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Abstract

Divisive normalization (DN) is a prominent computational building block in the brain that has

been proposed as a canonical cortical operation. Numerous experimental studies have veri-

fied its importance for capturing nonlinear neural response properties to simple, artificial

stimuli, and computational studies suggest that DN is also an important component for

processing natural stimuli. However, we lack quantitative models of DN that are directly

informed by measurements of spiking responses in the brain and applicable to arbitrary sti-

muli. Here, we propose a DN model that is applicable to arbitrary input images. We test its

ability to predict how neurons in macaque primary visual cortex (V1) respond to natural

images, with a focus on nonlinear response properties within the classical receptive field.

Our model consists of one layer of subunits followed by learned orientation-specific DN. It

outperforms linear-nonlinear and wavelet-based feature representations and makes a sig-

nificant step towards the performance of state-of-the-art convolutional neural network

(CNN) models. Unlike deep CNNs, our compact DN model offers a direct interpretation of

the nature of normalization. By inspecting the learned normalization pool of our model, we

gained insights into a long-standing question about the tuning properties of DN that update

the current textbook description: we found that within the receptive field oriented features

were normalized preferentially by features with similar orientation rather than non-specifi-

cally as currently assumed.

Author summary

Divisive normalization (DN) is a computational building block throughout sensory pro-

cessing in the brain. We currently lack an understanding of what role this normalization

mechanism plays when processing complex stimuli like natural images. Here, we use
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modern machine learning methods to build a general DN model that is directly informed

by data from primary visual cortex (V1). Contrary to high-predictive deep learning mod-

els, our DN-based model’s parameters offer a straightforward interpretation of the nature

of normalization. Within the receptive field, we found that neurons responding strongly

to a specific orientation are preferentially normalized by other neurons that are highly

active for similar orientations, rather than being normalized by all neurons as it is cur-

rently assumed by textbook models.

Introduction

A crucial step towards understanding the visual system is to build models that predict neural

responses to arbitrary stimuli with high accuracy [1]. The classical standard models of primary

visual cortex (V1) are based on linear-nonlinear models [2], energy models [3] and subunit

(LN-LN) models [4–9]. Fueled by advances in machine learning technology, recent studies

have shown that multi-layer convolutional neural networks (CNNs) can significantly improve

the prediction of neural responses to complex images and videos at several stages of the visual

pathway, outperforming classical models [10–17]. The current state-of-the-art data-driven

model of single-unit activity in monkey V1 is a three-layer CNN [14]. However, it is challeng-

ing to gain insights into V1 function from the features produced by deeper layers of such

models. In particular, we do not have first principles explaining the kind of nonlinearities

approximated in successive layers of CNNs, or if these nonlinearities can be described in a

compact way in the first place.

A promising candidate to facilitate a more succinct description of V1 neurons is to replace

the computations from the CNN’s deeper layers by a divisive normalization nonlinearity [18]

that is easier to understand. Divisive normalization has been proposed as a canonical neural

computation present throughout the visual pathway [19] because it (1) explains a wide variety

of neurophysiological phenomena using simple stimuli [19, 20] and (2) can be derived from

first principles of redundancy reduction [21, 22]. The significance of DN is also supported by

its recent success in computer vision where it enables state-of-the-art natural image compres-

sion with high perceptual quality [23].

Divisive normalization has been invoked to explain several nonlinear neurophysiological

phenomena in V1, which can be classified into (1) phenomena that are restricted to the recep-

tive field (RF) only or (2) phenomena that involve an interaction between receptive field and

its surround. A prominent example for a mechanism restricted to the receptive field is cross-

orientation inhibition [18, 24–29], whereas an example for an interaction of the RF with its

spatially adjacent surround is surround suppression [30–34]. In our work, we focus on the

first aspect: divisive normalization within the RF and cross-orientation inhibition. In this phe-

nomenon, the response of a neuron to a driving grating stimulus in the RF is suppressed by

superimposing a second grating also within the RF that does not elicit a response when pre-

sented alone: for instance, a grating with orientation orthogonal to the neuron’s preferred

orientation.

The basic idea of divisive normalization (Fig 1A) is that a neuron’s driving input is normal-

ized divisively by a weighted sum over nearby neurons’ responses [18, 19]. While the general

idea is simple, elegant and powerful, our current knowledge of DN is limited in two important

ways: (1) DN has been studied mostly with simple, synthetic stimuli, but its implications under

natural image stimulation are unclear. For example we do not know whether incorporating

DN into system identification models predicting neural responses to natural stimuli improves
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performance. (2) We currently do not know how response properties of neurons with overlap-

ping receptive fields determine whether a neuron contributes to the normalization pool of

another neuron and, if so, with which strength [27].

To explain normalization phenomena within the receptive field like cross-orientation inhi-

bition, current models of divisive normalization assume that all nearby neurons with diverse

orientation tuning preferences and with similar receptive field locations contribute equally to

the normalization pool [18, 27, 29]. However, some earlier experimental studies suggest that

this assumption may not be correct for some neurons [24, 26], and normative models of

Fig 1. Overview of our divisive normalization (DN) model. The model takes as input an image covering 1.1˚ of

visual field and predicts neurons’ spike counts in response to this image (details in Fig 2). The model is split into two

parts: a core that computes a shared nonlinear feature space and a readout that maps the shared feature space

individually to each neuron’s spike count. A. Divisive normalization mechanism (simplified). The visual input is

convolved with 32 filters covering 0.4˚ of visual field and then rectified and exponentiated to produce an excitatory

output. The output of each filter is then divided by a weighted sum of the excitatory outputs of all filters with

normalization weights pkl and a semi-saturation constant σl. In our general formulation, all weights and constants are

learned from the data. B. Readout that maps the shared feature space to each neuron’s spike count through an

individual weighted sum over the entire shared feature space and a pointwise output nonlinearity. The readout weights

are factorized into a feature vector—capturing the nonlinear feature(s) that a neuron computes—and a spatial mask—

localizing each neuron’s receptive field (RF).

https://doi.org/10.1371/journal.pcbi.1009028.g001
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normalization predict that the magnitude with which a given neuron contributes to another

neuron’s normalization should depend on the relationship of their response properties [21].

In this paper, we address the two main questions raised above: (1) How well does a data-

driven model with divisive normalization predict V1 responses to natural images, compared to

classical subunit models and deep convolutional neural networks, and (2) what stimulus fea-

tures are learned for normalizing a V1 neuron’s response in relation to its favoured feature

selectivity within the receptive field?

We focused on effects restricted to the receptive field and on models that only account for

local normalization interactions between neurons with overlapping receptive fields. We devel-

oped an end-to-end trainable model predicting V1 spike counts from natural stimuli, replac-

ing the CNNs deeper layers by the canonical neural DN computation [19] and learning the

filters of all neurons as well as their normalization weights directly from the data. We also

explored how our DN model could be extended in a way that might enable it to capture sur-

round interactions from outside of the RF, however, our control experiments demonstrate

that our results are very unlikely to include the extra-classical surround.

We fitted our DN model to monkey V1 responses to natural images and found that it out-

performs linear-nonlinear and subunit models, suggesting that DN mechanisms are useful for

capturing nonlinear computations unlocked by natural stimuli beyond those evoked by sim-

pler gratings. The power of our model was further strengthened as it captured cross-orienta-

tion inhibition within the receptive field, brought to light via in silico experiments. In contrast

to the three-layer CNN, which also reproduced this phenomenon, the single divisive layer of

the DN model provides direct interpretations of the normalization pool. These revealed that

oriented features were preferentially normalized by other features with similar orientation,

which quantitatively improved predictive performance over a model with nonspecific normali-

zation. However, the three-layer CNN outperformed our DN models, suggesting that there are

additional non-linear mechanisms beyond the ones captured by our DN model (e. g. phase

invariance and divisive effects), that are required to achieve optimal performance in modeling

V1 responses. Thus, our work advances our understanding of V1 function, highlighting the

importance of orientation-specific gain control to predict responses to natural images, and

shows how embedding theories of neural processing into the architectures of generic data-

driven models can improve our understanding of sensory processing in the brain.

Results

Learning divisive normalization

The basic idea of divisive normalization (Fig 1A) is that the response of neuron l

zlðxÞ ¼
ynll ðxÞ

s
nl
l þ

P
k2Kpkl � y

nk
k ðxÞ

ð1Þ

is given by its driving input activity yl(x) exponentiated by nl and divisively normalized by a

weighted sum over nearby neurons’ exponentiated responses ynkk ðxÞ [18, 19], where x repre-

sents the stimulus, σl is a semi-saturation constant, and all quantities are non-negative. Here,

the set of normalizing neurons K and the normalization weights pkl define which neurons k
contribute to the normalization pool of neuron l and with what strength, respectively.

While this formulation is straightforward to write down, it is challenging to build quantita-

tive models based on it that are applicable to arbitrary inputs. The denominator depends on a

potentially large population of neurons—which is unknown in general—and the structure of

the normalization weights has been studied only using very restricted sets of simple stimuli

such as oriented gratings and bars. Previous modeling work on divisive normalization has

PLOS COMPUTATIONAL BIOLOGY Learning divisive normalization in primary visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009028 June 7, 2021 4 / 31

https://doi.org/10.1371/journal.pcbi.1009028


therefore made specific assumptions about the filter properties of the underlying neuronal

population and either modeled only a closed set of stimuli such as gratings of different orienta-

tion [18, 27–29, 35] or evaluated models only qualitatively [21, 36, 37].

