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Abstract

Since 2000, the National Cancer Institute’s Cancer Intervention and Surveillance Modeling

Network (CISNET) modeling teams have developed and applied microsimulation and statis-

tical models of breast cancer. Here, we illustrate the use of collaborative breast cancer multi-

level systems modeling in CISNET to demonstrate the flexibility of systems modeling to

address important clinical and policy-relevant questions. Challenges and opportunities of

future systems modeling are also summarized. The 6 CISNET breast cancer models

embody the key features of systems modeling by incorporating numerous data sources and

reflecting tumor, person, and health system factors that change over time and interact to

affect the burden of breast cancer. Multidisciplinary modeling teams have explored alterna-

tive representations of breast cancer to reveal insights into breast cancer natural history,

including the role of overdiagnosis and race differences in tumor characteristics. The models

have been used to compare strategies for improving the balance of benefits and harms of

breast cancer screening based on personal risk factors, including age, breast density, poly-

genic risk, and history of Down syndrome or a history of childhood cancer. The models have

also provided evidence to support the delivery of care by simulating outcomes following clini-

cal decisions about breast cancer treatment and estimating the relative impact of screening
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and treatment on the United States population. The insights provided by the CISNET breast

cancer multilevel modeling efforts have informed policy and clinical guidelines. The 20 years

of CISNET modeling experience has highlighted opportunities and challenges to expanding

the impact of systems modeling. Moving forward, CISNET research will continue to use sys-

tems modeling to address cancer control issues, including modeling structural inequities

affecting racial disparities in the burden of breast cancer. Future work will also leverage the

lessons from team science, expand resource sharing, and foster the careers of early stage

modeling scientists to ensure the sustainability of these efforts.

Author summary

Since 2000, our research teams have used computer models of breast cancer to address

important clinical and policy-relevant questions as part of the National Cancer Institute’s

Cancer Intervention and Surveillance Modeling Network (CISNET). Our 6 CISNET

breast cancer models embody the key features of systems modeling by incorporating

numerous data sources and reflecting tumor, person, and health system factors that

change over time and interact to represent the burden of breast cancer. We have used our

models to investigate questions related to breast cancer biology, compare strategies to

improve the balance of benefits and harms of screening mammography, and support

insights into the delivery of care by modeling outcomes following clinical decisions about

breast cancer treatment. Moving forward, our research will continue to use systems

modeling to address issues related to reducing the burden of breast cancer including

modeling structural inequities affecting racial disparities. Our future work will also lever-

age lessons from engaging multidisciplinary scientific teams, expand efforts to share

modeling resources with other researchers, and foster the careers of early stage modeling

scientists to ensure the sustainability of these efforts.

Introduction

The purpose of systems epidemiology is to draw on expertise from different disciplines to

enhance understanding of factors influencing health and disease and to use that knowledge to

evaluate interventions for improving health outcomes [1–3]. Systems epidemiology uses

computational tools such as simulation modeling to integrate data from numerous sources

reflecting the many interdependent, multilevel influences on health and disease [3,4].

Systems modeling provides a flexible epidemiologic method to address a variety of policy

and clinically relevant questions in cancer control. Since 2000, the National Cancer Insti-

tute’s Cancer Intervention and Surveillance Modeling Network (CISNET) modeling teams

have developed and applied microsimulation and statistical models of several types of can-

cer, including breast cancer [4]. CISNET breast cancer models incorporate data on distribu-

tions of tumor characteristics, women’s risk factors, and healthcare use of breast cancer

control interventions [5,6]. These models have been used to evaluate the impact of various

screening and treatment interventions on multiple health outcomes in the overall United

States population and population subgroups that differ by race, risk, and/or breast density

[7–16].

Here, we illustrate the use of collaborative breast cancer modeling in CISNET as a systems

epidemiology method. Examples are provided that demonstrate the key features of systems

modeling. We also provide recommendations for future team science efforts to develop and
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apply systems modeling to address policy-relevant cancer prevention and control questions.

This article is intended to illustrate the potential of systems modeling and highlight challenges

and opportunities for systems modeling to contribute to meeting national cancer goals.

Overview of models

Ethics statement

No personally identifiable information was used in this study or the modeling research sum-

marized herein. The University of Wisconsin Health Sciences Institutional Review Board

determined that this study was not human subjects research (Protocol #2020–0620).

The CISNET Breast Working Group includes 6 multilevel microsimulation or analytic

models: Model D (Dana Farber Cancer Institute) [17], Model E (Erasmus Medical Center)

[18], Model M (MD Anderson Cancer Center) [19], Model GE (Georgetown University-

Albert Einstein College of Medicine) [19], Model S (Stanford University) [20], and Model WH

(University of Wisconsin-Madison and Harvard Pilgrim Healthcare Institute) [21]. All models

share common inputs but were developed independently, resulting in differences in structure

and underlying assumptions.

The tumor, individual person (woman), and health system levels in the models interact to

provide insight into the factors affecting breast cancer incidence, mortality, and other health

outcomes. The models incorporate estimates of age-specific breast cancer incidence and estro-

gen receptor (ER)/human epidermal growth factor receptor 2 (HER2) subtype-specific survival

trends in the absence of screening or treatment and then incorporate information on how

screening and molecular subtype-specific treatment patterns affect the underlying trends.

Based on age-specific performance characteristics, screen detection during the preclinical

screen-detectable period can result in diagnosis of earlier-stage or smaller tumors than diag-

nosed via symptomatic detection. Regardless of method of tumor detection, women diagnosed

with breast cancer receive treatment specific to the molecular subtype of their tumors and

their age at diagnosis [22].

