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Abstract

Despite significant advancements in the field of molecular neurobiology especially 

neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying 

neurodegenerative diseases remain elusive. As a result, the development of the next generation 

neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of 

genome editing offer a new template for dissecting the precise molecular pathways underlying the 

complex neurodegenerative disorders. We believe that the innovative genome and transcriptome 

editing strategies offer an excellent opportunity to decipher novel therapeutic targets and develop 

patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative 

disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic 

lateral sclerosis, frontotemporal dementia etc. However, despite significant advancements, we 

would caution the researchers that since the CRISPR field is still evolving, currently we do not 

know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding 

CRISPR-edited human babies being born in China, we urge the scientific community to maintain 

high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish 

model, in vivo testing in nonhuman primates and lower vertebrates and for the development of 

neurotherapeutics for the currently incurable diseases. Here, we review the latest developments in 

the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding 

its translational potential to improve the treatment outcomes and minimize financial burden.
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Introduction

Neurodegenerative diseases are becoming increasingly common in the ageing population 

and are a significant cause of socio-economic burden worldwide. Due to the current 

knowledge gap, the precise and highly complex molecular and cellular mechanisms 

underlying neurodegenerative diseases are not very well understood. However, intervention 

at the earliest stages of neurodegenerative disorders holds tremendous promise for the 

prevention as well as the treatment of various neurodegenerative disorders and the recent 

trend indicates a paradigm shift from single therapeutic target to a multi-target approach 

(Cao et al., 2018). In this regard, CRISPR/Cas9 (Clustered Regularly interspaced short 

palindromic repeats/CRISPR-associated 9)-mediated genome editing offers a novel 

approach to either halt or delay the progression of neuroinflammation as well as 

neurodegeneration. Neuroinflammation, which is a hallmark of various neurodegenerative 

disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic 

lateral sclerosis (ALS), frontotemporal dementia (FTD) and multiple sclerosis (MS), plays a 

crucial role in the development and progression of these neurodegenerative diseases (Chitnis 

and Weiner, 2017; Lall and Baloh, 2017). The elements of the innate immune response 

within the CNS including microglia and astrocytes are the key cellular mediators of 

neuroinflammation. We believe that precision-targeted genome editing of the key signaling 

molecular mechanisms underlying neuroinflammation offers a novel therapeutic approach to 

effectively treat neurodegenerative disorders and significantly reduce the economic burden. 

Although there are several excellent review articles on various genome editing approaches 

utilizing zinc finger nucleases (ZFNs), transcription activator-like effector nucleases 

(TALEN), meganucleases and targeterons, our discussion will be specifically focused upon 

CRISPR-mediated genome editing in the central nervous system. For the basic 

understanding of genome editing in mammalian brain there are several excellent reviews 

available (Nishiyama, 2018; Vesikansa, 2018). Here, we describe the status of genome 
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editing especially in relation to neuroinflammation and neurodegeneration. To demonstrate 

the significant potential of CRISPR-mediated genome editing we have made sincere efforts 

to highlight the progress in various neurodegenerative disorders especially AD, PD, ALS, 

FTD and HD.

CRISPR/Cas9: A Novel Gene Editing Tool

Initial discovery of a Type II CRISPR system in Streptococcus pyogenes wherein 4 genes 

including Cas9, Cas1, Cas2, Csn1 and two non-coding RNAs (pre-crRNA and tracrRNA) act 

simultaneously to target and degrade foreign DNA in a sequence specific manner has 

ushered in a new era in the field of genome editing (Garneau et al., 2010; Horvath and 

Barrangou, 2010; Jinek et al., 2012; Wiedenheft et al., 2012). In the type II CRISPR/Cas 

system that is very widely used, Cas9 is complexed with two small RNAs termed as 

CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) to form a sequence-specific 

RNA-guided endonuclease (RGEN). In this system the tracrRNA:crRNA-guided Cas9 

protein utilizes distinct endonuclease domains (HNH and RuvC-like domains) to cleave the 

two strands in the target DNA. The CRISPR/Cas9 system was subsequently exploited to 

allow double strand breaks in the mammalian genome at specified locations that could be 

repaired by either non-homologous end-joining (NHEJ) or homology-directed repair (HDR) 

(Cong et al., 2013; Mali et al., 2013a; Mali et al., 2013b; Ran et al., 2013a; Sander and 

Joung, 2014).