We developed a general, image-computable predictive model of divisive normalization fol-

lowing Eq (1), which is applicable to arbitrary images and whose parameters are learned by

optimizing the accuracy of the model in predicting the spiking activity of a large number of

neurons in response to natural images (see Fig 1). Our model builds on a recent innovation in

predictive modeling [12, 14, 38–40], jointly modeling all recorded neurons instead of learning

a predictive model for each neuron individually. Because many neurons perform similar com-

putations—up to shifts in receptive field location—jointly modeling them makes more effi-

cient use of the data and we can learn more complex models. The basic idea is to split the

model into two parts (Fig 1): (A) a core that transforms the input image into nonlinear features

shared among all neurons, and (B) a readout that linearly combines the features to produce a

prediction of each neuron’s response.

We use a convolutional network for the core, whose architecture lends itself very well to

model divisive normalization. By construction, we have a model that contains all filters neces-

sary to account for the recorded neurons’ responses. All of these filter responses are automati-

cally extracted at each location, providing a good approximation of the underlying population

of neurons in the brain although it is only sparsely sampled during the experiment. As a conse-

quence, we can optimize the pool of neurons providing normalizing inputs and their corre-

sponding weights pkl (Eq 1) to account for the neural responses. In this work we mostly focus

on normalization effects from neurons with overlapping receptive fields, rather than investi-

gating interactions with the RFs’ surround.

In summary, our model’s core (Fig 1A) consists of a set of convolutional filters wl and biases

ol (we use 32) that provide the driving inputs yl from an image x at all locations in the neurons’

RFs,

yl ¼ maxð0; wl � xþ olÞ : ð2Þ

As a specific feature is extracted by its according convolutional filter at each spatial location of

the image, the driving responses yl form a map of responses for the according features, hence

named feature map. This operation is followed by a DN stage (Eq 1) in which all operations

are performed element-wise across space. This core is shared among all neurons and converts

the image into a set of feature maps zl containing information from the neurons’ RFs. We

mapped those normalized feature maps into response predictions r̂ by a linear readout step

(Fig 1B) that picks the relevant features by readout weights b and spatial locations by readout

weights a for each neuron i, followed by a pointwise output nonlinearity ϕ,

r̂i ¼ �i

�X

u;v;l

ðauv;i bl;iÞ zuvl
�
; ð3Þ

where u, v index space (see Methods for additional details). To ensure that the readout does

not model any inhibitory or complex interactions, we constrained its weights a, b to be non-

negative and added a sparsity prior. The non-negativity ensures that activations can only add,

preventing the readout stage from accounting for any suppressive effects. The readout can,

however, account for response invariances such as phase invariance of complex cells; see

Methods for an in-depth explanation. While our model reflects the general formulation of

divisive normalization, mathematically it is not identical to the classical formulation of DN

due to the additional linear-nonlinear readout after the model’s core.
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DN model outperforms subunit model, half-way closing the gap to state-of-

the-art performance

We fitted the model described above to a dataset of 166 neurons recorded in V1 of two awake,

fixating monkeys, who viewed a fast sequence of localized natural images and textures (Fig 2;

data from Cadena and colleagues [14]). The stimuli were placed at the neurons’ receptive fields

and primarily stimulated the center (i. e. the RF) as they covered one degree of visual field,

quickly fading off reaching zero contrast at two degrees (see Discussion and Methods for addi-

tional details). Images were shown for 60 ms each, without blanks in between. Single unit

activity was recorded with laminar silicon probes sampling from all cortical layers. We fit the

model jointly to the responses of all neurons. As neurons were recorded in 17 recording ses-

sions, the dataset sampled a diverse range of preferred orientations. The objective function

during training was to minimize the difference between the model’s prediction and the

observed spike counts of the neurons in a time window 40–100 ms after image onset (to

account for response latency).

To evaluate model performance, we estimated the fraction of explainable variance

explained (FEV), which quantifies the fraction of the stimulus-driven response variance that is

accounted for by the model, and ignores unexplainable trial-to-trial variability in the response

of the neurons (see Methods). A perfect model would reach a FEV of 100%. Since model per-

formance depends on the parameters’ initial values before optimization, we initialized all

weights randomly before model training and repeated this procedure multiple times. To

ensure that the reported performance is not a spurious characteristic of one particular model,

we picked the best ten models of a model class (assessed in terms of validation set accuracy)

and report the mean performance together with its 95% confidence interval. We perform this

analysis for each of the four model classes.

Subunit models are an established approach to model primary visual cortex responses [4–

9]. In addition to capturing a fair portion of the explainable variance [14], their computations

are easily understandable because they are rather shallow models consisting of a first stage of

rectified linear filtering followed by a static nonlinearity, and then a pooling stage with a subse-

quent output nonlinearity. Although the final output nonlinearity is capable to learn various

pointwise functions like sigmoids, in most cases (across all model types) it leads to only slight

Fig 2. Experimental paradigm from Cadena and colleagues [14]. Natural images were flashed to a monkey covering

2˚ of their visual angle, and located at the center of the multi-unit receptive field. Multiple neurons were isolated from

recordings with silicon probes inserted into V1 [41]. Natural images were shown in a fast sequence without blanks,

each presented for 60 ms. Spike counts from all isolated neurons corresponding to each image were extracted from a

window 40 ms after the image onset lasting 60 ms.

https://doi.org/10.1371/journal.pcbi.1009028.g002
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expansive deviations of the identity function. Structurally, the subunit model is the same

as our DN model, but without the normalization stage. Therefore, we considered a convolu-

tional subunit model as a strong baseline for our model. This subunit model accounted for

(46.6 ± 0.2)% FEV (mean and 95% confidence interval over the ten best models selected in

terms of validation set accuracy). In comparison, a regularized linear nonlinear Poisson model

(LNP) only accounted for 16.3% FEV on the same dataset [14] due to its inability to model

complex cells.

As recent developments in machine learning technology have allowed us to improve pre-

dictive performance, we used the current best data-driven model as a gold standard. This

model is a convolutional neural network with three convolutional layers and a linear-nonlin-

ear readout [14]. To enable fair comparison of this model to all other models in this study, we

optimized the CNN comparable to our DN model, reaching (52.3 ± 0.1)% FEV (mean and

95% confidence interval over the ten best models selected in terms of validation set accuracy;

outperforming previously reported performance of 49.8% FEV [14]). However, although this

CNN model outperforms the simpler subunit model, it is of higher complexity requiring a

higher number of parameters.

To evaluate how well our DN model accounts for the data, we placed its performance on a

scale between 0% (baseline: subunit model) and 100% (gold standard: CNN). On that scale,

our DN model achieved a score of (52 ± 3)% between the baseline and gold standard (Fig 3;

(49.6 ± 0.1)% FEV; mean and 95% confidence interval over the ten best models selected in

terms of validation set accuracy). The performance differences between all model pairs were

statistically significant (pairwise Wilcoxon signed rank test on best models in terms of valida-

tion accuracy: p< 0.024, N = 166 neurons, family-wise error rate α = 0.05 using Holm-Bonfer-

roni correction to account for multiple comparisons). Notably, we achieved this performance

gain by simply adding the trainable DN stage to the convolutional subunit model, which

Fig 3. Performance comparison of our models fitted to the data from Cadena and colleagues [14] relative to the

gap between the best shallow model—a subunit one layer convolutional neural network (CNN)—and the deeper

data-driven state-of-the-art three-layer CNN [14]. Non-specific divisive normalization (DN) accounts for 41% of

this gap, while specific DN improves it up to 52%. Absolute values in terms of percentage of explainable variance

explained (FEV) on the right (mean over the ten best models selected in terms of validation set accuracy, see main text

for details). Error-bars (black) indicate the standard error of the mean. Model performance is significantly different

between each model class (pairwise Wilcoxon signed rank test on best models in terms of validation accuracy:

p< 0.024, N = 166 neurons, family-wise error rate α = 0.05 using Holm-Bonferroni correction).

https://doi.org/10.1371/journal.pcbi.1009028.g003
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quantifies the importance of divisive normalization as computational mechanism to predict

neural responses in V1 under stimulation with complex, natural images. At the same time, the

CNN outperformed the DN model, suggesting that further non-linear dependencies in addi-

tion to phase invariance (complex cells) and divisive normalization are required to reach opti-

mal predictive performance.

Divisive normalization and CNN models learn cross-orientation inhibition

We wanted to test if our DN model captured non-linear interactions between the neurons

inside the receptive field leading to cross-orientation inhibition, a phenomenon that was

explained by DN within the RF before [18, 24–29]. As the gold standard three-layer convolu-

tional neural network explains more variance than the divisive normalization model, we asked

if the CNN captured cross-orientation inhibition, too. To assess if our models learned cross-

orientation inhibition, we performed the experiments done before by experimentalists in silico.

Specifically, for each unit we determined the optimal Gabor maximizing our models’ predic-

tions. Subsequently, we combined the optimal Gabor by adding the same Gabor pattern with

orthogonal orientation, obtaining a plaid stimulus (Fig 4A insets). We then presented the

plaids to our models varying the contrasts of each Gabor component and measured the result-

ing tuning curve for all models in silico, averaging across the orthogonal Gabor’s phase to get

independent of any phase dependency. For the DN model and the CNN, we found cross-ori-

entation inhibition in a number of cells: the response elicited by presenting the optimal Gabor

was inhibited by increasing the contrast of the orthogonal Gabor component (Fig 4A). How-

ever, such behavior was not clearly visible for the subunit model.