Model input parameters

Each modeling group begins with a common set of inputs. They may then modify the form of

the inputs or use the inputs as calibration targets based on their specific model structure to

best reproduce US breast cancer incidence and mortality trends as reported in the Surveil-

lance, Epidemiology, and End Results (SEER) Program [23]. Examples of common model

input parameters are described by systems level in Table 1 with additional details available in

prior publications [8,24] and online [25].

Tumor level

The models estimate age-specific incidence for first diagnosis of breast cancer overall and by

molecular subtype over time and by birth cohort in the absence of screening [26]. Second

breast cancers including recurrences and new primary breast cancers are not yet modeled

but are currently being added for forthcoming studies. Five models use common estimates of

breast cancer incidence rates in the absence of screening (“background incidence rate”) for

each calendar year and single year of age derived from an age–period–cohort model

[17,18,20,21]. One model (Model M) assumes a linear model for the annual incidence rates

during the years 1975 to 2012 under a hypothetical scenario of no screening then adds the

effect of screening dissemination patterns to the linear model. A Bayesian approach is

applied to adjust the linear model parameters so that the model output matches the SEER
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rates in 1975 to 2012, resulting in an annual increase of 0.3% (SD 0.2%) of the baseline inci-

dence in 1975 (approximately 167 per 100,000) or equivalently 0.5 cases per 100,000 women

per year [19].

All 6 models consider 4 breast cancer molecular subtypes based on age-specific proportions

of ER and HER2 positive and negative breast cancers in the population. Stage of breast cancer

at detection with and without screening is based on data from the Breast Cancer Surveillance

Consortium (BCSC) [8]. Tumors are assigned sojourn times (defined as the time from when

tumors are detectable by screening until they are detectable by clinical symptoms) or mean

tumor doubling times specific to subtype conditioning on age group (�40, 40 to 50, and�50)

[22]. Tumor growth for model WH is based on a Gompertz-type function with a lag to account

for the difference in timing of detection by screening or symptoms [21]. Tumors can be

detected at a younger age and earlier stage (or smaller size) if they are screen detected than if

they are clinically detected.

In all models, some tumors could be considered overdiagnoses, where overdiagnosis is

defined as screen-detected cancers that would not have been diagnosed within the woman’s

lifetime in the absence of screening. These tumors have no effect on breast cancer–specific

mortality.

Table 1. Exemplar breast cancer model input parameters by level at which they are modeled in CISNET.

Parameter and level Description Reference

Tumor level

Breast cancer incidence in the absence of screening Estimated from age–period–cohort models for single years and ages or with a 3% annual increase

from 1975 forward

[19,20,26]

Stage of breast cancer at diagnosis SEER historical stage or AJCC stage by age group (<50, 50–64, and�65) by presence or absence of

screening

BCSC

Distribution of ER/HER2 subtype Molecular subtype by age (<50 and�50) and stage at diagnosis (AJCC or SEER Summary Stage) BCSC

Sojourn time Varies by decade of age and molecular subtype [27]

Mean stage dwell time/tumor growth rate Varies by molecular subtype, age, and stage of disease at diagnosis by model [17,19–21]

Person level

Breast density Prevalence of breast density (BI-RADS a, b, c, d) by age group (40–49, 50–64, and�65) BCSC

Risk factors Varies by model and can include family history of breast cancer, polygenic risk, childhood cancer,

and Down syndrome, among others

[9,13,15,28]

Other-cause mortality Age at death from a cause other than breast cancer by birth cohort [29]

Race Race-specific incidence, mortality, screening and treatment, stage, molecular subtype, etc. [11,12,30]

Comorbidity Comorbidity level–specific other-cause mortality [31]

Health system level

Probability of having a mammogram Frequency of having an annual, biennial, or irregularly spaced mammogram by decade of age and

calendar year

[24]

Performance of mammography Sensitivity of initial and subsequent mammography by age (25–39, 40–49, 50–64, and�65) and

screening interval (annual, biennial, and irregular)

BCSC

Survival after breast cancer diagnosis in the absence

of adjuvant therapy

26-year breast cancer molecular subtype-specific survival by decade of age and stage of disease or

tumor size

[22]

Probability of having adjuvant breast cancer

treatment

Dissemination of systemic treatment by age (<50, 50–69, and�70), stage at diagnosis, and

molecular subtype

[24]

Hazards of reduction in mortality (or cure) with

adjuvant treatment

Meta-analysis of clinical trial results by age and stage at diagnosis [32]

AJCC, American Joint Committee on Cancer; BCSC, Breast Cancer Surveillance Consortium; BI-RADS, Breast Imaging Reporting and Data System; CISNET, Cancer

Intervention and Surveillance Modeling Network; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; SEER, Surveillance, Epidemiology, and End

Results.

https://doi.org/10.1371/journal.pcbi.1009020.t001
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Individual person level

The models simulate the life history of each individual woman until death. At the start of the

simulation, a woman is assigned a date at birth and date of death from other-cause mortality.

Based on the incidence parameters described above, some women develop breast cancer and

are assigned a date (and age) of symptomatic clinical detection for breast cancer in the absence

of screening. If the date of breast cancer is before the date of other-cause death, the cancer can

be screen or clinically detected. Women can die of non-breast cancer causes at any time; non-

breast cancer mortality rates by age and calendar year are derived from national data [29].

Breast density is a radiographic feature observed on mammogram images that reflects the

degree to which fibroglandular tissue is radio-lucent (white on the image) or fatty and radio-

opaque (dark on the image). Women are assigned one of 4 breast density levels [Breast Imag-

ing Reporting and Data System (BI-RADS) categories: almost entirely fat, scattered fibrogland-

ular density, heterogeneously dense, or extremely dense] at age 40 [33]. Women are assigned

to either the same breast density category or to the next lower category at ages 50 and 65 based

on observed age-specific prevalence in the BCSC [34,35]. We assume density does not change

after age 65. Density affects the risk of breast cancer and mammography performance [24].