Most recently, a set of CRISPR-Cas systems from uncultivated archaea that contain 

exceptionally compact Cas14 proteins capable of targeted single-stranded DNA cleavage 

without restrictive sequence requirements have been reported (Harrington et al., 2018). 

Hiroshi et al have engineered CRISPR-Cas9 nuclease with an expanded targeting space 

(Nishimasu et al., 2018). Unlike the wild type SpCas9 that requires an NGG protospacer 

adjacent motif (PAM), the rationally engineered SpCas9-NG can recognize relaxed NG 

PAMs. SpCas9-NG induces indels at endogenous target sites bearing NG PAMs in human 

cells. Additionally the fusion of SpCas9-NG and the activation-induced cytidine deaminase 

(AID) mediates the C-to-T conversion at target sites with NG PAMs in human cells. In 

comparison to xCas9 (SpCas9 variant with A262T/R324L/S409I/E480K/E534D/M694I/

E1219V mutations) the cleavage kinetics of SpCas9-NG are superior. Further, the nuclease-

inactive version of SpCas9-NG-AID in which SpCas9-NG D10A nickase is fused to AID 

(nSpCas9-NG-AID referred to as Target-AID-NG mediates C-to-T conversion at 32 

endogenous target sites with NG PAMs in human cells. A new study has explored the 

potential utility of CRISPR-C to generate functional extrachromosomal circular DNA 

(eccDNA) which will be very useful for studying the cellular impact, persistence and 

function of eccDNAs (Moller et al., 2018). This technology allows the generation of 

eccDNA from intergenic and genic loci in human cells with a size ranging from a few 

hundred base pairs up to 47.4 megabase-sized ring chromosomes. However, it remains to be 

explored whether eccDNAs may play a role in neurodegenerative disorders. The list of 

various CRISPR systems and their respective PAM recognition sequences are provided in 

Table 1.
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While there are several studies that have utilized either lentiviral or AAV vectors for 

successful genome editing in vivo especially in the brain, there are potential concerns 

regarding off target effects, random integration of viral vectors and immune response. To 

overcome these potential limitations, recent studies have demonstrated promising genome 

editing results in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein 

complexes (Staahl et al., 2017). The engineered variants of Cas9 with multiple SV40 nuclear 

localization sequences revealed a tenfold increase in the efficiency of neuronal genome 

editing in vivo. However, astrocytes did not undergo editing using this approach. Hence, it 

would be important to devise appropriate genome editing strategies depending upon the cell 

type.

Multiple studies have successfully utilized constitutively active form of CRISPR/Cas9. 

However, it would be desirable to achieve regulated expression of CRISPR/Cas9 to 

maximize gene editing efficiency while simultaneously reducing the off target side effects. 

In this direction, an interesting study has described the development of a doxycycline 

inducible dual AAV based CRISPR/cas9 system (de Solis et al., 2016). Their system utilizes 

an inducible gRNA AAV vector designed to express the gRNA from a H1/TO promoter and 

the Tet repressor to regulate the expression of the gRNAi in a doxycycline dependent 

manner. Their initial results utilizing systemic injection of AAV2/DJ-PTight-Cas9 and 