To quantify the models’ capability to learn cross-orientation inhibition, we defined a cross-

orientation inhibition index measuring the percentage an orthogonal Gabor inhibits response

when added to an optimal Gabor presented alone (Fig 4A left; see Methods for details). To

determine how many cells are cross-orientation inhibited by at least 10%, we assess the highest

cross-orientation inhibition index across all contrast combinations of the two component

Gabors. To ensure we report a general property of all models, we quantified cross-orientation

inhibition across the ten best models of each model-type (assessed in terms of performance on

the validation set, only differing in the initialization of the model parameters before training).

In the subunit model we found no significant cross-orientation inhibition (Fig 4B). Although

the 3% FEV performance gain of the DN model over the subunit model might seem small, the

phenomenological difference between those models was quite substantial, as in the DN model

half of the cells showed cross-orientation inhibition. The gold-standard three-layer CNN cap-

tured cross-orientation inhibition in fewer cells, likely approximating divisive normalization

through its deeper layers as its filters in the first convolutional layer are qualitatively similar to

the DN model, showing Gabor-like and blob patterns. At the same time, the CNN seems to

capture additional effects from the data that are not explained by DN in the RF center, leading

to the CNN’s higher performance.

Normalization within the receptive field is feature-specific

Having established that both the DN and the CNN models learned a phenomenon explained

by divisive normalization within the RF, namely cross-orientation inhibition, we next asked

which features and how strongly they contribute to the normalization pool. In the CNN model

there is no explicit notion of a normalization pool that we could comprehensively analyze. On

the other hand, our DN model offers a way to investigate the structure of the normalizing

input within the receptive field, i. e. the image-averaged products hpkl � y
nk
k ðxÞix in the denomi-

nator of Eq (1), to quantify the strength by which different features contribute to it (see
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Methods for details). When visualizing the feed-forward features learned by the DN model we

found that several exhibited clear orientation selectivity (i. e. features with an anisotropic struc-

ture; see Fig 5A). Thus, for these features we first wondered about the relationship between

their preferred orientation and the orientation of the features by which they are preferentially

normalized. To this end, we visualized the feature pair-wise normalizing input (Fig 5A) and

found that oriented features are normalized preferentially by features with similar orientation

preference, while orthogonal features seem to contribute less.

First, we coarsely quantified the difference with which these two groups contribute to nor-

malization. We split the sum in Eq (1) into two parts and collected the normalizing input of

Fig 4. Cross-orientation inhibition was learned by our DN model and the three-layer CNN, but not significantly by the subunit model.

A. Tuning curves for an example neuron of all three models and various contrast combinations of the optimal Gabor (box on the right,

examples for contrasts of 0%, 1% and 2% not shown) and an orthogonal Gabor masking. As the contrast of the orthogonal mask increases,

the model prediction (normalized by the maximum response) decreases. The cross-orientation inhibition (inhib.) index measures the

percentage of response inhibition by adding the masking compared to the optimal Gabor presented alone, in this case approximately 20%.

A. insets: Illustration of plaid stimuli, created by overlaying an optimally oriented Gabor with an orthogonal mask. B. Histograms of the

cross-orientation inhibition indices accumulated across the best ten models (in terms of validation set accuracy) per model type, with kernel

density estimate of the underlying distribution. The fraction of cells that show more than 10% cross-orientation inhibition is displayed right

of the dotted line (mean and 95% confidence interval over the ten best models selected in terms of validation set accuracy). For the DN

model, more cells show cross-orientation inhibition compared to the other models. The subunit model shows almost no cross-orientation

inhibition.

https://doi.org/10.1371/journal.pcbi.1009028.g004
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Fig 5. Structure of divisive normalization. A. The matrix shows the average strength of the normalizing inputs (products hpkl y
nk
k ðxÞix in

denominator of Eq (1) averaged across images; see Methods) for each combination of filter response being normalized (rows) and filter

response providing normalizing input (columns). Darker shades of blue indicate stronger normalization. Orientation-selective filters are

grouped at the top, ordered by preferred orientation and marked by the black square. The dashed black lines within the square separate pairs of

filters with similar (< 45˚) and dissimilar (� 45˚) orientations. Normalizing inputs are stronger for similarly tuned filters. Unoriented filters

mainly accounting for orientation-unspecific contrast are sorted by total normalization input. Darkest blue color corresponds to the maximum

normalization input for the group of oriented filters, higher normalization input values for the unoriented filters are clipped to that value. Data

of the model with highest accuracy on the validation set is shown. B. Normalization input from similar orientations (< 45˚) compared to the

normalization input from dissimilar orientations (� 45˚) for each oriented linear filter. Grey line: identity. Most features are normalized

preferentially by the responses of filters with similar preferred orientations. Data of the model with highest accuracy on the validation set is

shown. C. Normalization input, binned into orientation difference of 10˚. Each bin was averaged over the top-10 models (assessed on the

validation set). The shaded area depicts the standard deviation per bin. C inset. Normalization input (norm. input) vs. cosine similarity between

linear filters (cos. sim.) averaged across the top-10 models (assessed on the validation set). A cosine similarity greater than zero corresponds to

similar features. Error bars: standard error of the mean. D. Histogram of DN exponents (nl in Eq 1) of the ten best performing models in terms

of validation set accuracy. Darker/lighter color: exponents corresponding to driving inputs due to oriented/unoriented linear filters. Most values

are larger than one, with a few exceptions mainly corresponding to unoriented filters.

https://doi.org/10.1371/journal.pcbi.1009028.g005
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features with similar orientation as the driving feature (< 45˚) and that of features with dissim-

ilar orientations (� 45˚). By analyzing the normalization of each oriented feature individually,

we found that most oriented features are more strongly normalized by features with similar

orientations (Fig 5B). To assess whether our qualitative observation above is a general property

of the data or a spurious characteristic of the best model chosen, we repeated this analysis for

the top-10 performing models (assessed in terms of accuracy on the validation set, only differ-

ing in the initialization of the model parameters before training) and observed a similar behav-

ior. Summing up the normalizing input across the features, we found that, for all of these

models, similar orientations contributed more strongly than dissimilar orientations. Taking

the data of all top-10 models into account, we found that similarly oriented features contrib-

uted (1.5 ± 0.1)-fold more normalizing input than dissimilar features (mean and 95% confi-

dence interval over the ten best models selected in terms of validation set accuracy; Wilcoxon

signed rank test: p< 0.006, N = 10 models; Cohen’s d = 1.2).

We further quantified the orientation-specific nature of normalization at a more fine-

grained level. Instead of lumping orientation differences into two groups as before, we split up

the normalizing inputs into nine bins of 10˚ width each and averaged those bins across the

top-10 models. This analysis revealed that the strength of the normalizing inputs decreased as

the difference in orientation increased (Fig 5C). Hence, the more similar a normalizing fea-

ture’s orientation was to the feature to be normalized, the stronger was its contribution to nor-

malization (linear regression analysis on all normalization input vs. orientation difference

pairs of best model in terms of validation accuracy: p< 10−6). In fact, features in the group

most similar to the driving input contributed (2.3 ± 0.4)-fold more than those in the orthogo-

nal group (mean and 95% confidence interval over the ten best models selected in terms of val-

idation set accuracy; Wilcoxon signed rank test: p< 0.006, N = 10 models; Cohen’s d = 1.9).

An immediate question that follows from our previous findings relates to the contribution

of more general feature properties beyond orientation selectivity. Is the normalization input

higher only for similar orientation, or is normalization input generally higher for similar fil-

ters, without pre-specifying a certain property like orientation? To answer that question,

we split the input to normalization in terms of cosine similarity between all oriented and

unoriented filters into a group of similar (cosine similarity > 0) and dissimilar (cosine

similarity < 0) features. Summing up the normalizing input across the features and averaging

across the best ten models, we found that in general similar features contributed (1.9 ± 0.5)-

fold more normalizing input than dissimilar features (Fig 5C inset; mean and 95% confidence

interval over the ten best models selected in terms of validation set accuracy; Wilcoxon signed

rank test: p< 0.006, N = 10 models; Cohen’s d = 2.9).

Analysing the exponents of our divisive normalization model, we found a mean value of

1.61 (averaged across the best ten models on the validation set) with most values being greater

than one (Fig 5D), which previously has been connected to an intensified winner-take-all

behavior of responses [19, 29]. In a few exceptions exponents learned by our model are smaller

than one, mainly corresponding to driving inputs from unoriented filters.

Control: Nonspecific divisive normalization reduces accuracy. To determine how

important orientation-specific normalization is, we performed a control experiment: For each

feature l being normalized, we constrained all of its incoming normalization weights pkl to be

identical. This model is an instantiation of the previous models [18, 27, 29] assuming non-spe-

cific normalization from all features. Note that, since the feature orientations were non-uni-

formly distributed (Fig 5A), this model’s normalization was weakly orientation tuned despite

equal weights for all features (orientation difference < 45˚ contributed 1.1-fold stronger

than� 45˚; Wilcoxon signed rank test; p< 0.007, N = 10 models; Cohen’s d = 0.3). This

model achieved a performance of (41 ± 2)% between the baseline and gold standard
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((48.9 ± 0.1)% FEV, mean and 95% confidence interval over the ten best models selected in

terms of validation set accuracy). The unspecific DN model was included in the hypothesis test

showing statistically significant performance differences between all model types (pairwise

Wilcoxon signed rank test on best models in terms of validation accuracy: p< 0.024, N = 166

neurons, family-wise error rate α = 0.05 using Holm-Bonferroni correction). While the unspe-

cific control model does not match the performance of our more general DN model, it does

outperform the subunit baseline. Thus, stronger orientation-specific normalization is neces-

sary to achieve the full DN model performance, but a simpler form of uniform divisive nor-

malization can account for a large fraction of the improvement over the subunit baseline.