Health system level

Although women are assigned receipt of screening or therapy at the individual person level in

the models, these interventions are delivered via the health system. Hence, healthcare policies

at the health system level heavily influence breast cancer screening and treatment that women

receive. Women are assigned an age at first mammogram and screening frequency based on

the distribution observed for their birth cohort using data from the BCSC, the National Health

Interview Survey, and the US Food and Drug Administration’s Mammography Quality Stan-

dards Act and Program [24]. Model inputs for mammography performance are based on data

from the BCSC and depend on a woman’s age (25 to 39, 40 to 49, 50 to 64, and�65), density

level, screening interval (annual, biennial, and triennial/infrequent), and whether the mammo-

gram was the first screening or not [8,24].

All women diagnosed with breast cancer are assumed to receive initial therapy with mastec-

tomy or lumpectomy with radiation, but local therapy is not explicitly modeled. Subtype-spe-

cific adjuvant treatment (chemotherapy, endocrine therapy, and trastuzumab) is assigned

according to a dissemination model based on SEER patterns of care special studies (1980 to

1996) and the National Comprehensive Cancer Network Outcomes Database (1997 to 2012)

[24]. Breast cancer survival depends on age group (<40, 40 to 49, 50 to 59, 60 to 69, and 70 to

84), and American Joint Committee on Cancer (AJCC)/SEER stage or tumor size in the

absence of screening and treatment (background survival) as estimated from our prior

research [8,22]. Systemic treatment reduces the hazards of breast cancer death (Models D, GE,

M, and S) or results in cure for some cases (Models E, WH) based on age-specific data from

the most current Oxford Overview of clinical trials [32]. Since the Overview did not find age

differences in efficacy, hazards reductions are applied to all age groups.

Model output analysis

The population of US women is modeled starting in the year 1975 until the most recent year of

data available in the SEER Program. Either the entire population can be modeled (all ages and

birth cohorts) or a single recent birth cohort can be selected to simulate expected outcomes of

a contemporary cohort of women receiving the current standard of care for breast cancer

screening and treatment. The models generate a wide range of benefit and harm outcomes

(Table 2).
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Mortality reductions can be attributable to screening alone, treatment alone, or the combi-

nation in a given calendar year by calculating the difference between the mortality rates pre-

dicted with an intervention and the background mortality rate in the absence of screening and

treatment. There are several methods for these estimates that consider the potential for nega-

tive synergy between the contributions of screening and systemic treatment on mortality

reductions (i.e., as treatment becomes more effective at later stages, the contribution of screen-

ing to mortality reductions decreases) [8].

Validation and uncertainty analysis

As an exercise to validate models against data that were not used in their construction and cali-

bration, we have replicated results of the United Kingdom Age Trial of mammography screen-

ing for women in their 40s. The results demonstrated that the models closely reproduced the

effect of annual mammography screening on breast cancer incidence and long-term mortality

[36]. To capture model uncertainty, all analyses are reported by model and summarized as the

average and range across models. The range provides a measure of structural uncertainty

because each model has different assumptions and structures to represent unobservable factors

such as background incidence and tumor parameters. Input parameter uncertainty is captured

through inherent modeling approaches including the random selection of parameters for each

simulated woman from the full range of joint parameter distributions as well as sensitivity

analyses. As input parameters are updated in the models, reports featuring the new data

include sensitivity analyses to demonstrate the impact on the findings after varying the new

input values. While 95% credible intervals are sometimes presented around single model esti-

mates in reports, the ranges provided by the models (when multiple models are used) provide

an informative interval that describes uncertainty in modeling structure and assumptions—

the dominant source of uncertainty—rather than parameter sampling error [21].

Examples of CISNET multilevel modeling

Previous studies have demonstrated the flexibility of the CISNET breast cancer models to

incorporate the complex interplay between the multiple factors on breast cancer as reflected by

Table 2. Common outputs of the CISNET breast cancer models.

Counts Benefits Harms

• Proportion of women alive

• Number of DCIS and invasive cancers

• Stage

• Number of breast cancer deaths1

• Number of distant recurrences

• Number of mammograms

• Number of survivors with adverse effects

• Surgery

• Number of secondary cancers

• Costs

• Cancer deaths averted

• % reduction in mortality

• Life year gains

• Quality-adjusted life year gains

• Distant recurrences avoided

• Distant recurrence-free survival

• Breast cancer survival

• Quality-adjusted survival

• Interval cancers

• Advanced staged diagnoses2

• Overdiagnosis

• False positives3

• Biopsies after false positives

• Secondary cancers

• Adverse treatment effects

Modeling teams are currently adding new outputs as shown in bold.
1Incidence and mortality rates can be age-adjusted based on the most recent US Standard Population used by SEER.

Incidence is modeled over the lifetime. In future research, the models may estimate 5-year risk of developing breast

cancer or risk of developing an advanced prognostic stage.
2Advanced stage can be defined as node positive disease (i.e., regional or stage 2b) or advanced prognostic stage.
3Positive mammography exam with no breast cancer diagnosed within the follow-up period.

CISNET, Cancer Intervention and Surveillance Modeling Network; DCIS, ductal carcinoma in situ; SEER,

Surveillance, Epidemiology, and End Results.

https://doi.org/10.1371/journal.pcbi.1009020.t002
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tumor, person, and health system levels. Here, we summarize exemplar findings by the

CISNET breast cancer researchers that demonstrate these interactions.

