynamics at much 

higher Reynolds number and is always confined to a plane. The simulation results predict 

the same kind of in-plane motion as observed in the experiment. As the sphere goes through 

the zig-zag motion it creates a complex but organized wake pattern with vortex rings 

forming at the turning points. The numerical simulation clearly captures the vortices behind 

the sphere. Further, there is generally excellent agreement with the trajectory obtained from 

the experiment.

4.7. Bileaflet mechanical heart valve at physiological conditions

Bileaflet mechanical heart valves remain commonly used in heart valve replacement because 

of their durability. In this section, we consider the simulation of fluid flow through a 

geometrically realistic model of a 25 mm St Jude Medical Regent™ bileaflet mechanical 

heart valve in the aortic test section of an experimental pulse duplicator platform [122, 123]. 

These systems are used in academia, industry, and regulatory agencies to assess the 

performance of prosthetic heart valves. This simulation aims to demonstrate the ability of 

the present approach in modeling a realistically complex problem that involves multiple 

moving and stationary parts, including the small-scale feature of the hinge geometry. These 

parts come in close contact with each other and undergo substantial pressure loading when 

closed. In particular, we use experimental pressure and flow data obtained from a real pulse 

duplicator to establish realistic boundary models for the FSI model. These boundary models 

are calibrated in isolation from the rest of the system in that the motion of the leaflets, 

including the timing of valve opening and closing, is not prescribed and the simulated 

pressures, flow rates, and leaflet kinematics all emerge from integrating these three model 

components. The experiments conducted to calibrate the model used saline as a test fluid, 

which we model as a Newtonian fluid with uniform density ρf = 1.0 g · cm−3 and uniform 

dynamic viscosity μ = 1.0 cP. The computational domain is Ω = [0, Lx] × [0, Ly] × [0, Lz] a 

rectangular cuboid of size Lx × Ly × Lz = 7.07 cm × 10.1 cm × 7.07 cm. Fig. 24 shows the 

geometrically detailed three-dimensional model including the valve leaflets and the aortic 

test section of the pulse duplicator, the computational mesh, and relevant boundary 

conditions. The Eulerian domain is discretized using N = 4 nested grid levels, with coarse 

grid spacing hcoarsest = Lx/34 ≈ 0.208 cm and refinement ratio r = 2 between levels, leading 

to hfinest ≈ 0.026 cm. The volumetric mesh of each valve leaflet consists of hexahedral 

elements leading to a surface representation composed of bilinear quadrilateral elements 

with Mfac ≈ 2. The test section is a stationary surface described by bilinear quadrilateral 

elements with Mfac = 3. The thickness of the valve leaflets is about 0.07 cm and the density 

is ρs = 1.8 g · cm−3. The gap distance between the two valves is measured to be 0.0275 cm. 

The penalty spring constant associated with the valves is set to κ = 5 × 106 g · (cm · s)−2. 

The motion of each leaflet is constrained to consist only of rotation about predefined hinge 

axes. A restoring spring-damper tortional force is used to keep the right valve leaflet 

restricted in its rotation between θmin = 24° and θmin = 82°. The same rule is applied to keep 

the left valve leaflet restricted with mirrored angle. The test section is kept stationary by 

Kolahdouz et al. Page 28

J Comput Phys. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



means of spring-type penalty forces with κ = 1.5 × 106 g · cm−2 · s−2. A fixed time step size 

of Δt = 2 μs is used for the simulation. Three-element Windkessel models establish 

downstream loading conditions and the upstream driving conditions for the aortic test 

section. A combination of normal traction and zero tangential velocity boundary conditions 

are used at the inlet and outlet to couple the reduced-order models to the detailed description 

of the flow within the test section. The values of the resistances and compliance for the 

upstream model are CVIA = 0.1 mL · mmHg−1 and R1 = R2 = 0.15 mmHg · mL−1 · s. The 

values at the downstream model are Rc = 0.0077 mmHg · mL−1 · s , Rp = 1.226 mmHg · mL
−1 · s, and C = 1.039 mL · mmHg−1; see Griffith et al. [124] and Lee et al. [125] for further 

discussion on the specification and parameterization of the Windkessel models. Solid wall 

boundary conditions are imposed on the remaining boundaries of the computational domain.