Control: All channels contribute to our model’s prediction. One potential caveat of our

analyses so far is that we analyzed the orientation specificity of DN in terms of the convolu-

tional feature maps in our model’s core rather than the actual neurons we recorded. These

features provide a much more compact view of the population of neurons, because they are

invariant to the receptive field locations and the neural responses are simple linear combina-

tions of those features. Moreover, the model’s core offers a direct interpretation of its normali-

zation weights. However, it is not clear a-priori whether all features are equally important for

predicting the activity of the neurons in our population. Thus, considering convolutional fea-

tures instead of actual neurons may lead to a skewed view of the population. To verify that this

is not an issue, we quantified how much each feature contributed to the overall activity of all

neurons by normalizing the feature readout weights across channels and averaging across neu-

rons. The resulting distribution (Fig 6) containing these averaged feature readout weights for

the best ten models had a coefficient of variation of 0.2. We therefore concluded that all fea-

tures were read out by roughly the same number of neurons and hence were similarly impor-

tant to predict neural activity. Thus, our interpretation of orientation-specific normalization

is unlikely to be an artifact of analyzing the convolutional features rather than the actual

neurons.

Control: Surround interactions are unlikely driving orientation-specific normalization

in the RF center. We observed orientation-specific divisive normalization in the receptive

field. Surround suppression is known to be orientation-specific as well [30–34], so a potential

concern would be that some of the extra-classical surround of a unit’s RF contributed to the

results presented above. To rule out this possibility, we explicitly verified in silico that our

model learning DN inside the RF learned no significant surround-suppression. For each

Fig 6. Histogram of feature readout weights of the ten best performing models in terms of validation set accuracy.

For each model, feature weights are normalized across channels and averaged across individual neurons. All model’s

channels are used to predict neural activity.

https://doi.org/10.1371/journal.pcbi.1009028.g006
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neuron, we generated a circular grating stimulus with optimal orientation and spatial fre-

quency, which we presented to our model. As we increased the grating diameters, our DN

model’s spike count predictions were suppressed only for very few cells for very large stimuli

(Fig 7A, inset), suggesting only weak surround-suppression in very few cells. To quantify this

observation, we computed a surround suppression index reporting the reduction from the

highest measured response to the response for a grating completely filling the whole image for

each neuron (Fig 7A, inset). Thus, no suppression is indicated by a suppression index of zero,

whereas a value of one would mean maximum suppression (see Methods for details). Across

the best ten DN models and all neurons, we found only very few exceptions from no suppres-

sion (Fig 7A) with an average suppression index of (1.6 ± 0.8)% (mean and 95% confidence

interval over the ten best models selected in terms of validation set accuracy). If our DN model

would have learned surround suppression, we would have expected that the predictions of a

Fig 7. Size-tuning in silico experiments and spatially extended DN control models. A. inset: Prediction of the best DN model (chosen by

validation set accuracy) for all neurons to gratings of increasing size. The gratings’ properties were determined from the units’ optimally

stimulating Gabor pattern. As grating diameter increased, only very few neurons showed mostly weak suppression. Predictions normalized to

maximum response per neuron. Suppression index measures asymptotic suppression relative to the maximum prediction A. main panel:

Across all neurons and the ten best DN models (chosen by validation set accuracy), almost no neurons show significant surround suppression.

B. Test set performance of the ten best performing DN models. The model’s performance rapidly decreases for spatially increasing

normalization pool size (in units of visual angle in degrees). The best model on the validation set is indicated by a blue dot. C. & D. Weights of

the spatial normalization pool for the best performing model with pool size of (C.) 1.06˚ of visual field (5 px × 5 px) and (D.) 1.34˚ of visual field

(7 px × 7 px; all evaluated in terms of the validation set accuracy). For each feature (columns), the two components (rows) of the in total 32

spatial normalization pools are shown. Darker color corresponds to higher weights. Both components are similar. B. insets: Average across

features and normalization pool components. The model learned normalization from the receptive field center (on average).

https://doi.org/10.1371/journal.pcbi.1009028.g007
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substantial number of neurons would significantly decrease for larger grating sizes leading to

substantially higher suppression indices [32], which is not the case for our DN model. In con-

clusion, we expect the influence of very few neurons showing mostly very weak surround-sup-

pression to our results to be very small making it unlikely that surround suppression could

have led to the substantial orientation-specific normalization we observed. For the non-spe-

cific DN model and the three-layer CNN we found very similar behavior.

As a further control to verify that the orientation-specific normalization we observed in the

RF is unlikely to be caused by surround influence, we fit a more general DN model which

could additionally learn the spatial structure of the normalization pool, instead of limiting it

only to neurons with overlapping receptive fields. To account for the RF’s surround, we spa-

tially expanded the model’s normalization weights pkl! pkluv and introduced a convolution

across space into the normalizing sum in Eq (1):

zlðxÞ ¼
ynll ðxÞ

s
nl
l þ

P
k2Kpkl�� � y

nk
k ðxÞ

: ð4Þ

Here, the normalization weights pkl�� = pkluv encode which input drives ynkk are pooled over

what spatial extent (indexed by u, v) to normalize the input drive ynll . Note that for the special

choice of normalization weights pkl11 we perform a u × v = 1 × 1 convolution resulting in Eq

(1) describing a DN model without surround. To keep the number of parameters computa-

tionally tractable, we factorized the normalization weights pkluv allowing for two normalization

pools (indexed by m) per output channel l, each consisting of a set of spatial integration

weights c and feature weightings d,

pkluv ¼
X2

m¼1

cluv;m � dkl;m: ð5Þ

We constrained c and d to be non-negative to make sure the denominator in Eq (4) is non-

negative (recall that ynkk � 0 due to Eq (2)). The two normalization pools indexed by m could

have different patterns of weights along the feature and spatial dimensions. Our extended

model is therefore general enough to account for the standard model of DN with a nonspecific

center normalization pool and orientation-specific surround suppression (see Methods for

details).

In line with what we expect from our small stimuli mostly covering the RF center, spatially

expanding the normalization pool to cover larger surround areas did not increase our model’s

accuracy; in fact, for lager normalization pools the performance even decreased (Fig 7B; for

the best models on the validation set statistically significant beyond 0.77˚ of visual field, pair-

wise Wilcoxon signed rank test: p< 0.025, N = 166 neurons, family-wise error rate α = 0.05

using Holm-Bonferroni correction). This could be due to the increased number of parameters,

which might lead to over-fitting or non-optimal learning, since adding more weights to the

model makes optimization harder. The best performance was achieved by models with the

smallest normalization pool mostly within the units’ RFs (0.25˚–0.75˚ diameter estimated by

spike triggered average, see Methods; 0.86˚ estimated from the smallest grating that leads to at

least 95% of the maximum response in our in silico analysis, averaged across neurons and the

best ten DN models with smallest normalization pool). The normalization weights of the

extended spatial normalization pools showed no visible separation into center and surround

and exhibited no or only weak contributions from the RF’s surround (Fig 7). If leakage from

the surround was the source of orientation-specific normalization, we would expect to observe

spatial profiles that cover the surround, which is not the case (except for a few exceptions,

which are mostly untuned features).
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In summary, we controlled that the orientation-specific normalization learned by our spa-

tially constrained DN model is unlikely caused by orientation-specific influence from the RF

surround but mainly from the RF center. The reason for this limitation could be in our dataset,

as the stimuli we used were mostly restricted to the receptive field masking out any surround

influences and their short presentation time compared to the delay after which surround influ-

ences kick in (see Discussion and Methods), preventing any model to capture information

from the surround.

Discussion

To improve our understanding of primary visual cortex, we asked what condensed nonlinear

function state-of-the-art CNNs might implement for predicting V1 responses to localized nat-

ural stimuli. To answer this question, we developed an end-to-end learnable divisive normali-

zation model and fit it to neural responses. Both the unspecific control model and the full

model that learned the normalization pool outperformed the subunit model, with the full DN

model outperforming its non-specific variant. Through the superior performance of the DN

model, we quantify the relevance of divisive normalization for predicting V1 responses to nat-

ural images. With the help of in silico experiments, we found that both, the DN and the CNN

model learned cross-orientation inhibition, showing that the deeper layers of the CNN model

approximate the DN nonlinearities. Compared to the multi-layer CNN, the DN model offers a

direct, easily understandable interpretation of its normalization pool. For the DN model, we

found that normalization by similar orientations, and in general by similar features, is higher

compared to dissimilar features within the receptive field.

Along those lines, one may ask whether the difference between the non-specific DN model

and the full model that learns orientation specific normalization weights is relevant, because

the full model may simply be able to better account for some insignificant biological heteroge-

neous imperfection due to its additional parameters. We believe that this explanation is

unlikely, because oriented features are preferentially normalized by channels with similar ori-

entation. If the model was simply picking up some biological imperfection, we would expect

random deviations from uniform normalization weights rather than weights that depend sys-

tematically on preferred orientation.

Previous experimental work investigated suppressive phenomena within the receptive field

only qualitatively or used simple stimuli that mainly consisted of a combination of driving and

mask gratings. Morrone and colleagues [25] found suppression at all orientations, but did not

investigate orientations similar to preferred orientation. Bonds [24] reported predominantly

orientation-nonspecific suppression, although three of fourteen cells exhibit stronger suppres-

sion with masks oriented similarly to the neurons’ preferred orientations, and a few other cells

were suppressed most strongly by mask orientations orthogonal to the preferred orientation.