Tumor and health system level interactions

The number of treatment options for women diagnosed with breast cancer has increased dra-

matically over the past 2 decades. The CISNET breast cancer modelers have quantified the

associations of screening and treatment with reductions in US breast cancer mortality rates.

Recent work extended a previous analysis [7] by updating mortality trends considering molec-

ular subtype and advances in systemic treatment [8]. As women in some models are diagnosed

with breast cancer, their tumors are assigned a molecular subtype, while other models incorpo-

rate subtype-specific sojourn times, thus the natural history of the tumors are linked with

treatments—received through the health system—and survival. Based on results from all

6 models, we found that delivery of newer adjuvant therapies resulted in greater estimated

reductions in overall breast cancer mortality than screening advances from 1995 to 2012. Spe-

cifically, in 2012, the estimated reduction in overall breast cancer mortality rate was 49%

(model range, 39% to 58%), with 63% (model range, 49% to 74%) of this reduction associated

with treatment and 37% (model range, 26% to 51%) associated with screening. Of the 63%

associated with treatment, 31% was associated with chemotherapy, 27% with endocrine ther-

apy, and 4% with trastuzumab. The estimated relative contributions associated with screening

versus treatment varied by molecular subtype (Fig 1). For example, for ER-negative/HER2-ne-

gative cases, the relative contributions by treatment were always lower than those by screening

reflecting the lack of effective treatments for this subtype.

Fig 1. The relative reduction in breast cancer mortality (%) by treatment (blue line) and screening (red line) for the

(A) ER+, HER2−, (B) ER+, HER2+, (C) ER−, HER2+, and (D) ER−, HER2− molecular subtypes with 95% credible

intervals (dashed lines), 1995–2012, Model M. ER, estrogen receptor; HER2, human epidermal growth factor receptor

2. Image source: Plevritis et al., JAMA 2018 [8].

https://doi.org/10.1371/journal.pcbi.1009020.g001
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CISNET modeling teams have also examined linkages between the tumor and health system

level interactions related to the impact of radiotherapy by simulating a clinical trial. This

research conducted by Models GE and M illustrated that simulation modeling can prove useful

in the modification or redesign of clinical trials. This analysis found that omission of radio-

therapy in hormone-sensitive patients with low recurrence risk may lead to a modest increase

in locoregional recurrence event rates, but did not appear to increase the rate of distant recur-

rence or death [37,38]. Model GE has also completed a series of analyses on the use of Onco-

type DX to guide adjuvant chemotherapy decisions, demonstrating the power of modeling to

support clinical decision-making [31,39].

As another example of the interaction between the natural history of breast cancer repre-

sented by tumor growth and the health system in the CISNET models, we have investigated

several issues focused on ductal carcinoma in situ (DCIS). Following the widespread dissemi-

nation of mammography screening for breast cancer, DCIS incidence increased sharply [40].

While ongoing trials in the US and Europe are testing active surveillance [41–43], women with

DCIS are generally treated in the healthcare system similar to women with local invasive breast

cancer, receiving surgery and adjuvant hormonal therapy. However, the value of detecting

DCIS by screening is uncertain as not all DCIS might progress to invasive breast cancer. The

natural history of DCIS is largely unknown and believed to be more complex than the progres-

sion of invasive breast cancer. Published data on modeling of the DCIS natural history show

large variations in model structures, assumptions, estimation methods, and data sources [44].

Two CISNET models (Models D and E) investigated the natural history of DCIS and

selected 6 plausible parameterizations that could explain DCIS and invasive breast cancer inci-

dence in the US. Using the models, they estimated mean sojourn time in the preclinical

screen-detectable DCIS state, overdiagnosis of DCIS, and progression to invasive breast cancer

in the absence of biopsy or complete excision [45]. Overdiagnosis of DCIS was defined as

screen-detected DCIS lesion that would not have been diagnosed in the absence of screening

as it would not have progressed to clinical DCIS or invasive breast cancer in the woman’s

remaining lifetime. For model-specific parameters, Model D used the data from the Norwe-

gian Breast Cancer Screening Program [46] and Model E calibrated with SEER data on DCIS

[44]. Details have been reported previously [17,18,47]. Both models characterized the DCIS

progression from undetectable DCIS to screen-detectable preclinical DCIS, clinical DCIS, or

invasive breast cancer. Regression was allowed from the preclinical DCIS state to the “no

breast cancer” state. Submodels assumed 30%, 50%, or 80% of breast lesions progress from

undetectable DCIS to preclinical screen-detectable DCIS. Each model additionally allowed or

prohibited DCIS regression. Estimated mean sojourn time in the preclinical screen-detectable

DCIS state ranged 0.2 to 7.7 years, but mostly less than 4 years. Estimated overdiagnosis ran-

ged 3.1% to 4.8% without regression and 13.3% to 19.3% with regression for Model D. The

level of overdiagnosis was much higher in model E, ranging 35% to 66% [45].

The modeling work on DCIS shows the challenges to deciding between alternative repre-

sentations of DCIS natural history and the complexity of healthcare decisions for DCIS. Main

findings from Models D and E indicate that the majority of screen-detectable but unbiopsied

preclinical DCIS lesions progress to invasive breast cancer and that the mean sojourn time in

preclinical DCIS is relatively short. Given the heterogeneous nature of DCIS, the progression

of DCIS needs to be further modeled by grade and molecular subtype to more completely

reflect the key features of DCIS biology. Overall, this body of work illustrates that screening

approaches for breast cancer selectively detect different tumor characteristics, and CISNET

models are well suited for representing the interplay between tumor and detection features in

healthcare delivery.
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Person and health system level interactions

In CISNET, we have examined several instances where person-level factors interact with health

system level factors to influence breast cancer outcomes. In a first example of person and

health system level interactions, we used 2 CISNET models (Models E and GE) to evaluate the

benefits and harms of mammography screening based on polygenic risk (313 single nucleotide

polymorphisms, SNPs [48]) and family history of breast cancer in a first-degree female relative.