AAV2/DJ-gRNATet2/rtTA-GFP in to the basal and lateral amygdala and feeding the animals 

with or without doxycycline led to gene editing that was not doxycycline dependent due to 

leaky Cas9 expression. Subsequently, by multiple rounds of genetic engineering they 

developed AAV2/DJ8-PMecp2-Cas9 and AAV2/DJ8-gRNAiTet2 vectors which upon systemic 

infusion in to the basal and lateral amygdala were able achieve genome editing in 

doxycycline dependent manner in as little as 24 hours. These research findings are exciting 

because regulated in vivo gRNA expression will significantly reduce off targeted effects 

while achieving precise gene editing in a very short time. To further improve upon these 

results, they have very recently developed a Cre-loxP system to conditionally regulate the 

expression and gene editing of Streptococcus aureus Cas9 (SaCas9) via the expression of 

Cre-recombinase in vitro and in vivo (Kumar et al., 2018). In their refined approach, they 

investigated AAV-mediated floxed SaCas9/CRISPR for achieving Cre-dependent gene 

editing in vivo. However, as compared to the earlier system, the Cre-dependent system 

appeared to edit at a much lower efficiency. Therefore, there is significant scope to further 

refine in vivo gene editing efficiency by developing better inducible expression vectors. 

Additionally, it would be worthwhile to explore various other AAV serotypes for achieving 

targeted gene editing in the neurons, microglia as well as astrocytes.

Although CRISPR has proven to be extremely versatile tool for genome editing in a wide 

variety of applications, a major caveat is the potential off target effects (Cho et al., 2014; Lin 

et al., 2014). Hence, there is a significant concern that such off target effects may negatively 

impact experimental results thereby limiting the potential utility of the CRISPR/Cas9 system 

especially in the clinical studies. Recent studies have evaluated genome-wide target 

specificities of CRISPR RNA-guided programmable deaminases by utilizing modified 

Digenome-seq (Kim et al., 2015). There are several sophisticated technologies available for 

the detection of off-target effects including GUIDE-seq, BLESS, HTGTS, IDLV capture, 

SITE-seq, CIRCLE-seq and BLISS (Frock et al., 2015; Tsai et al., 2015; Bolukbasi et al., 
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2016; Tsai and Joung, 2016; Tycko et al., 2016; Cameron et al., 2017; Tsai et al., 2017; Yan 

et al., 2017). A wide variety of approaches have been developed to minimize the off target 

effects including rationally engineered Cas9, evolved Cas9 variants, Sniper-Cas9, optimized 

base editors, modified or shortened guide RNAs, FokI-Cas9 fusion nucleases, purified Cas9 

ribonucleoproteins, VSV-G-enveloped vesicles carrying CRISPR-SpCas9 ribonucleoprotein 

complexes VEsiCas, paired catalytic mutant Cas9 nickases, Cas9D10A nickase and HiFi 

Cas9 and combining ribonucleoprotein delivery with AAV donor vectors for homology 

directed genome-editing (Ran et al., 2013b; Fu et al., 2014; Guilinger et al., 2014; Kim et 

al., 2014; Shen et al., 2014; Tsai et al., 2014; Wyvekens et al., 2015; Chiang et al., 2016; 

Slaymaker et al., 2016; Gaj et al., 2017b; Gopalappa et al., 2018; Hu et al., 2018a; 

Lazzarotto et al., 2018; Lee et al., 2018a; Montagna et al., 2018; Vakulskas et al., 2018; 

Zafra et al., 2018).

Recently, various technological advances have made it possible to determine genome wide 

activity of CRISPR/Cas9 nucleases (Bae et al., 2014; Tsai et al., 2015; Tsai et al., 2017; 

Lazzarotto et al., 2018). New studies have analyzed the influence of flanking DNA sequence 

on the repair outcome by measuring the edits generated by >40,000 guide RNAs in synthetic 

constructs (Allen et al., 2018). Their comprehensive studies suggest that the majority of 

reproducible mutations are in fact insertions of a single base, short deletions or longer 

microhomology-mediated deletions depending on the cell line.

Immune response to CRISPR therapeutics and the presence of pre-existing antibodies to 

Cas9 proteins could prove to be a significant hurdle especially for in vivo gene editing 

(Cromer et al., 2018; Simhadri et al., 2018). Development of codon optimized CRISPR may 

hold the key to overcome this hurdle. However, the emergence of novel delivery systems 

especially ribonucleoprotein complexes could potentially overcome the issues associated 

with the immune response (Staahl et al., 2017).