Similarly, DeAngelis and colleagues [26] found suppression to be predominantly independent

of orientation, although for some cells an increased suppression for a range of orientations

near the optimal excitatory orientation was apparent. Heeger [18] explained those results by

proposing an orientation-nonspecific divisive normalization model. Carandini and colleagues

[27] considered the possibility of orientation-specific normalization which provides a marginal

improvement in the quality of their model fits to the data. However, they concluded that their

dataset was not specifically designed to provide a strong test of this question and their results

were inconclusive in this respect. Busse and colleagues [29] developed a quantitative model for

the response of a population of neurons to a combination of gratings. Assuming nonspecific

normalization by overall contrast, their model predicted the collective action of the whole neu-

ron population better than linear and winner-take-all baselines, but they did not test against
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an orientation-specific alternative model. To summarize, these studies found phenomena that

are predominantly explained by nonspecific normalization [18], some of them encountered

only weak orientation-specific phenomena and only in relatively few cells. Until now, a quanti-

tative analysis of orientation-specificity on a data set of natural images was missing.

Our findings are largely consistent with previous experimental results and quantitatively

refine them using a larger dataset, place them in the context of other models of V1 and show

that the same normalization mechanisms observed with simple stimuli also apply under more

natural stimulus conditions. Interestingly, and somewhat in contrast to earlier work, features

with preferred orientations within 10˚ of the driving feature provided twice as strong normal-

izing input than those with orthogonal preferred orientations.

The reason for this difference between our findings and previous studies could be that we

used natural stimuli, which have different image statistics compared to simple stimuli used in

earlier studies. Furthermore, most previous studies of divisive normalization were performed

in cats [24–26, 29] and the results therein may not generalize to monkeys, for which preceding

studies are inconclusive regarding orientation specificity [27].

Recent work modeling a large set of classical psychophysical data also suggests an orienta-

tion-specific divisive normalization: Schütt and Wichmann [42] developed an image-comput-

able model of early vision very similar in structure to ours, and found that in order to explain

classical data on contrast detection, contrast discrimination and oblique masking, their model

required divisive normalization to be orientation-specific. Similar results had been reported in

an earlier study by Itti and colleagues [43]. In contrast to those psychophysical studies involv-

ing experiments with human observers, in our paper we studied individual spiking neurons in

primary visual cortex in response to natural stimulation, providing physiological evidence for

orientation-specific divisive normalization. Moreover, the previous psychophysical models

used a predefined Gabor filter bank and assumed that divisive normalization’s orientation

specificity is Gaussian distributed, learning only the standard deviation of the distribution. In

contrast, our model is far more flexible, not making such strong assumptions, relying solely on

the data to learn oriented filters and their divisive interactions.

Following a normative approach, Schwartz and Simoncelli [21] derive an ecologically

justified divisive normalization model from the efficient coding hypothesis [44] that is able

to qualitatively describe the orientation masking data of Bonds [24]. Reducing the statistical

redundancy of responses to natural stimuli predicts that normalization should be stronger for

neurons that exhibit a higher dependency in their unnormalized responses. This theoretical

result implies that normalization weights should not be uniform, consistent with our empirical

findings. Iyer and Burge [45] compare the output statistics of a divisive normalization model

with broadband and narrowband normalization to natural images, 1/f stimuli and white noise

stimuli. They report that feature-specific divisive normalization improves the discriminability

among natural images compared to unspecific normalization.

Other research motivated by the efficient coding hypothesis [44] found that a recurrent

sparse coding model reproduces several phenomena explained by DN, like cross-orientation

inhibition [46]. In a recurrent excitation-inhibition network trained with Hebbian learning

rules the inhibitory connections yielded stronger inhibition for similarly oriented cells, while

the responses of excitatory cells were decorrelated [47]. This result of orientation specific nor-

malization is qualitatively consistent with the findings of Schwartz and Simoncelli [21] and

our results. These earlier models were trained using an unsupervised objective. Future research

could focus on investigating the relationship between DN and recurrence within cortical cir-

cuits using recurrent models trained to predict neural responses in V1 to natural stimuli.

Another interesting question could be to which degree efficient coding models match our find-

ings of orientation specific normalization.
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Is our discovery of divisive normalization by similar orientations actually implemented by

the connectivity of neurons in primary visual cortex? The answer to this question could be

reflected in the connectivity from inhibitory parvalbumin-expressing (PV) interneurons to

pyramidal cells and their relation to neurons’ tuning properties. Hofer and colleagues [48] find

that, in the mouse, pyramidal cells and PV cells are homogeneously connected. Although a

weak bias towards orientation tuning is apparent, they conclude that local inhibition in V1 is

primarily non-specific. However, despite the connection probability between PV and pyrami-

dal cells being homogeneous, connection strengths are quite heterogeneous: Individual PV

cells strongly inhibit those pyramidal cells that share their visual selectivity [49]. This result is

in line with our finding of orientation-specific normalization. Similarly, recent work employs

single-neuron perturbations in layer 2/3 of mouse V1 and directly measures higher suppres-

sion of neighbouring excitatory neurons with a similar preferred orientation [50].

The stimuli in our dataset were specifically designed to investigate nonlinear processing in

the RF center and to minimize surround suppression. The control analyses showing that sur-

round suppression is unlikely in our dataset serve only the purpose of verifying that our con-

clusions about orientation-specific normalization in the receptive field are not due to leakage

of surround suppression (which is known to be orientation-specific [30–34]). Without ques-

tion, surround suppression is an important component of nonlinear processing in V1 and

deserves further investigation and modeling using a dataset designed for that purpose.

In our stimuli the fully visible part was spatially restricted to approximately the size of the

receptive field. For our dataset the RF diameters of 0.25˚—0.75˚ have been roughly estimated

by spike-triggered average. RF size estimates based on the grating summation field (GSF) tend

to be larger by approximately a factor of two [32]. The GSF is defined by the smallest grating

diameter that leads a unit to respond with at least 95% of its maximum activity [32]. Accord-

ingly, the average GSF size we estimated based on our in silico size-tuning experiments had a

diameter of 0.86˚, roughly corresponding to the fully visible part of our stimuli (1˚ of visual

field). For the remaining stimulus portion (1˚—2˚) outside of the GSF there could be normal-

izing influences from the surround (Figs 1A and 2 in ref. [32]). However, it is rather unlikely

that this region strongly influenced our data, as in our stimuli a cosine mask fading to zero

was applied in this area (see Methods). Rather, we would expect significant surround effects

beyond 2˚ of visual field, which is not covered by our stimuli. Furthermore, in the results we

have shown here, our model saw only the central 1.14˚ of the images (except for the variants

extended to the surround, which did not learn significant surround interactions either). Thus,

as we expected, our DN model did not exhibit significant surround suppression in our size-

tuning control experiments and spatially extended DN control models suggested no surround

interaction (Fig 7). Summarizing our control analysis, literature suggests that in general there

are surround interactions under stimulation with natural images [34, 51], however, our spa-

tially constrained stimuli likely restricted us to study DN within the receptive field and very

likely prevented us from learning the influence of the RF’s surround on normalization, making

the surround unlikely to affect our result of orientation-specific normalization within the RF

center.

Another property of our dataset that minimized the effect of surround suppression is that

we focused on single images to predict a spike count in a relatively short time window covering

the transient response, and ignored any temporal aspects or more sustained periods of the

response. If there was some interaction from the partly masked surround, we would expect the

onset of these effects to be delayed. Several studies report that the onset of surround suppres-

sion exhibits a 15—60 ms delay relative to the onset of center RF responses [52]. Bair and col-

leagues [53] reported average delays as short as 9 ms, however, surround suppression’s peak

effect was typically reached 40—50 ms after its onset. As responses to the center RF occur on
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average 52 ms after stimulus onset [53], in the dataset we used [14] we would expect significant

surround influences to set in at the end of the recording window, which was 40—100 ms after

stimulus onset. Hence, if there might be any contribution from the surround, we would expect

it to contribute only very weakly to the overall spike counts determined in this time window.

Note, the limitations in studying surround effects are imposed by the available data—the

modeling approach may well generalize to cover both the surround and the temporal structure

—and thus the extra-classical receptive field should be addressed in future work with a dataset

containing larger stimuli.

Compared to our divisive normalization model, the three-layer CNN performs a few per-

centage points FEV better, showing that it captures additional (non-linear) phenomena that

divisive normalization cannot account for. Future work will be necessary to find out what

these unexplained effects are. This result shows the importance of quantitative, data-driven

modeling: our work suggests that a model that can account for pooling of subunits (complex

cells) and divisive normalization is structurally insufficient to achieve optimal performance in

modeling V1 responses.

The performance difference between subunit and DN model measured in terms of FEV is

also just a few percentage points. However, the phenomenological difference between those

models is quite substantial, as the DN model correctly captures cross-orientation inhibition

while the subunit model does not. Therefore, one should probably not only measure model

performance by considering FEV over a set of randomly sampled natural images, but instead

also consider other metrics or specifically chosen test sets that highlight certain aspects of neu-

ral computation—such as cross-orientation inhibition.

Important future research directions that follow our methods include studying the role of

divisive normalization in higher areas of the ventral stream, like V4 and inferotemporal cortex.

Building a predictive model by stacking successive DN layers or including a final divisive non-

linearity for the shared feature space are great candidates for future consideration, especially as

earlier studies already report signs of normalization in these higher areas [54–56].