Fig. 25 shows the velocity magnitudes on the plane bisecting the valves at different time 

points within the simulated cardiac cycle. At early times when the valves are closed there 

exists a large pressure difference across the test section that forces jets of the fluid to escape 

from small gaps around the valves with velocity magnitude that reaches about 450 cm · s−1 

at its peak. These hinge gap flows have been well characterized for bileaflet mechanical 

valves result from gaps between the leaflets and the housing and around the hinge areas in a 

fully closed position [126, 127, 123]. These flows create a complex vortical interaction later 

in the diastole phase of the cardiac cycle, when the valve is closed and supporting a 

physiological pressure load. Von Karman like vortex shedding clearly occurs during the 

systolic phase, when the valves are fully open. Many prior numerical simulations of 

mechanical heart valve models have been restricted to imposing either experimental flow 

rates, or flow dynamics under prescribed leaflet motion. Because the flow rate is not 

imposed in the present model, and because the time-dependent configuration of the valve 

determines the resistance of the aortic test section, this simulation demonstrates a non-trivial 

test of the numerical method.

4.8. Transport of rigid blood clots in the inferior vena cava at exercise flow conditions

As a demonstration of the method’s capability in modeling the motion of unconstrainted 

three-dimensional objects in a complex geometry, we simulate transport of rigid blood clots 

through the inferior vena cava (IVC) at a high flow rate of 100 cm3/s, which corresponds to 

exercise flow conditions with a maximum Reynolds number of about Re = 1500. The IVC is 

a large vein that transports deoxygenated blood from lower extremities of the body back to 

the right atrium of the heart. The geometry of the IVC shown in Fig. 26 is a modified 

version of the patient-averaged model by Rahbar et al. [128] that has been recently used in 

studies of the hemodynamics [129, 130, 68]. The infrarenal IVC downstream of the iliac 

bifurcation has average hydraulic diameter Dh = 2.8 cm. The density of the fluid is ρf = 

1.817 g · cm−3, and the viscosity is μf = 5.487 × 10−2 g/cm s. Steady fully-developed 

parabolic velocity boundary conditions are imposed at the upstream inlets of the iliac veins. 

The two inlets are circular with diameter D = 2.44 cm, which then transitions to an elliptical 

shape a short distance downstream. The surface of the IVC is described using bilinear 

quadrilateral elements with Mfac ≈ 2. The IVC is embedded in a rectangular computational 

domain of size Ω = Lx × Ly × Lz = 50 cm × 25 cm × 50 cm. The Eulerian domain is 

discretized using a three-level locally refined grid with a refinement ratio of four between 
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the grid levels, resulting in a grid spacing of ℎcoarsest = 25
16 cm = 1.5625 cm on the coarsest 

level and ℎfinest = 25
16 × 42 cm ≈ 0.098 cm on the finest grid level. At the outlet, the normal 

traction and tangential velocities are set to zero. Solid-wall boundary conditions are imposed 

along the remainder of ∂Ω. Once steady state condition of the flow has been reached at t = 

5.0 s, two neutrally buoyant rigid spherical clots (ρs = ρf) of diameter Di = 1 cm are released 

from positions close to the two inlets. The volumetric mesh of each sphere consists of 

hexahedral elements leading to a surface mesh composed of bilinear quadrilateral elements 

with Mfac = 2. A fixed time step size of Δt = 0.1 ms is used. The penalty spring constant 

associated with both the IVC and the clots is κ = 1.05 × 105 g · (cm · s)−2. Fig. 27 shows the 

transport of rigid blood clots under the unconstrained rigid-body model. A few streamlines 

are also plotted to show the direction of the flow. Despite the moderately high Reynolds 

number of the flow and the complex pathway, the clots migrate towards the outlet through 

the iliac veins while being confined within the IVC structure. After passing the confluence 

of the veins, the clots come in very close contact with each other in a more complex fluid 

environment where we expect the emergence of a pair of counter-rotating vortices after the 

confluence as a result of the two streams from iliac veins merging together. The clots 

continue migrating towards the outlet with a higher speed where towards the end, the clot 

from the right ilict vein tends to get ahead. This can be attributed to the complex nature of 

the flow in the region above the confluence.