Gene Editing for Neurodegenerative Diseases

Within the central nervous system, microglial-astrocyte-monocyte-neuronal cross talk plays 

a crucial role in maintaining homeostasis during normal brain development, function, 

regeneration, repair as well as recovery. Neuroinflammation plays a very crucial role in the 

etiopathogenesis of various neurodegenerative diseases (Ransohoff, 2016; Becher et al., 

2017). Neuroinflammation is a highly complex and orchestrated biological process within 

the central nervous system that is tightly regulated by the pro as well as anti-inflammatory 

mediators and cell types. Normally acute neuroinflammation is often beneficial and is 

neuroprotective as it induces an adaptive response that enables the host to defend against the 

invading pathogens. However, on the other end of the spectrum, chronic neuroinflammation 

is indeed deleterious and results in neuronal dysfunction, which ultimately leads to the 

development of various neurodegenerative diseases. Currently, despite significant scientific 

advancements, there is no effective cure for the neurodegenerative diseases. Hence, there is 

an urgent need to develop novel approaches to successfully treat various neurodegenerative 

diseases. We believe that CRISPR-mediated gene editing offers a novel approach to develop 

precision-targeted therapies against various neurodegenerative disorders (Figure 1). Here we 
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provide a glimpse of the latest CRISPR-mediated gene editing approaches that have been 

used to target various neurodegenerative diseases Table 2.

Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that causes an 

irreversible cognitive decline in an estimated 5.5 million Americans with $259 billion in 

healthcare costs in 2017 (Alzheimer's Association). If the present trend continues, by 2050 

the number of AD patients will surpass 16 million with ~$1.1 trillion in healthcare costs 

thereby necessitating the development of novel therapeutic strategies to effectively treat AD. 

The pathological hallmarks of AD is abnormal accumulation of amyloid beta (Aβ) and 

neurofibrillary tangles due to aggregates of hyperphosphorylated tau protein, pathological 

events including oxidative stress, reactive glial and microglial changes and genetic mutations 

in APP, PSEN1, PSEN2 and higher association with APOE4 allele (Wang et al., 2017a). 

Recent studies have provided novel insights regarding neurogenetic contributions to Aβ and 

tau spreading in the human cortex (Sepulcre et al., 2018). Impaired processing and 

elimination of these proteins leads to their abnormal buildup and spread (Menzies et al., 

2017; Boland et al., 2018). Here, we present the recent developments in the CRISPR-

mediated genome editing of various AD-linked genes.

APP, PSEN1, PSEN2 and BACE1

Successful rescue of the PSEN1 mutations by CRISPR-knockout of APP in human stem-

cell-derived cortical neurons has been recently achieved (Hung and Livesey, 2018). Their 

studies reveal that mutations in APP and PSEN1 leads to major defects in lysosome function 

and autophagy in iPS cell-derived human neurons. Deletion of APP in PSEN1 Y115C 

neurons reduced LAMP1 protein and increased the axonal transport of lysosomes when 

compared with isogenic PSEN1 Y115C neurons. Further, APP deletion also rescued 

autophagy defects. Overall, their results suggest that either reducing input of APP to the 

lysosomal-autophagy system, enhancing axonal transport or augmenting lysosome function 

at the early stages could be exploited to develop potential therapeutic strategies to attenuate 

autophagic defects in AD. Further, it would be most appropriate to compare the results of 

CRISPR-knockout iPS cell-derived neurons with corresponding AD patient specific iPS cell 

line derived neurons (Li et al., 2018). In a recent study, it was demonstrated that CRISPR/

cas9-mediated correction of the PSEN2 point mutation abolished the electrophysiological 

deficit thereby restoring the maximal number of spikes and spike height as compared to the 

levels observed in the controls. Moreover, increased Aβ42/40 was also normalized post 

CRISPR/Cas9-mediated correction of the PSEN2N141I mutation (Ortiz-Virumbrales et al., 

2017).