In conclusion, we developed a model consisting of one layer of subunits followed by learned

orientation-specific divisive normalization, which accounted remarkably well for V1 data. We

hope that this quantitative approach of evaluating theories of computation in the brain by for-

malizing them as (components of) trainable predictive models will be used more widely in the

future, so the field will (slowly) converge to an accurate general-purpose model of the visual

system applicable to natural inputs.

Methods

Experimental details

We used the dataset described in detail by Cadena and colleagues [14] and provide a summary

of the most important characteristics here. Electrophysiological recordings from two healthy,

male rhesus macaque monkeys aged 12 and 9 years were performed with a 32-channel linear

silicon probe. The monkeys were head-fixed and placed in front of a screen. They were trained

to fixate on a target located at the center of the screen. The start of a trial was determined by

maintained fixation on the target for 300 ms. The fixation tolerance was set to 0.42˚ around

the center of the target. At the beginning of each recording session, population receptive fields

were mapped with a sparse random dot stimulus. Each dot was of size 0.12˚ of visual angle and

was presented over a uniform gray background, changing location and light intensity (black or

white) randomly every 30 ms. The receptive field profiles per electrode channel were then

obtained via reverse correlation (i. e. spike-triggered average). The center location of the popu-

lation receptive field was subsequently estimated by averaging over channels and fitting a two-
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dimensional Gaussian to the reverse correlation profiles. Afterwards, this location was used to

place the images of the natural stimulus paradigm.

The dataset by Cadena and colleagues [14] consists of 7 250 distinct natural, greyscale

images which were presented two to four times each. A fifth of these images (1 450) were taken

from ImageNet [57]. Four additional texturized images were synthesized from each of them,

preserving varying degrees of higher-order statistics. The images were cropped to 2 × 2 degrees

of visual angle (140 px × 140 px). Before displaying the images on the screen, the images were

normalized such that the central 1˚ (70 px) of each image had the same mean (111.5) and stan-

dard deviation (45) determined across the central portion of all original images. Pixels with an

intensity that fell outside the display’s range [0, 255] where clipped. Afterwards, all images

were overlaid with a circular mask with a soft cosine fade-out fading to the screen’s mean gray

intensity (128) and an aperture with a diameter of 1˚.

Images were presented for 60 ms with no blanks in between. Neural responses were

extracted in time windows of 40–100 ms after image onset (Fig 2), accounting for typical

response latencies in primary visual cortex. The image sequence was randomized with the

restriction that consecutive images do not belong to the same type (i. e. natural or one of the

four texturized versions).

A few isolated neurons were discarded if their stimulus driven variability was too low [14].

The explainable variance in a dataset is smaller than the total variance because the observation

noise prevents even a perfect model to account for all the variance in the data. Thus, targeting

neurons that have sufficient explainable variance is necessary to train meaningful models of

visually driven responses. For a neuron’s spike count r, the explainable variance Varexp[r] is

the difference between the the total variance Var[r] and the variance of the observational noise

s2
noise,

Var exp½r� ¼ Var ½r� � s2
noise : ð6Þ

We estimated the variance of the observational noise by computing the variance of a neuron’s

response rt in multiple trials t in which we presented the same stimulus xj and subsequently

taking the expectation Ej over all images,

s2
noise ¼ Ej½Vart½rtjxj�� : ð7Þ

Neurons for which the ratio between the explainable to total variance was below 0.15 were

removed. The resulting dataset includes spike count data for 166 isolated neurons, with an

average ratio of explainable to total variance of 0.285. These neurons were recorded at 1˚–3˚

eccentricities and estimated receptive field size diameters were between 0.25˚ and 0.75˚. Since

RF sizes were roughly estimated using spike-triggered average, it is likely that the values

reported here underestimate the grating summation field defined by the smallest grating

diameter that leads a unit to respond with at least 95% of its maximum activity by a factor of

approximately two (see Discussion; similar to the minimum response field (MRF) underesti-

mating the GSF as reported by Cavanaugh and colleagues [32]).

To keep the results of our models consistent and comparable to the gold standard baseline

from Cadena and colleagues [14], we down-sampled the images by a factor of two to train our

models. Likewise, images were cropped symmetrically, keeping the 40 × 40 central pixels

(1.14˚ of visual angle). This size covers all of the recorded neurons’ receptive fields, with a

slight variability in their spatial location. Furthermore, the stimuli light intensities across all

pixels and all images were centered around zero and normalized to have unit standard devia-

tion. Additionally, we used the same random dataset splits of Cadena and colleagues [14] into

training (64%), validation (16%) and testing (20%). We assessed our models’ accuracy for a
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specific architecture or set of hyper-parameters in the validation set and we report perfor-

mance on the test set. We consistently used the same split throughout our study.

Divisive normalization model

Our model consists of two parts, a nonlinear core and a linear readout (see Results and Fig 1).

The core (Fig 1A) processes the input stimulus x by convolving it with 32 filters wk of size 13

px × 13 px (0.37˚ of visual angle) without padding, defining a bank of features indexed by k.

Subsequently, we apply batch normalization [58] without re-scaling (BN�) which adds a bias

term (ol in Eq 2) and scales the responses to be of unit variance. This operation does not affect

the overall computation and biological interpretation of our model, since scaling the driving

inputs (y in Eq 1) by a factor β whilst scaling the normalization weights (p in Eq 1) and linear

readout weights (Eq 3) by 1/β yields the same output. The batch normalization step is followed

by a rectified linear unit (ReLU) nonlinearity

f ð�Þ ¼ maxð0; �Þ : ð8Þ

Hence, equivalent to Eq (2), the resulting 32 feature maps of size 28 px × 28 px for the excit-

atory drive are given by

yl ¼ f ðBN � ðwl � xÞÞ ð9Þ

and contain information about the full input space covering 1.14˚ of visual field. Many neu-

rons perform similar computations but respond at different localized areas of the visual field.

Those receptive fields are represented by the kernels wl, which we implemented convolution-

ally to make use of this knowledge. Furthermore, the ReLU nonlinearity (Eq 8) ensures that

all feature maps are non-negative, yl� 0 being coherent to the biological interpretation of an

excitatory drive.

The feature maps yl are then normalized divisively to produce 32 output feature maps

zl ¼
ynll

s
nl
l þ

P
kpkl hy

nk
k i

ð10Þ

shared by all neurons. Here, all operations are element-wise and the scalar semi-saturation

constant σl� 0 is learned from the data. To include normalization by other channels k, we first

exponentiate the excitatory feature maps yk by the scalar nk� 0 element-wise, which is learned

from the data as well. Subsequently, low-pass filtering hynkk i is performed through average pool-

ing in space with pool-size 5 px × 5 px (0.14˚, covering 0.49˚ in the input space taking the con-

volutional layer into account). We perform this pooling in order to achieve (approximate)

phase invariance of the normalizing input without requiring a large number of filters with dif-

ferent phases. Subsequently, the results of the low-pass filtering are summed up, weighted by

the normalization weights pkl, and added into the denominator, resembling Eq (1). Further-

more, the normalization weights are constrained to be non-negative, pkl� 0. Together with

yk� 0 and σl� 0, this ensures that the denominator in Eq (10) is non-negative, hence having a

well-defined biological interpretation.

We converted the core’s output feature maps zl, shared by all neurons, to the activity of

individual neurons via a readout for each of them (Fig 1B). To do so, we factorized the readout

into spatial readout weights auv,i� 0 and feature readout weights bl,i� 0 that pick the relevant

locations and features plus a bias qi,

gi ¼
X

u;v;l

ðauv;i bl;iÞ zuvl þ qi : ð11Þ
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Here, u, v index space and i indexes neurons. This factorization is beneficial because it reduces

the number of parameters in the readout. Also, we wanted to ensure that the readout does not

model any complex computations, which we achieved by this factorization and the non-nega-

tivity of the readout weights. Additionally, we limited complexity by imposing a sparseness

prior on both weights, because each neuron should only respond to its receptive field which is

represented by a sparse spatial readout weight and should not mix many different features

which corresponds to a sparse feature readout weight. The readout can, however, model a

complex cell [59] by linearly combining multiple channels of the shared feature space.

We fitted an output nonlinearity to obtain the final prediction of a neuron’s activity r̂ i as

suggested by Cadena and colleagues [14] from which we paraphrase the description here.

Optimizing the output nonlinearity improves data-driven models, but has to be done carefully

when simultaneously learning the shared core and the readout weights end-to-end. We there-

fore construct the output nonlinearity inspired by the shifted exponential linear unit (ELU�)

[60],

r̂ i ¼ hiðgiÞ � ELU �ðgiÞ ; ELU �ðgiÞ ¼

( gi if gi � 1

exp ðgi � 1Þ otherwise ;
ð12Þ

keeping the resulting activity non-negative, and multiply it by a non-negative function

hiðgiÞ ¼
X

j

tjðgiÞ e
aji

ð13Þ

with parameters αji which are learned for each neuron i independently. The basis functions

tj(x) in the argument of h are tent functions leading to a piecewise linear function inside the

exponential. The tent functions are defined as

tjðxÞ ¼ min max 0;
x � xj� 1

Dx

� �
;max 0;

xjþ1 � x
Dx

� �� �
; ð14Þ

with interpolation points xj = −3, −2.82, . . ., 6 and Δx = 0.18. By regularizing the coefficients αj
with a L2 and a smoothness penalty, the model is pushed towards using the identity function

for inputs larger than one and a shifted exponential function for smaller inputs. If the data pro-

vides strong evidence in favor of a different output nonlinearity, the piecewise function hi can

be used to modify it. For example, the output nonlinearity is general enough to learn a sigmoi-

dal shape, although for our best-fit models across model types it learned a slight expansive

deviation from the identity in most cases and in a few cases a mix of slight expanding and

slight compressing deviations from the identity function.