5. Discussion and Conclusions

This work has introduced a numerical approach to simulating fluid-structure interaction that 

we refer to as an immersed Lagrangian-Eulerian (ILE) method. Results from applying this 

ILE method to benchmark problems of rigid body fluid-structure interaction with increasing 

difficulty were presented. In addition, we also show representative results from applications 

of this methodology to two biomedical FSI models: a bileaflet mechanical heart valve under 

physiological conditions in a model of the aortic test section of a commercial pulse 

duplicator, and transport of rigid blood clots inside a patient-averaged model of the inferior 

vena cava under exercise conditions. Unlike existing partitioned methods for FSI, the ILE 

formulation uses an immersed approach to couple the fluid and structure subdomains and 

thereby reduces or even eliminates the need for grid regeneration during dynamic 

simulations. In this formulation, it is crucial to deploy a coupling approach that provides the 

forces from only the exterior physical fluid region, and in this work, we use a coupling 

scheme based on the immersed interface method, which enables us to evaluate these external 

fluid tractions along the fluid-structure interface. At least in principle, however, the present 

method could be used with any coupling strategy that determines the net exterior fluid force 

acting on the fluid-solid interface. Notice that this excludes conventional immersed 

boundary formulations using regularized delta functions because such formulations provide 

the total force from both the the exterior (physical) and interior (nonphysical) fluid regions. 

We remark that the jump conditions associated with the singular interfacial force are 

projected onto continuous Lagrangian basis functions, as described previously [68]. This 

requires the solution of linear systems of equations. We emphasize, however, that these 

solves involve only surface degrees of freedom, and thus are an order of magnitude smaller 
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than the volumetric fluid equations that also are solved in each time step. In addition, the 

linear systems involve discrete L2 projection equations that can be solved optimally using 

simple iterative methods (e.g. by a Krylov method preconditioned with a diagonal or lumped 

mass matrix). Overall, the dominant cost of each time step is in solving the incompressible 

Navier-Stokes equations, and the remaining computations are relatively inexpensive. A 

strength of the current approach is that it enables the use of fast Cartesian grid solvers for the 

incompressible Navier-Stokes equations.

The FSI coupling strategy allows fluid and solid subproblems to be solved in a partitioned 

manner as independent, nonconforming discretizations that are coupled through interface 

conditions. In our discretization approach, there exist two Lagrangian representations of the 

fluid-solid interface, including the boundary of the volumetric mesh used in solving the 

equations of rigid body dynamics and a surface mesh that moves with the local fluid 

velocity. These two representations are constrained to move together by a Lagrange 

multiplier surface force. Exactly imposing the constraint would require the solution of a 

saddle-point system that couples the Eulerian and Lagrangian variables, but we develop a 

practical numerical scheme that avoids the complex numerical linear algebra associated with 

such systems by relaxing this constraint using a penalty formulation. In the penalty 

formulation, the surface mesh moves according to the local fluid velocity but exerts force 

locally to the fluid as a weak imposition of the no-slip condition. Discrepancies in the 

positions of the boundary representations can be controlled by increasing the penalty 

parameter. In the present work, the maximum relative displacement is always less than 0.1 of 

the Cartesian grid spacing.

An attractive feature of the present ILE method is that, at least for the specific examples 

considered herein, it enables the use of a simple Dirichlet-Neumann coupling scheme [84, 

93, 95] without requiring either strong coupling or subiterations to maintain stability. In 

particular, the motion of the solid mesh is driven by the exterior fluid traction, and the 

motion of the solid mesh drives the motion of the fluid-structure interface representation 

used to impose the no-slip condition. Although we do not theoretically determine whether 

the ILE formulation suffers from added mass-related instabilities, the computational tests 

reported herein suggest that it can stabily treat a broad range of density ratios, including 

structures that are less dense than the fluid, more dense than the fluid, and neutrally buoyant. 

This is demonstrated for multiple benchmark problems. For instance, in a 2-DOF model of 

the oscillation of a cylinder under vortex induced vibration, we obtain stable results for mass 

ratios up to 40 times smaller than smallest value reported in recent prior work [113]. In the 

literature, added mass instabilities are typically ascribed to the treatment of fluid regions that 

become “uncovered” by the structure as it moves through the computational domain. These 

include ALE approaches [92, 91, 131] and other sharp interface methods [19, 132]. 