Generation of two iPS cell lines from the skin biopsy obtained from a healthy male 

individual of African descent and generated either a heterozygous V717I (London) or a 

heterozygous KM670/671NL (Swedish) mutation in the APP gene by CRISPR-mediated 

gene knock-in have been successfully achieved (Frederiksen et al., 2018). Recent trend 

indicates that ethnicity may play a role in AD pathogenesis. Keeping in view this paradigm, 

these iPS cell lines will be useful to study AD pathogenesis in comparison to the iPS cell 
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lines derived from other ethnic backgrounds. We believe that more research is needed to 

decipher the role of ethnic background in determining the risk as well as the severity of AD 

pathogenesis.

In AD APP cleavage by the enzyme β-secretase BACE1 is the rate-limiting step in the 

amyloidogenic pathway. By exploiting the lentiviral and AAV9 based CRISPR/Cas-9-

mediated gene editing, Sun et al have developed a strategy by which they were able to 

reciprocally manipulate the amyloid pathway by simultaneously attenuating APP-β-cleavage 

and Aβ production while up-regulating neuroprotective APP-α cleavage (Sun et al., 2019). 

For their studies, they identified three PAM sites at the APP C-terminus that were conserved 

in both human and mouse and synthesized sgRNAs targeting these regions. Their in vitro 
studies revealed that APP-sgRNA predicted to cut human APP at the 659 aa position was 

most efficient both in editing APP as well as in attenuating Aβ. Co-injection of AAV9-APP-

sgRNA-GFP and AAV9-HA-Cas9 into mouse hippocampus led to efficient transduction of 

both sgRNA as well as Cas9 causing endogenous APP in vivo editing. Overall, their data 

suggest that the gene-editing approach does not have a major effect on post-Golgi trafficking 

of APP but attenuates APP endocytosis from the cell surface and consequently its interaction 

with BACE-1 in endosomes. A potential caveat of these studies is that they have used 8 

weeks old C57BL/6 mice to validate their results. A better approach would be to test the 

APP in vivo editing in AD mouse models and perform neurocognitive functional analysis. A 

combinatorial study utilizing CRISPR/Cas9 and relevant APP knock in mouse model has 

revealed deletion mutations that are protective against AD-like pathology (Nagata et al., 

2018).

The KM670/671NL APP Swedish mutation, which is located on the β-secretase site results 

in increased enzymatic cleavage by β-secretase of APP thereby causing increased Aβ levels. 

Selective disruption of the human mutant APPSW allele using CRISPR/Cas9 has been 

achieved (Gyorgy et al., 2018). Utilizing two separate AAVs expressing APPSW-specific 

guide RNA and Cas9, they were able to achieve site-specific indel formation in the primary 

neurons isolated from APPSW transgenic (Tg2576) mouse embryos as well as following 

intra-hippocampal co-injections. However, a drawback of their study is that they were able 

to detect an approximate 2% indel formation in the mutant alleles within the injected area. 

These extremely low levels of indel formation may not be sufficient to correct the disease 

phenotype. A potential solution would be to use a single AAV coexpressing SaCas9 as well 

as the sgRNA as we have recently demonstrated (Raikwar et al., 2018).

Perusal of current literature suggests a strong linkage between T2D and AD (Craft and 

Watson, 2004; Akter et al., 2011; Stanley et al., 2016; Kandimalla et al., 2017; Moreno-

Gonzalez et al., 2017; Pugazhenthi et al., 2017; Shinohara and Sato, 2017). Although, the 

current literature suggests that there is a strong linkage between T2D and AD (Moreno-

Gonzalez et al., 2017; Pugazhenthi et al., 2017; Shinohara and Sato, 2017), there is a 

significant knowledge gap regarding the precise molecular mechanism/s underlying the 

linkage and interaction between T2D and AD. In an interesting study, Moreno et al have 

investigated the role of insulin signaling in AD pathophysiology (Moreno et al., 2018). It has 

previously been demonstrated that γ-secretase hypofunction underlies insulin resistance in 

adipocytes (Sparling et al., 2016). Furthermore, mutations in PSEN1 or PSEN2 are 
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associated with hypofunction of the γ-secretase thereby leading to an increase in the Aβ 
42:40 ratio and Aβ42. Based upon this report, Moreno et al analyzed the effect of insulin 

signaling on Aβ speciation in iPS cell-derived wild type and FAD mutant PSEN2N141I 

neurons as well as their CRISPR/Cas9-corrected counterparts.