Models accounted for the ages at which women learned of their family member’s breast cancer

diagnosis or whether women had no first-degree family history of breast cancer in their life-

times. Screening strategies varied by initiation age (30, 35, 40, 45, and 50) and interval (annual,

hybrid, biennial, and triennial). We found that women at increased risk due to a positive fam-

ily history, polygenic risk, or both could benefit importantly from starting screening at an ear-

lier age, while women at the lower end of the risk spectrum could consider screening at

triennial intervals. At the population level, risk-based screening based on family history and

polygenic risk was predicted to lead to a substantial increase in life years gained (154 versus

118 per 1,000 women) compared to biennial non-risk-based screening from age 50 to 74 years.

We also found that risk-based screening resulted in a substantial decrease in false positives

(1,169 versus 1,666) compared to American Cancer Society guideline recommended screening

for all women (annual from age 45 to 54 and biennial from age 55 to 74 years) (Table 3). Over-

all, we found that using the person-level factors breast cancer family history and polygenic risk

to tailor (system level) screening strategies, more breast cancer deaths can be prevented and

lives extended [28]. In general, findings were consistent across the 2 models with the most var-

iation observed for estimates of overdiagnosis.

In another example of person and health system level interactions, we used two of the CIS-

NET models (Models E and WH) to evaluate the benefits and harms of mammography screen-

ing for women with Down syndrome, who have unique personal characteristics related to

breast cancer outcomes [13]. Women with Down syndrome have lower breast cancer risk

(approximately 75% lower risk of breast cancer compared to average-risk women) and signifi-

cantly lower life expectancy (median 57.5 years in the US) than women without Down syn-

drome. In addition to estimating harms and benefits of mammography screening associated

with various screening policies, we also compared the harm/benefit ratios as represented by

Table 3. Risk-based screening strategies based on breast cancer family history, polygenic risk score, and family history combined with polygenic risk.

Screening guideline1 Screening strategy Number of

screens

Life years

gained2
Breast cancer deaths

averted2
Overdiagnoses False positives

USPSTF Biennial 50–74 11,182 118 6.7 14.5 920

Risk based Family history 11,840 125 6.9 14.9 1,000

Risk based Polygenic risk 12,990 141 7.4 16.0 1,156

Risk based Family history and polygenic

risk

13,089 154 7.9 16.6 1,169

American Cancer Society Annual 45–54, Biennial 55–74 17,984 151 7.7 16.5 1,666

American College of

Radiology

Annual 40–74 31,083 192 9.6 21.5 2,910

Results averaged from Models E and GE and weighted to the female population using prevalence based on the 313 SNP polygenic risk score and breast cancer family

history combined. Source including individual model results: van den Broek et al., J Natl Cancer Inst 2020 [28].
1Age 74 was used as the age of the last screen for comparability across screening strategies for all analyses.
2The life years gained and breast cancer deaths averted are relative to the life years and breast cancer deaths of women at the same level of age-specific breast cancer risk

who are never screened.

SNP, single nucleotide polymorphism; USPSTF, US Preventive Services Task Force.

https://doi.org/10.1371/journal.pcbi.1009020.t003
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the number of mammograms, false positives, and benign biopsies per each averted breast can-

cer death and life year saved. We found that the harm/benefit ratios for all evaluated mammog-

raphy screening policies were consistently less favorable for women with Down syndrome

than those observed for average-risk women. We found that the best harm/benefit ratios for

women with Down syndrome were obtained if these women undergo one-time screening at

age 50 (Table 4). Person-level differences in terms of risk of breast cancer and life expectancy

between women with and without Down syndrome implied that health system level policies

for starting and ending ages of mammography screening may need to be set differently for

these women.

Similarly, we used 2 CISNET models (Models GE and WH) to evaluate the clinical benefits

and harms associated with screening guidelines for a group with unique personal characteris-

tics [15]. Survivors of childhood cancer face high risks for early mortality and treatment-

related late effects, including subsequent breast cancer [49–51]. Approximately 30% of female

survivors previously treated with chest radiation will develop breast cancer before age 50, a

risk similar to that of BRCA1 mutation carriers [52]. These women also face higher competing

mortality due to treatment-related late effects and a high burden of chronic diseases at an early

age. [53] This competing mortality may reduce benefits from screening and treatment.

Although the Children’s Oncology Group recommends early screening for breast cancer with

mammography and breast MRI for these survivors starting at age 25 [54], adherence rates are

low, in part due to uncertain benefits and harms.

To estimate the clinical outcomes associated with screening among these women, we

adapted the models using data from the Childhood Cancer Survivor Study [55] to reflect the

personal and tumor-level factors for the clinical course of breast cancer among these high-risk

women. We estimated that among female survivors previously treated with chest radiation,

nearly 60% will develop breast cancer in their lifetime. We found that early initiation of breast

cancer screening could avert half or more of the expected breast cancer deaths. Similar to the

work on women with Down syndrome, we compared estimated harm/benefit ratios to bench-

marks for average-risk US women undergoing the US Preventive Services Task Force

(USPSTF) recommendation of biennial screening between ages 50 and 74 [15]. Although the

Table 4. Incremental harm/benefit ratios of various screening strategies (according to screening frequency and age) compared to no screening for average-risk

women and women with Down syndrome.