Specialized approaches can be needed with these methods to avoid pressure fluctuations for 

cases involving low and near-equal density ratios. Although the total mass and momentum 

of the fluid are conserved, there are local changes in the fluid mass and momentum in the 

regions that are both “covered” and “uncovered” by the moving structure. Evidently, these 

localized changes in the fluid mass and momentum can induce temporal discontinuities in 

the velocity. In the IIM approach introduced by Li and Lai [29], the fluid equations are 

solved on the entire computational domain, including region occupied by the structure, 
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similar to diffuse-interface formulations like those used in Peskin’s IB method. Using the 

IIM terminology, the continuity of the velocity field across the fluid-structure interface 

implies ⟦u(x, t)⟧ = 0. A direct consequence of this condition for the immersed interface 

approach is that the jump in the material derivative of the velocity is also zero, i.e. 
Du
Dt (x, t) = 0. This means that fluid trajectories do not cross the moving interface and fluid 

locations that are “uncovered” by the motion of the structure automatically possess 

velocities that are consistent with the equations of motion. In contrast, for methods in which 

the fluid domain only exists on one side of the interface, the temporal jump associated with 

the material derivative of the velocity may be non-zero going from one time step to the next 

as a fixed Eulerian grid point may switch sides between consecutive time steps. This 

temporal discontinuity in the fluid acceleration could be important as added mass 

instabilities arise when the inertial effect due to fluid forces are dominant. This could result 

in a fluid pressure that is out of phase with the fluid acceleration. Although this has yet to be 

proved rigorously, we hypothesize that the apparent robustness of the method to artificial 

added mass instabilities results from its consistent treatment of the momentum of the fluid 

near the fluid-structure interface. Added mass-type instabilities might also be suppressed by 

our use of rigid-body structure models, which are driven by the net fluid force acting on the 

immersed structure rather than by pointwise forces. Rigorous stability analyses and 

analytical investigations of the methodology similar to those recently developed for overset 

grid methods [84, 83, 133, 94] may reveal stability criteria or clarify the absence of added 

mass-type instabilities in this formulation. Finally, we note that although the formulation 

presented here assumes the use of a rigid body structural model, it is natural to extend this 

approach to immersed elastic bodies.
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Figure 1: 

The computational domain Ω includes time-dependent fluid and solid subdomains, Ωt
f and 

Ωt
s. The solid is described using reference coordinates X ∈ Ω0

s , and references and current 

coordinates are connected by the mapping ξ : (Ω0
s, t) Ωt

s.
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Figure 2: 

(a) The immersed interface domain and (b) the partitioned fluid (Ωt
f) and solid (Ωt

s) 

subdomains. (c) In the penalty-ILE method, the configuration of the explicit representation 

of the fluid-structure interface (determined by χ) conforms to the boundary of the structure 

(determined by ξ) in an approximate sense. Specifically, the motion of the surface 

representation is determined by the local fluid velocity at the fluid-structure interface Γt
fs

whereas the no-slip condition is satisfied in an approximate sense by spring-like forces that 

penalize displacements between the two representations of the fluid-structure interface. The 

displacement between the two representations is exaggerated here for illustration purposes. 

In practice, we always impose an assertion specifying that the maximum relative 

displacement is at least less than 0.1 of the Cartesian grid spacing.
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Figure 3: 
(a) Schematic diagram of the computational domain and boundary conditions for flow 

around an elastically mounted rigid circular cylinder (Sec. 4.1.1). (b) Maximum transverse 

displacement of the oscillating cylinder (Sec. 4.1.1) for different values of U* with m* = 8/

π, Re = 150, and ζ = 0. Results from the present ILE approach fall within the range of 

values reported in previous studies.
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Figure 4: 
Time history of the transverse displacement of the oscillating cylinder (Sec. 4.1.1) under 

grid refinement. Simulation parameters include U* = 4, m* = 8/π, Re = 150, and ζ = 0.
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Figure 5: 
Spatial convergence of the difference in the displacement between the two Lagrangian 

representations (Sec. 4.1.2). (a) L∞ norm of the difference between the positions of the two 

representations of the fluid-structure interface after the onset of the vortex shedding at t = 55 

s. (b) Time history of the L∞ difference, indicating a consistent behavior for all 

discretizations throughout the simulation.
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Figure 6: 
Centerline displacement response of the 2-DOF elastically mounted rigid cylinder (Sec. 