An interesting study has identified that in the neurons in the human brain, APP mRNA 

undergoes reverse transcription to produce cDNA which then reintegrates as genomic 

complementary DNA (gencDNA) and accumulation of mutations leads to a range of 

gencDNA APP variants that lack one or more exons (Lee et al., 2018b). Consequently, some 

gencDNAs yield toxic proteins causing cell death and might contribute to sporadic AD. 

However, the molecular mechanism underlying the generation of mutant gencDNA are 

presently unknown. Potential CRISPR-mediated targeting of gencDNAs may yield unique 

clues underlying novel molecular mechanisms underlying AD pathogenesis.

Glia Maturation Factor

Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory is 

significantly upregulated in various neurodegenerative diseases (Lim et al., 1989; Lim et al., 

1990; Lim and Zaheer, 1991; Zaheer et al., 2001; Zaheer et al., 2002; Zaheer et al., 2007a; 

Zaheer et al., 2007b; Zaheer et al., 2008; Zaheer et al., 2011; Thangavel et al., 2012; 

Kempuraj et al., 2013; Thangavel et al., 2013; Zaheer et al., 2013; Khan et al., 2014a; Khan 

et al., 2014b; Kempuraj et al., 2015; Khan et al., 2015; Ahmed et al., 2017; Thangavel et al., 

2017; Kempuraj et al., 2018b; Kempuraj et al., 2018a; Kempuraj et al., 2018c; Selvakumar 

et al., 2018b; Thangavel et al., 2018). Therefore, we believe that GMF represents a novel and 

an attractive therapeutic target to disrupt glia-neuron interactions and possibly delay and or 

halt the progression of multiple neurodegenerative diseases (Figure 2). Capitalizing on the 

success of CRISPR/Cas9, we have generated and successfully tested a recombinant 

neurotropic adeno-associated virus (AAV-B1-CRISPR-SaCas9-GMF-sgRNA) 

simultaneously coexpressing CRISPR-SaCas9 and GMF sgRNA for GMF gene editing in 

murine neuronal and microglial cell lines. We have also recently demonstrated that dual 

lentiviral-mediated CRISPR based GMF gene editing in BV2 microglial cells leads to 

suppression of p38 MAPK phosphorylation, which is crucial for reducing 

neuroinflammation (Raikwar et al., 2018). Our in vitro results suggest that GMF gene 

editing leads to indels in exons 2 and 3 which in turn leads to reduced microglial activation 

due to reduction in p38 MAPK phosphorylation following LPS challenge. These exciting 

results suggest that targeted GMF gene editing offers a novel approach to develop the next 

generation of precision guided personalized therapy for the treatment of AD. Our ongoing 

studies will provide novel insights into CRISPR-mediated GMF gene editing in vivo in the 

murine models of various neurodegenerative diseases.

TREM2

Microglia dysfunction plays a crucial role in the pathogenesis of neurodegenerative 

disorders. To investigate the role of microglia and monocyte derived TREM2 in 

phagocytosis, generation of isogenic TREM2+/R47H, TREM2+/− and TREM2−/− human 

pluripotent stem cells using CRISPR/Cas9 has now been reported (Claes et al., 2018). 
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Differentiation of these isogenic lines into monocytes and microglia-like cells and their 

subsequent functional analysis revealed that the phagocytosis of E. coli fragments and 

human amyloid plaques was not affected by TREM2+/R47H mutation but was significantly 

impaired in TREM2+/− and TREM2−/− progeny. It has been established that R47H variant of 