Harm/benefit ratios Average-risk women (range across models) Women with Down syndrome (range

across models)

Screening strategy Biennial 50–

74

Annual 50–

74

Biennial 40–

74

Annual 40–49, Biennial

50–74

Biennial 50–74

Number of mammograms per averted breast

cancer death

2,240

(1,608–2,871)

5,974

(5,056–

6,893)

5,412

(4,473–6,350)

7,446

(6,164–8,728)

16,735

(15,020–18,449)

Number of mammograms per life year gained 122

(99–146)

308

(278–339)

173

(149–197)

234

(204–263)

2,752

(1,670–3,835)

Number of false positives per averted breast

cancer death

190

(120–260)

459

(381–537)

676

(518–833)

890

(712–1,068)

1,493

(1,406–1,580)

Number of false positives per life year gained 10

(7–13)

24

(21–26)

22

(17–26)

28

(24–32)

242

(156–328)

Number of benign biopsies per averted breast

cancer death

27

(17–36)

81

(53–108)

88

(67–108)

116

(93–139)

209

(197–221)

Number of benign biopsies per life year gained 1.4

(1.0–1.8)

3.3

(2.9–3.7)

2.8

(2.2–3.4)

3.6

(3.1–4.2)

34.0

(21.9–46.0)

Results averaged from Models E and WH. Source: Alagoz et al., J Gen Intern Med 2019 [13].

https://doi.org/10.1371/journal.pcbi.1009020.t004
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absolute number of screening tests, false positives, and benign biopsies were higher among

survivors, because of the greater survival benefits, harm/benefit tradeoffs for survivors were

more favorable than these benchmarks, suggesting existing guidelines are reasonable (Fig 2).

Importantly, we found that MRI accounted for the majority of the screening benefit. Our find-

ings highlight the importance of reducing barriers to MRI screening for these high-risk

women and underscore the need to identify other options for breast cancer prevention as

some survivors may prefer mammography and/or seek to reduce their risk even further. In

future modeling research, we will be extending this work to evaluate the impact of healthcare

system level factors such as physician recommendations for primary prevention with hor-

monal therapy on screening strategies and outcomes.

Tumor, person, and health system level interactions

Modeling of 2 factors—age and breast density—are an example of modeling that incorporates

interactions across all 3 levels of factors that affect breast cancer outcomes. Breast density in

the CISNET models is assigned to each woman at the time she begins receiving mammography

screening. As described above, density is assigned to women in 4 values (reflecting lower to

higher density) and 3 age groups (Table 1). In certain focused analyses, risk of breast cancer

incidence, and thus tumor inception for models with natural history components, depends on

breast density. In these analyses, sensitivity and specificity of screening mammography also

vary by breast density in addition to age, screening round (first versus subsequent), and

screening frequency. For example, in an analysis parallel with modeling conducted for the

USPSTF [56], 3 models (Models E, GE, and WH) compared a metric of the balance of benefits

and harms from mammography screening (the ratio of false-positive mammograms to breast

Fig 2. Harm/benefit ratios for breast cancer screening strategies by screening modality and starting age among

childhood cancer survivors. Shown are estimates for the number of false-positive mammogram results per breast

cancer death averted for each screening strategy. For context, the published benchmark estimates for the harm/benefit

ratio is shown for average-risk women in the general population undergoing screening based on USPSTF

recommendations (biennial mammography between 50 and 74 years of age). A lower ratio indicates a more favorable

balance of harms to benefits. GE, Georgetown University Medical Center and Albert Einstein College of Medicine;

Mammo, mammography; MRI, magnetic resonance imaging; USPSTF, US Preventive Services Task Force; WH,

University of Wisconsin–Madison and Harvard Pilgrim Healthcare Institute. Image source: Yeh et al., Ann Intern Med
2020 [15].

https://doi.org/10.1371/journal.pcbi.1009020.g002
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cancer deaths averted) according to breast density and screening frequency for 2 age groups:

50 to 64 and 65 to 74 (Fig 3) [9].

Findings demonstrated how, for average-risk women, moving from screening mammogra-

phy every 3 years to every 2 years increases the harm/benefit ratio—as measured by false-posi-

tive mammograms per death averted—less than moving from biennial to annual screening.

This harm/benefit ratio is higher for women with scattered fibroglandular and heteroge-

neously dense breasts than for women with almost entirely fatty or extremely dense breasts.

For older women, this harm/benefit ratio is essentially equivalent for biennial and triennial

screening. As screening performance improves with technological advances, such as digital

breast tomosynthesis [57], the CISNET models will continue to compare the effectiveness of

alternate screening strategies and their impact on the balance of benefits and harms while also

accounting for the interaction between these health system developments with tumor- and

person-level factors.

Challenges and opportunities

The CISNET Breast Working Group has used multilevel systems modeling over the past 20

years to provide evidence to guide high priority public health, clinical, and individual decisions

to reduce the burden of cancer. Models incorporate key features of tumors to address ques-

tions related to the biology of breast cancer and its relation to the different approaches for

early detection. Person-level characteristics such as age, family history of breast cancer, poly-

genic risk, and breast density have also been evaluated to elucidate screening strategies that

improve the balance of benefits, harms, and costs of screening. As an extension of our work

focused on women of average risk, we have also examined screening and treatment approaches

for special populations including survivors of childhood cancer and women with Down

syndrome.