4.1.2) under grid refinement. There is excellent agreement between the ILE result on the 

finest grid and the results of Blackburn and Karniadakis [114] using a high order spectral 

element method. Simulation parameters include U* = 5, m* = 4/π, Re = 200, and ζ = 0.01.
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Figure 7: 
Phase plots of the center of mass displacement and velocity responses for an elastically 

mounted cylinder with mass ratio of m* = 4/π (Sec. 4.1.2). Other simulation parameters 

include U* = 5, ζ = 0.01, and Re = 200.
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Figure 8: 
Phase plots of the center of mass displacement and velocity responses for an elastically-

mounted cylinder (Sec. 4.1.3) with a low mass ratio m* = 0.4/π. Other simulation 

parameters include U* = 5, ζ = 0.01, and Re = 200.
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Figure 9: 
Vorticity field of the 2-DOF oscillating cylinder (Sec. 4.1.3) with low mass ratio m* = 0.4/π 
at times (a) t = 178.82 s, (b) t = 179.82 s, (c) t = 180.82 s, (d) t = 181.82 s, (e) t = 182.82 s, 

and (f) t = 183.82 s.
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Figure 10: 
Impact of the penalty parameter κ on the computed dynamics for the 2-DOF elastically 

mounted light cylinder (Sec. 4.1.4). Other simulation parameters in these computations are 

m* = 0.4/π, U* = 5, ζ = 0.01, and Re = 200 (a) Accuracy and stability thresholds of κ for a 

range of time step sizes, (b) The ratio between the maximum norm of the difference in the 

positions of the two Lagrangian representations to the finest Cartesian grid spacing over the 

entire course of the simulation, determined using Δt = 0.001 and κ = 500, 1000, and 1400. 

(c) Centerline displacements of the cylinder for the three values of κ highlighted in panel 

(b).
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Figure 11: 
(a) Schematic diagram of the computational domain and boundary conditions for the 

galloping rectangle (Sec. 4.2) with ζs
θ = 0.25. (b) Pitch angle (θ) as a function of time. (c)–(e) 

Vorticity field at times t = 293.9 s, t = 305.9 s, and t = 321.9 s, respectively.
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Figure 12: 

Representative results for the galloping rectangle with zero damping (ζs
θ = 0). (a) Pitch angle 

(θ) as a function of time. (b)–(d) Vorticity field at times t = 377.9 s, t = 385.9 s, and t = 

397.8 s, respectively. Here both the bulk region (shown in gray) and the surface mesh of the 

structure (shown in black) are illustrated to show the effectiveness of the coupling approach 

and to confirm that the two representations move together.
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Figure 13: 
(a) Schematic diagram of the computational domain and boundary conditions for freely 

falling fluttering plate (Sec. 4.3.1). (b) Vorticity field at t = 2.68 s. (c) Comparison of the 

trajectory of the center of mass using the present ILE method (solid blue line) to the 

experimental data of Andersen et al. [97] (red circles).
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Figure 14: 
Enlarged views of the vorticity field for the fluttering plate (see Fig. 13(b)) at times (a) t = 

1.40 s, (b) t = 1.45 s, (c) t = 1.50 s, (d) t = 1.59 s, (e) t = 1.65 s, and (f) t = 1.74 s.
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Figure 15: 
Comparison of the (a) horizontal velocity, (b) vertical velocity, and (c) angular velocity 

between the ILE method (solid blue lines) and the experimental data of Andersen et al. [97] 

(dashed red lines) for the fluttering plate (Sec. 4.3.1).
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Figure 16: 
Schematic diagram of the computational domain and boundary conditions for freely falling 

tumbling plate (Sec. 4.3.2).
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Figure 17: 
Freely falling rectangular plate undergoing tumbling motion at Re = 837. (a) Vorticity field 

at time t = 2.06 s. (b) Comparison of the trajectory of the center of mass using the present 

ILE method (solid blue line) to the experimental data of Andersen et. al. [97].
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Figure 18: 
Enlarged views of the vorticity field for the tumbling plate (see Fig. 17(a)) at times (a) t = 

0.64 s, (b) t = 0.66 s, (c) t = 0.70 s, (d) t = 0.72 s, (e) t = 0.74 s, and (f) t = 0.78 s.
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Figure 19: 
Time history of the (a) horizontal velocity, (b) vertical velocity, and (c) angular velocity for 

the tumbling plate (Sec. 4.3.2).
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Figure 20: 
(a) A schematic of the initial setup for the freely falling steel bead (Sec. 4.4) with ρs/ρf = 

7.8. Note that lengths in the schematic are not to scale. (b) Vertical velocity of the freely 

falling steel bead, including a comparison to the experimental data of Mordant and Pinton 

[98] and the numerical results of Yang and Stern [115] and Liu and Hu [116]. (c)–(e) 

Instantaneous wake vortex patterns illustrated as isosurfaces of the Q criterion at the time t = 