TREM2 confers greatly increased risk for AD. Therefore, deciphering the role of R47H 

variant could provide valuable insights underlying molecular mechanisms operational in AD 

pathogenesis and progression. In this regard, CRISPR/Cas9 to generate a mouse model of 

AD harboring one copy of the single nucleotide polymorphism encoding the R47H variant 

in murine TREM2 is indeed very interesting (Cheng-Hathaway et al., 2018). Their results 

suggest that R47H variant increases the risk of AD by conferring a loss of TREM2 function 

and enhancing neuritic dystrophy around plaques. Similarly, development of TREM2 R47H 

mice using CRISPR/cas9-assisted gene targeting strategy has been achieved (Xiang et al., 

2018). Their results suggest that R47H variant activates a cryptic splice site that generates 

miss-spliced transcripts leading to TREM2 haploinsufficiency. However, caution needs to be 

exercised and humanized TREM2 R47H knock-in mice need to be generated to investigate 

cellular consequences caused by the human TREM2 R47H.

RANK

RANK signaling plays a crucial role in regulating the activation of the microglia. In an 

interesting study has reported on the development of a BV2 cell line lacking RANK receptor 

(RANK−/− BV2) by utilizing CRSIPR-mediated gene editing (Kichev et al., 2017). Their 

data suggest that knocking out RANK receptor abolishes the anti-inflammatory effect but 

does not alter the inhibition of TLR3 expression caused by RANKL pretreatment. Further, 

RANK−/− BV2 cells are resistant to the reduction in expression of the adaptor proteins 

MyD88 and TRIF following RANKL pretreatment. Moreover, reduced BV2 microglial 

activation led to reduced expression of inflammatory markers iNOS and COX2.

APOE4

APOE4 is a major genetic risk factor for sporadic AD but the underlying molecular and 

cellular mechanisms are currently unknown. CRISPR/Cas9 was utilized to create isogenic 

iPS cell lines harboring homozygous APOE4 alleles to examine APOE4 effects on human 

brain cell types (Lin et al., 2018). Their studies revealed that APOE4 iPS cell-derived 

neurons, astrocytes and microglia-like cells recapitulate phenotypes associated with AD at 

multiple levels. Further, transcriptional profiling identified hundreds of differentially 

expressed genes in each cell type with the most affected involving synaptic function 

(neurons), lipid metabolism (astrocytes) and immune response (microglia-like cells). In 

comparison to isogenic APOE3 neurons, the APOE4 neurons exhibited increased synapse 

number and elevated Aβ42 secretion. Additionally, APOE4 astrocytes displayed impaired 

Aβ uptake and cholesterol accumulation and APOE4 microglia-like cells exhibited altered 

morphologies, which correlated with Aβ phagocytosis. Remarkably, six months old APOE4 

organoids exhibited increased Aβ accumulation and tau phosphorylation as compared with 

APOE3 organoids. In the next series of experiments, they utilized CRISPR/Cas9 approach to 

create isogenic lines homozygous for APOE3 from sAD iPS cells that were homozygous for 

APOE4. Differentiation of the APOE3 iPS cells into functional neurons, glia and organoids 
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revealed that most of the AD-related phenotypes observed in APOE4 iPS cell-derived brain 

cell types and organoids could be reversed by CRISPR/Cas9-mediated editing of APOE4 to 

APOE3. Given the fact that APOE2, APOE3 and APOE4 differentially activate APP 

transcription, studies using AAVs expressing dCas9 and gRNA targeting the AP-1 binding 

sequence of the APP promoter have revealed that AP-1-dependent regulation of APP 

expression operates physiologically in vivo (Huang et al., 2017). Conversion of APOE4 to 

APOE3 by gene editing was able to rescue GABAergic neurons and reduce tau 

phosphorylation (Wang et al., 2018a). Overall, these elegant studies highlight the potential 

of CRISPR-mediated gene editing to decipher novel molecular mechanisms underlying AD 

pathology.