To optimize our model’s parameters, we maximized the log-likelihood of the model’s pre-

dictions given the data. To do so, we assumed that neurons’ spikes are produced by a Poisson

process. Our model predicts the average spike count r̂ of a neuron, hence the probability of

observing r spikes in the experiment is

Pðrjr̂Þ ¼
r̂ r

r!
e� r̂ : ð15Þ

From that follows the Poisson log-likelihood

lnPðrjr̂Þ ¼
X

i;j

ðriðxjÞ ln r̂ iðxjÞ � ln ðriðxjÞ!Þ � r̂ iðxjÞÞ ð16Þ

for all neurons i and all stimuli xj. A neuron’s response ri� ri(xj) depends on the stimulus xj,
which we suppress in our further notation for better readability. For implementation reasons,
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we wanted to minimize the Poisson loss function

LPoisson ¼
X

i;j

ðr̂ i � ri ln r̂ iÞ ; ð17Þ

which is the negative of the Poisson log-likelihood (Eq 16), where we omitted ln(ri!) since this

term does not depend on our model.

Furthermore, three terms regularizing the model’s parameters were applied to the loss. We

imposed a smoothness prior on the kernels wk to ensure the spatial continuity of the predic-

tors’ receptive fields. The according penalty on the loss for weights being not smooth was

determined with a Laplace filter L to be

Lsmooth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

u;v;k

ðL � wkÞ
2

uv

r
; L ¼

0:25 0:5 0:25

0:5 � 3 0:5

0:25 0:5 0:25

0

B
B
B
@

1

C
C
C
A
: ð18Þ

Due to their receptive fields, neurons only respond to a small, localized area of the visual field,

which is why we imposed a sparsity prior on the spatial readout weights auv. Furthermore,

neurons should only pool from a small set of feature maps to ensure that the readout does not

perform complex computations. Thus we imposed a sparsity prior on the feature readout

weights bl as well. We achieved this by adding the L1-norm of both weights

Lsparse ¼
X

i

X

u;v;l

jauv;ij � jbl;ij ð19Þ

to the loss function. As described by Cadena and colleagues [14], we regularized the output

nonlinearity for all neurons by penalizing the sum of squares of the first and second finite dif-

ferences of the weights αji to keep the learnable exponential function hi(x) smooth,

Lout ¼
1

N

X

i

XN

j¼1

ðaj;i � aj� 1;iÞ
2
þ ð2aj;i � aj� 1;i � ajþ1;iÞ

2
� �

: ð20Þ

The final loss function to minimize with respect to our model’s parameters is

L ¼ LPoisson þ lsmooth Lsmooth þ lsparse Lsparse þ lout Lout ; ð21Þ

where λsmooth, λsparse and λout are hyper-parameters which set the strength of the smoothness,

the sparsity and the output nonlinearity penalty, respectively.

Divisive normalization model extended to normalization from surround

To extend our DN model to capture normalization from the spatial surround of a unit’s RF,

we replaced the weighted sum accounting for normalization (Eq 10) by a convolution that also

covers space, keeping the rest of the original DN model unchanged,

zl ¼
ynll

s
nl
l þ sl

; sl ¼
X

k

pkl�� � hy
nk
k i ; ð22Þ

equivalent to Eq (4). The new shared feature maps zl consist of all element-wise operations

where the newly introduced normalization feature maps sl represent the strength by which the

excitatory drive ynll is normalized. The normalization feature maps are the result of a convolu-

tion between hynll i and normalization pool kernels pkluv.
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For a larger convolutional kernel p, the feature maps s have smaller spatial dimensions than

the excitatory feature maps y due to the convolution without padding. To be able to perform

the element-wise division, we symmetrically cropped the excitatory feature maps y so that the

resulting feature maps had the same spatial dimensions as s. Additionally, we wanted to keep

the complexity (number of parameters) of the linear readout constant for all the size choices of

the normalization kernel p. To this end, we symmetrically cropped the input images to a size

that corresponds—after a forward pass through our model—to a shared feature space of spatial

dimensions 28 px × 28 px (0.80˚, covering 1.14˚ of the input image taking the convolutional

layer into account). Overall, this process enabled a fair comparison across all sizes of p.

To keep the kernel size of p computationally tractable, we used dilated convolutions which

have defined gaps between the weights of the convolutional kernels. We chose to skip four pix-

els between each weight which is reflected by a dilation factor of five. Thereby, we were able to

pool from a relatively large extra-classical RF while using few parameters. If we would compute

this convolution directly on the feature maps ynkk , the dilation would cause us to skip some ele-

ments in the feature map ynkk in the convolution’s inner product for one specific position of the

convolutional kernel, i. e. for one specific element in the suppression feature maps sl. To con-

sider all those elements we preceded the inner product computation of the convolution with

an average pooling of 5 px × 5 px pool size (same as the dilation factor; 0.14˚, covering 0.49˚ in

the input space taking the convolutional layer into account) which we performed at every spa-

tial position in the input feature maps ynkk . Then, exactly one weight of the convolutional kernel

accounts for one 5 px × 5 px pool. In this view, the pools of the dilated kernel’s neighbouring

weights have coinciding boundaries. So in addition to implementing shift invariance, the aver-

age pooling makes sure that we do not loose information for the extended DN model. Due to

this pooling, a normalization kernel p of spatial size 3 px × 3 px would spatially cover a

normalization pool of size 15 px × 15 px (0.43˚, covering 0.77˚ in the input image taking the

convolutional layer into account). We investigated models with normalization kernel sizes of

1 px × 1 px, 3 px × 3 px, 5 px × 5 px and 7 px × 7 px which spatially covered a five times larger

normalization pool due to dilation. Those normalization pools covered visual angles of 0.49˚,

0.77˚, 1.06˚ and 1.34˚, respectively.

Baseline models

Convolutional neural network. Since the divisive normalization computation in our

model was completely learned from the data, we wanted to compare to a baseline model that is

purely data-driven as well. For this, the current state-of-the-art model is a convolutional neural

network with three layers [14]. Its first convolutional layer consists of a kernel with spatial size

of 13 px × 13 px (0.37˚ of visual field) and for the second and third layer of size 3 px × 3 px

(0.09˚) each, covering 0.43˚ and 0.49˚ of the input image, respectively. All layers use 32 chan-

nels, batch normalization [58] and ELU nonlinearity [60],

ELU ðxÞ ¼

( x if x � 0

exp ðxÞ � 1 otherwise :
ð23Þ

Similar to our model’s architecture, the core part of the CNN model results in a nonlinear fea-

ture space shared by all neurons which is mapped to each neuron’s activity with individual

readout weights factorized in spatial and feature weightings. Sparseness of both of them is

achieved by adding an L1-penalty to the according loss function. This readout employs the

same final output nonlinearity as in our DN model but differs from ours in having no non-

negativity constraints on the weights.
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Convolutional subunit model. Our convolutional subunit baseline model is structurally

a one-layer convolutional neural network with multiple filters followed by a readout. It is

exactly the same as our divisive normalization model but with the normalization function (Eq

10) replaced by the identity function

zl ¼ id ðylÞ ¼ yl : ð24Þ

Hence, the only difference to our DN model is the lack of normalization. The shared feature

maps zl consist of rectified outputs of linear filters (Eq 9) which approximate simple cells.

The subsequent readout can sum up those simple cell responses with additional weightings,

enabling the model to approximate complex cells [59]. We trained the model with the same

loss function (Eq 21) as the divisive normalization model.

Hyper-parameter optimization

Our model’s accuracy depends on several hyper-parameters. We set the initial learning-rate to

10−3 and used an early stopping training scheme: We evaluated the Poisson loss (Eq 17) every

100 training steps, after ten iterations of no improvement we decayed the learning-rate by a

factor of three, and we repeated this four times. For the filters wk in the first convolution, we

found that a size of 13 px × 13 px (0.37˚ of visual field) was optimal, the same is true for the

number of 32 channels.

The weights λsmooth of the smoothness penalty (Eq 18), λsparse of the readout sparsity penalty

(Eq 19) and λout of the output nonlinearity’s penalty term (Eq 20) in the full loss function

(Eq 21) were extensively cross-validated using the validation set of our data. We randomly

sampled the smooth-weight λsmooth from a logarithmic uniform distribution in the interval

[10−9, 10−3.5] and the readout sparse-weight λsparse from a logarithmic uniform distribution in

the interval [10−9, 10−4.5] for all models. For the divisive normalization model constrained to

the receptive field center and the subunit model, we drew the output nonlinearity penalty

weight λout from a logarithmic uniform distribution in the interval [10−8, 102]. For those two

models, we sampled 1 000 runs. For the non-specific divisive normalization model and the DN

models extended to the spatial surround, we narrowed down the relevant parameter space of

λout and sampled them from a logarithmic uniform distribution in the interval [10−5, 100].