The models include the interactions between breast cancer epidemiology trends, evolution

in screening technology, advances in breast cancer therapy, and new insights into the hetero-

geneous biology of each molecular subtype of breast cancer. The models incorporate various

data types, structures and sources to reflect the tumor, person, and health system levels of data

Fig 3. False-positive mammograms per breast cancer death averted according to age, breast density, and

screening frequency among women with average breast cancer risk. Results shown from Model E compared with

the scenario of no mammography screening. Values for women aged 65–74 years assume all women received biennial

screening during ages 50–64 years. Image source: Trentham-Dietz et al., Ann Intern Med 2016 [9].

https://doi.org/10.1371/journal.pcbi.1009020.g003

PLOS COMPUTATIONAL BIOLOGY Breast cancer systems modeling in CISNET

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009020 June 17, 2021 12 / 22

https://doi.org/10.1371/journal.pcbi.1009020.g003
https://doi.org/10.1371/journal.pcbi.1009020


needed to portray the complexity of this common disease. As the CISNET Consortium contin-

ues its efforts to interrogate the pressing issues related to breast cancer incidence, detection,

treatment and survival, additional challenges and opportunities remain to increase the impact

of the consortium.

Challenges and opportunities: Racial disparities

Racial disparities in breast cancer outcomes have persisted for decades. These disparities are

substantial, including the 40% greater breast cancer mortality experienced by Black compared

with White women [58]. Simulation modeling provides a unique opportunity to not only char-

acterize disparities, but also to inform solutions. The first step in addressing racial disparities is

to identify major factors across levels that explain the mortality differences between racial

groups. Although many studies describe potential mediators of racial disparities in breast can-

cer outcomes, they often focus on individual mediators and limited subsets of the population

[59]. The narrow scope and lack of generalizability often preclude such studies from explaining

disparities at the population level. Simulation modeling is a valuable tool for quantifying the

impact of mediators on population level disparities and to capture tumor, individual, and

healthcare system level influences on outcomes. For example, CISNET studies have been used

to investigate how breast cancer disparities are impacted by comorbidities. A previous CISNET

study investigated the role of obesity in breast cancer disparities [10]. The study findings sug-

gested that obesity has no net effect on Black–White breast cancer mortality disparities due to

the opposing effects of obesity on pre- and postmenopausal breast cancer development. Future

studies will investigate the role of key comorbidities, including diabetes, on breast cancer

disparities.

CISNET models have been used to quantify the impact of breast cancer natural history,

screening, and adjuvant treatment on mortality disparities [12]. This work showed that a large

proportion of the Black–White mortality disparity was attributable to differences in natural

history. However, this study also demonstrated that almost half of the disparity remained

unexplained, suggesting that more refined modeling techniques and/or more detailed data on

mediators that capture the impact of structural racism on breast cancer control are needed to

explain disparities.

Recent CISNET work has begun to develop updated race-specific subtype-specific parame-

ters and incorporate modern data on treatment disparities, enhancing the ability of CISNET

models to account for present-day disparities. Future refinement of CISNET models will per-

mit more precise attribution of mediating factors, including disparities in stage at diagnosis,

screening receipt, and treatment receipt and timeliness. Enhanced modeling of mediators will,

in turn, help identify the highest yield solutions for reducing disparities. Indeed, recent model

updates have permitted identification of equitable screening strategies for Black women. The

results of a recent CISNET study using updated model inputs demonstrated that screening

may need to be initiated for Black women 5 to 10 years earlier than for White women (age 40

or 45 versus 50) to derive similar health benefits [30]. This study was made possible through

the use of updated race-specific model parameters, including subtype distribution, stage at

diagnosis, non-breast cancer mortality, and treatment dissemination. Future studies will be

able to quantify the impact of interventions to increase access to screening, reduce diagnostic

delays, and mitigate disparities in treatment.

Challenges and opportunities: Primary prevention

Primary breast cancer prevention interventions have been underutilized [60–62], and there is

limited current evaluation of their potential impact on population-level breast cancer
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outcomes. In our future planned work, CISNET models will be expanded to evaluate the impact

of breast cancer primary prevention at the tumor, person, and health system levels. This future

work builds on past CISNET research evaluating the population impact of using individual-

level risk factors to tailor screening strategies such as age, high mammographic density [57,63],

polygenic risk [28], exposure to therapeutic chest radiation [15], and obesity [64].

Screening is designed to detect breast cancers earlier than would have occurred in the

absence of screening so that treatment confers a benefit when applied sooner, whereas breast

cancer prevention strategies can be used to avoid disease and its therapies. While lifestyle

changes such as avoiding obesity or reducing alcohol intake could potentially reduce risk of

developing breast cancer [65–69], hormonal risk-reducing drugs like tamoxifen can prevent

half of ER-positive breast cancer among women with high 5-year risk of breast cancer [70].

None of the other known prevention interventions have this magnitude of effect on avoiding

breast cancer. Despite this, use of hormonal risk-reducing drugs has been low [71]. The 2019

USPSTF guidelines reiterated recommendations for clinical discussions about use of risk-

reducing medication with women having a 3% or greater 5-year risk of developing breast can-

cer since the benefits are large and evidence of effectiveness is strong [72]. This healthcare pol-

icy-level guidance may increase physician recommendations for use of hormonal medications

to prevent development of breast cancer in high-risk women. However, successful interven-

tions to improve uptake of risk-reducing drugs will likely require policy-level data on US

breast cancer trends and variation of its impact based on breast density, age, risk, and dissemi-

nation patterns at the nation level. CISNET models are well suited to synthesize data across

multiple levels from high-quality data sources to provide estimates at both the population and

individual level on benefits (e.g., avoiding breast cancer with risk-reducing drugs; early detec-

tion with screening) and harms (e.g., side effects; false positives) for various risk-reducing

medication and screening strategies based on individual risk factors such as age and breast

density.