0.132 s, t = 0.146 s, and t = 0.179 s, respectively.
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Figure 21: 
(a) A schematic of the initial setup of a single sphere in a small flow chamber with near 

unity solid-fluid density ratio (Sec. 4.5). (b) Time history of the vertical position and (c) 

vertical sedimentation velocity.
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Figure 22: 
Schematic diagram of the computational domain for freely rising sphere (Sec. 4.6).
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Figure 23: 
Trajectory of the center of mass for the rising sphere (Sec. 4.6) in the (a) x-y and (b) x-z 
planes along with the experimental data of Horowitz and Williamson [100]. The vortex wake 

structure for the rising sphere at locations A, B, and C shown on the x-y plane trajectory. 

Simulation parameters include Re = 450, m* = 0.11, and D = 1.3 cm.

Kolahdouz et al. Page 62

J Comput Phys. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 24: 
Model setup of the bileaflet mechanical heart valve (Sec. 4.7). (a) Schematic cross-section 

view of the aortic test section on the x-y mid-plane plane showing the dimensions and 

boundary conditions. A three-element Windkessel model is used at the downstream and 

upstream of the test section while all other boundaries are set to solid wall boundary. (b) 

Assembly of the aortic test section including the bileaflet valve and their position around the 

hinges. (c) Computational mesh of the aortic test section and the valve. (d) The 

computational domain in which the aortic test section is embedded in. The block-structured 

adaptively refined Cartesian grid is shown on the x-y mid-plane.
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Figure 25: 
Velocity magnitudes of bileaflet mechanical heart valve (Sec. 4.7) on the x-y mid-plane 

bisecting the valve, given at times (a) t = 0.0225 s, (b) t = 0.1050 s, (c) t = 0.1275 s, (d) t = 

0.1875 s, (e) t = 0.2925 s, (f) t = 0.3550 s, (g) t = 0.3675 s, and (h) t = 0.375 s.
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Figure 26: 
Computational mesh of the patient-averaged model of the inferior vena cava (IVC), the 

locally refined Cartesian grid and rigid spherical clots insde IVC (Sec. 4.8).
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Figure 27: 
Transport of spherical clots inside IVC under exercise condition. The snapshots are given 

from left to right at times t = 5.0 s, t = 6.75 s, t = 7.50 s, and t = 8.50 s. A top view of 

velocity magnitudes are shown for cross section A.
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Table 1:

Dimensionless origin of oscillation (xc/D) and the Strouhal number (St) for the 2-DOF elastically mounted 

rigid cylinder (Sec. 4.1.2). Simulation parameters include m* = 4/π, U* = 5, ζ = 0.01, and Re = 200, which 

generate vortex-induced vibrations (VIV).

xc/D St

Blackburn and Karniadakis [114] 0.620 -

Yang et al. [88] 0.639 -

Yang & Stern [112] - 0.187

Kim et al. [113] 0.622 0.186

Qin et al. [59] 0.626 0.187

ILE method 0.619 0.187
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Table 2:

Dimensionless origin of oscillation (xc/D) for low and very low mass ratios of the 2-DOF elastically mounted 

rigid cylinder (Sec. 4.1.3).

m* = 0.3 m* = 0.2 m* = 0.1 m* = 0.05 m* = 0.01 m* = 0.005

Kim et al. [113] 2.27 - - - - -

ILE method 2.83 4.41 9.39 19.01 91.50 160.10
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Table 3:

Comparison of the maximum pitch angle (θmax) and galloping frequency (fθ) for the galloping rectangular 

structure (Sec. 4.2) with zero damping (ζs
θ = 0) and non-zero damping (ζs

θ = 0.25).

ζs
θ = 0 ζs

θ = 0.25

θmax fθ θmax fθ

Robertson et al. [96] - -   15° 0.0191

Yang & Stern [115] 123° 0.0244 15.7°  0.0198

Yang et al. [112] 125° 0.0243 16.1°  0.0197

ILE method 124° 0.0243 15° 0.0198
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Table 4:

Parameters for freely falling sphere with near-unity density ratio (Sec. 4.5)

Case ρf [g · cm−3] ρs/ρf μf [g · cm−1 · s−1] V‒ [cm ⋅ s−1] Re

1 (case 1 of ten Cate et al. [99]) 0.970 1.155 0.0373 3.8 1.5

2 (case 4 of ten Cate et al. [99]) 0.960 1.167 0.058 12.8 31.9
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