Since this halved the search space of the hyper-parameters, we halved the number of samples

drawn for those models. Thus, the density of sample points in the search space was the same

for all models and should lead to a fair comparison between their performance. For a fair com-

parison of all models in this study to the state-of-the-art three-layer CNN, we retrained this

model with the same optimization procedure. After running optimization for a few 100 hyper-

parameter samples, we observed that the best performing models were close to the upper

bound of the readout sparsity penalty weight. Thus, we discarded those data-points and started

searching again with a shifted search-interval for λsparse 2 [10−5.5, 10−1], sampling 1 000 model

runs as before. In layer 2 and 3, we set the smooth-weights to zero and group-sparsity weights

to 2.5 � 10−4 since Cadena and colleagues [14] found best performance for those values and

these parameters are specific to the three-layer CNN, being not applicable to the other models

used in this study.

Accuracy evaluation

Average correlation. For architecture search, hyper-parameter optimization and the

selection of specific models for analysis we evaluated models’ accuracies on the validation set

with the Pearson correlation coefficient between the measured spike counts and our models’

predictions, averaged over neurons. If the prediction for one neuron is constant, the according
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standard deviation is zero. Hence, for such neurons the correlation coefficient was not com-

putable due to division by zero. For those neurons, we set the correlation coefficient to zero

before averaging. This average correlation measure does not consider observational noise

(Eq 7).

Fraction of explainable variance explained. For reporting accuracy values in this paper,

we used the data’s test set to compute the fraction of explainable variance explained (FEV) per

neuron

FEV ¼ 1 �
Var res½r�
Var exp½r�

ð25Þ

which utilizes the variance that is explainable in principle, Varexp[r] (Eq 6), and the variance of

the residuals corrected by the observation noise,

Var res½r� ¼
1

N

XN

j

ðrj � r̂ jÞ
2
� s2

noise ; ð26Þ

where j indexes images. This measure corrects for observation noise, which variance s2
noise we

estimated with Eq (7). To compute model performance we averaged the FEV across neurons.

In silico experiments

To perform cross-orientation and size tuning experiments in silico, we first had to determine

the optimal Gabor pattern that elicited maximum response for all units in the models we inves-

tigated. We specified an image containing a Gabor pattern by the Gabor’s center location, size,

spatial frequency, phase, orientation and contrast. For each neuron and model, we obtained

the optimal Gabor image by finding the parameter combination that lead to maximum model

prediction. For the center location we tested all positions in the 40 px × 40 px (1.14˚ of visual

field) image using 12 different orientations with equally spaced angles ϕ/π = 0, 1/12, 2/12, . . .,

11/12 (in units of π) and 8 phases ψ/2π = 0, 1/8, 2/8, . . ., 7/8 (in units of 2π). We searched for

size, spatial frequency and contrast with equidistant values in log-space. Specifically, we sam-

pled 8 sizes si = 4 px � (1.3895)i, i = 0, 1, . . ., 7, resulting in a maximum size of 40px, where the

size of the Gabor is defined as ±2 standard deviations of its Gaussian envelope. For spatial fre-

quency, we used 10 values fi = (1.3)−1 � (1.3)i, i = 0, 1, 2, . . ., 9 measured in cycles per four stan-

dard deviations of the according Gaussian envelope. We determined the maximum contrast

from the images in our training set. After normalization, the mean across all pixel values was

zero, the minimum and maximum pixel values were −2.52 and 3.20, respectively. Thus, mak-

ing sure that the Gabor’s pixel values are within the value range seen by the models during

training, we set the maximum contrast to cmax = 2 � 2.52 corresponding to a maximum ampli-

tude of amax = 2.52. We chose 6 amplitude (contrast) values ai = ci/2 = 0.01 amax � (2.51189)i,

i = 0, 1, 2, . . ., 5 resulting in c5 = cmax.

Cross-orientation inhibition. For the cross-orientation inhibition experiment, we used

the parameters determined for the optimal Gabor to generate plaids (Fig 4A, insets) by linear

superposition of the optimal Gabor with a 90˚ rotated version of it. We sampled the contrasts

of both Gabor components from all combinations out of C ¼ f0; cig with ci = 0.01 cmax �

(1.63069)i, i = 0, 1, 2, . . ., 8 where the highest contrast was 50% of the maximum contrast, c8 =

0.5 cmax, making sure the pixel values of the combined plaid stimulus stayed within the value

range seen by our models during training. In addition, for the orthogonal Gabor we used 8

phases ψ/2π = 0, 1/8, 2/8, . . ., 7/8 (in units of 2π). We obtained contrast tuning curves present-

ing all plaid stimuli averaging across phases to get results that are independent of relative
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phase between optimally and orthogonally oriented Gabor components. To quantify cross-ori-

entation inhibition strength, we defined a cross-orientation inhibition index (COI) measuring

the relative reduction in response due to adding an orthogonal Gabor with contrast ci to the

driving Gabor of optimal orientation with contrast cj for all contrast combinations

ðci; cjÞ 2 Corthogonal � Coptimal,

COI ðci; cjÞ ¼ 1 �
r̂ðci; cjÞ

r̂ðci ¼ 0; cjÞ
: ð27Þ

We define a cell to be cross-orientation inhibited if the cross-orientation inhibition index COI

is at least 10% for any combination of optimal and orthogonal Gabor contrasts, i.e. the pres-

ence of the orthogonal Gabor reduces response by at least 10%.

Size tuning and surround-suppression control analysis. To obtain size tuning curves,

we generated gratings using the parameters of the optimal Gabor for each cell. Then, instead

of presenting a Gabor with a Gaussian envelope, we present a sinusoidal grating with full con-

trast and a sharp cut-off to zero intensity (50% grey) outside of a circular area with predefined

diameter (Fig 7). We set the maximum grating diameter to dmax = 120px (3.43˚ of visual field),

making sure to cover the whole 40 px × 40 px (1.14˚ of visual field) image even if the grating’s

center would be in one of the image corners. Then, we chose diameters di = 0.05 dmax �

(1.23859)i, i = 0, 1, 2, . . ., 14. As almost all optimal Gabors had maximum contrast, we pre-

sented the gratings in this experiment with maximum contrast, too. To quantify any surround

suppression, we used the suppression index (SI) proposed by Cavanaugh and colleagues [32],

measuring the reduction from the highest model prediction r̂max to the prediction r̂ supp for a

grating completely filling the whole image for each neuron,

SI ¼ 1 �
r̂ supp

r̂max
: ð28Þ

Hence, a SI of zero corresponds to no suppression, whereas a fully suppressed cell would lead

to a SI of one.

Evaluation of orientation-specific normalization

To analyse how the preferred orientation of the features being normalized depend on that of

the features providing normalizing inputs (Fig 5), we determined for each feature map whether

it extracts oriented features and—if so—its preferred orientation. To do so, we windowed each

convolutional kernel of size 13 px × 13 px (0.37˚ of visual field) with a Gaussian window (stan-

dard deviation: 3 px, corresponding to 0.09˚), normalized it and then computed its 2D power

spectrum (using the discrete Fourier transform with 64 × 64 samples). We then quantified

how power spectral density is distributed across orientations by computing a mean resultant

vector m given by:

m ¼
X

u;v2R

Fuve
2i�; ð29Þ

where Fuv is the Fourier transformed kernel, R ¼ fðu; vÞ : 0:3 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

< 0:7g contains all

frequencies between 0.3 and 0.7 (with 1.0 being the Nyquist frequency), ϕ = atan2(v, u) is the

orientation, i the imaginary unit and the factor 2 in the complex exponential accounts for the

fact that we are interested in orientation, which is periodic in 180˚ or π. If all power in a kernel

is concentrated in one orientation, the mean resultant vector will be long, whereas an unor-

iented kernel will have a mean resultant vector near zero. Based on visual inspection of the
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kernels in model fits of the top 11 to 20 model runs (in terms of validation set accuracy), we

found |m| = 0.125 to be a reasonable threshold for separating oriented from unoriented fea-

tures and used it as a heuristic for further analyses of the best ten model runs, avoiding issues

with post-hoc statistical testing.

To quantify how strong a feature l is normalized by other features k, we computed the aver-

age normalizing input, which is given as the expected value (over images) of the product pkl �
ykuv(x) in Eq (1). Since this normalization input depends on the stimulus, we computed its

expected value of all images in the validation set. We removed the dependence on space by

averaging over all locations within the feature map.

Control: All channels contribute to our model’s prediction

To verify that all features contribute to normalization, we analyzed the readout feature weights

for the best ten models (assessed in terms of performance on the validation set). However,

there are two issues that prevent a direct comparison across models and neurons of the feature

weightings. First, the factorization of the readout into spatial and feature weightings is not

unique: scaling the spatial weights (a in Eq (11)) by a factor β whilst scaling the feature weights

(b in Eq (11)) by 1/β yields the same output limiting comparisons across neurons. Second, a

similar exercise between the normalization weights p and the semi-saturation constant σ (Eq

10) impedes comparison across models. To solve these issues, we normalized the feature read-

out weights of each neuron for this control analysis so that the resulting vectors for each neu-

ron and model convey how much a certain feature map contributes to predict a neuron’s

response compared to the other feature maps, making the feature readout weights comparable

across neurons. Next, we averaged these weights across neurons to assess the importance of

the features in a model. Since these normalized feature readout weights were comparable

across both neurons and models, we calculated a collective distribution of the averaged feature

readout weights from the best ten models. To make sense of this distribution’s absolute values,

we evaluated its width in terms of the coefficient of variation, which is the standard deviation

in units of the mean.

Implementation details

We used Tensorflow [61] to implement models as well as Python, which we additionally used

for data analysis. We optimized models with the Adam optimizer [62] using mini-batches of

size 256. In addition, we used the Python packages Numpy/Scipy [63], Pandas [64], Matplotlib

[65], Seaborn [66], Datajoint [67, 68] and the tools Jupyter [69] and Docker [70].
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