As noted earlier, the CISNET models can also be useful to assess the potential impact of

hormonal therapy for primary prevention in women who have survived childhood cancer and

are at high risk for developing a subsequent breast cancer. This includes female survivors who

received chest radiation [52] and potentially those who were exposed to high doses of anthra-

cycline chemotherapy [73–77]. Risk-reducing medications could allow some survivors to

avoid breast cancer entirely (versus avoiding breast cancer death via early detection with

screening and treatment), but are not currently standard of care. As the rarity of childhood

cancer and the long latency needed to capture subsequent cancers limit the feasibility of pro-

spective prevention trials in survivors, model-based estimates can inform and broaden the

focus of survivorship care to include primary prevention along with early detection of breast

cancer. This work paves the way to expand CISNET multilevel modeling of primary preven-

tion to include the impact of other individual-level risk factors such as alcohol intake, obesity,

and physical inactivity on breast cancer outcomes.

Challenges and opportunities: Team science and systems modeling

The CISNET Consortium embodies the key features of team science. Team science is an

emerging interdisciplinary field that empirically examines scientific collaboration described as

the processes by which members of research teams organize, communicate, and conduct

research in an interdependent fashion [78]. Transdisciplinary team science initiatives such as

CISNET have been shown to exceed long-term bibliometric indicators of scientific productiv-

ity and impact, (e.g., publication counts and journal impact factors) as compared with tradi-

tional investigator-initiated grants [79].
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Some challenges typically inherent in team science have been effectively managed in CIS-

NET, including high disciplinary diversity of membership, knowledge integration, relatively

large size (40 to 50 individuals), goal alignment, geographic dispersion, and high task interde-

pendence. Factors contributing to effective management of common challenges have included

strong commitment by team members to the mission of the consortium, collegial respect, and

consistent support by champions at grant funding agencies. Furthermore, reports including

multiple disease models demonstrate how scientific impact is increased by transdisciplinary

collaborations that reach across single organ and disease types [16,80,81].

However, other areas present opportunities for greater emphasis in future endeavors. First,

“permeable boundaries” [78] across modeling teams and priorities over time force principal

investigators to make difficult decisions on which projects to pursue and which to postpone or

decline. Time and resources for modeling team members are consistently greater challenges to

participation in a project rather than technological limitations. Modelers are frequently forced

to make difficult decisions between routinely updating parameter input data (that may require

time-intensive recalibration), refining and documenting program code, and pursuing answers

to new scientific questions. Increased emphasis on resource sharing (see next section) holds

promise to expand the number of modeling teams that can leverage CISNET models and tools

to address a greater variety of pressing research questions while also continuously improving

the model code and inputs and, potentially, increase the transportability of model applications

to new diseases.

Second, traditional academic laboratory structure, including the demands of tenure and

promotion considerations, create challenges for the support of junior modelers and early

career researchers. Programmers for each modeling team usually require over a year of train-

ing prior to gaining independence for modifying software code and executing modeling sce-

narios within the timeline constraints of multiple ongoing projects. To address these

challenges, the CISNET Consortium has increasingly added training and mentoring opportu-

nities for junior modelers to expand the pipeline and ensure the ongoing impact of CISNET

after each grant cycle ends.

Challenges and opportunities: Resource sharing

Making the CISNET breast cancer control models accessible to the broader research commu-

nity poses opportunities and challenges. Due to the complexity of the models and increasing

use of the models by policy makers, it is important to increase the transparency of the models.

To this end, we recently published a special issue of a journal dedicated to CISNET breast can-

cer models in which we described all main inputs and each individual model in great detail

[5]. The models are currently operated only by the Breast Working Group, which limits their

application to those questions that the group has the time and interest to work on. Efforts to

share modeling resources have included the availability of 2 data visualization tools for key

model inputs on CISNET’s Publication Support and Modeling Resources website [26,29,82].

One web-based tool, referred to as “Mammo OUTPuT,” assists policy makers to make

informed decisions about the optimal ages of breast cancer screening initiation and is available

on CISNET’s Decision Tools website [83,84]. Another decision support tool for management

of cancer risk for women with BRCA mutations is included on CISNET’s Decision Tools web-

site [83,85]. We are presently developing additional tools to guide screening and treatment

decision-making. Finally, the group routinely shares model input data in publications (e.g.,

[86]) and has shared model code [87].

While past collaborations with policy-making bodies such as the CDC or the USPSTF have

been fruitful [56,88,89], other important policy questions remain unaddressed. The ability to
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release the models, their most standard data inputs, and unprocessed model output to other

researchers to use could greatly expand their reach and impact. However, the models were not

designed with use by others in mind, and making this possible will require CISNET modelers

to develop user interfaces, streamlined workflows, and documentation of how program inputs

are acquired or prepared that can be understood by non-programmers. Obstacles to be over-

come include computational resource intensity and restrictions on sharing of inputs that were

obtained subject to data use agreements. Furthermore, policies will need to be developed

regarding intellectual property rights and the integrity of the CISNET “brand.” Support for

resource sharing would facilitate enhanced reach of CISNET models. Moving forward in the

presence of these challenges, CISNET aims to implement open science strategies [90] to

enhance model accessibility.

Summary

In conclusion, over 2 decades, the 6 modeling teams in the CISNET Breast Working Group

and their consultants and collaborators have produced numerous examples of impactful sys-

tems modeling. Ongoing work is highly likely to provide new insight into avenues for reducing

the burden of breast cancer. Collateral benefits of the CISNET Consortium have included

advances in modeling and simulation techniques, support of the careers of junior scientists,

and the provision of research tools for the broader scientific community. CISNET researchers

are committed to increasing their focus on leveraging their powerful modeling resources to

reduce the long-standing racial disparities in breast cancer outcomes, and we encourage other

scientists to draw on team science approaches to also use modeling for this purpose.
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