STIM1

In familial AD patients STIM1 cleavage by the presenilin-1-associated γ-secretase leads to 

dysregulation of calcium homeostasis. Recent studies have investigated the expression levels 

of STIM1 in the medium frontal gyrus of pathologically confirmed AD patients (Pascual-

Caro et al., 2018). Their results suggest that STIM1 protein expression level decreased with 

the progression of neurodegeneration. Therefore, to investigate the role of STIM1 in 

neurodegeneration, they performed CRISPR/Cas9-nickase-mediated STIM1 gene editing in 

the SH-SY5Y neuroblastoma cell line. Their in vitro data suggests that STIM1 is not 

required for the differentiation but is essential for the cell survival in differentiating cells. 

Additionally STIM1 loss triggers mitochondrial depolarization and senescence because of 

calcium dysregulation. Taken together these results suggest that STIM1 is an attractive 

therapeutic target for AD drug discovery. Development of an in vitro model system based on 

CRISPR transcriptional activation analysis of APP and/or BACE1 revealed increased Aβ in 

skin fibroblasts as well as γ-secretase processivity defects in FAD fibroblasts (Inoue et al., 

2017). This activated CRISPR skin fibroblast model will prove beneficial to probe the role 

of various genetic modifiers of sporadic AD.

Clusterin

Clusterin (CLU) protein plays a crucial role in amyloid β processing and mutations in the 

CLU gene are a major risk factor for AD (May et al., 1990; Harold et al., 2009; Lambert et 

al., 2009; Thambisetty et al., 2010). CLU binds to TREM2 and therefore may play a crucial 

role in the activation of microglia (Yeh et al., 2016). A novel CLU-knockout iPS cell line by 

CRISPR/Cas9-mediated gene editing was developed to investigate Aβ-mediated 

neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPS 

cells (Robbins et al., 2018). They utilized a targeting construct containing a 2A GFP floxed 

PGK neo to integrate into the exon 3 of CLU gene by CRISPR/cas9-mediated homologous 

recombination. Their studies demonstrated that the neurons lacking CLU did not show 

neurodegeneration in response to 1 μM Aβ1-42 treatment, unlike CLU wild type neurons. 

They further performed a transcriptome wide expression to map the effects of CLU on 

pathways that are active in human neurons and demonstrated dysregulation of CCND1, 

KLF10, FOS, EGR1 and NAB2 in CLU knockout neurons. Based on their data, lack of 

neurodegeneration in the CLU knockout neurons in response to Aβ as compared with the 

wild type neurons supports the role of CLU in Aβ-mediated AD pathogenesis.
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ANK3

Ankyrin G, which is encoded by ANK3 gene, plays a crucial role in neuronal development 

and signaling. New studies have examined the role of ANK3 a well-established risk gene for 

psychiatric illness by utilizing CRISPR-dCas9-KRAB transcriptional repressor in mouse 

neuro-2a cells (Garza et al., 2018). ANK3 gene editing led to increased EB3 expression, 

decreased tubulin acetylation and increased soluble:polymerized tubulin ratio indicating 

enhanced microtubule dynamics. Further, Ank3 repression in neuro-2a cells increased GSK3 

activity (reduced inhibitory phosphorylation) and elevated collapsing response mediator 

protein 2 (CRMP2) phosphorylation. Their data suggest that ANK3 functions in neuronal 

microtubule dynamics through GSK3 and its downstream substrate CRMP2. These findings 

highlight the molecular and cellular mechanisms underlying brain-specific ANK3 

disruption, which might play a potential role in psychiatric illness as well as AD.

TAU/MAPT

TAU aggregation is vital for the progression of AD. In order to develop an in vitro model of 

tauopathy, which is suitable for the drug, discovery screenings, new studies have described 

the development a footprint free triple MAPT-mutant human iPS cell line (Garcia-Leon et 

al., 2018). They introduced three mutations (N279K, P301L and E10+6) in and next to exon 

10 of the MAPT gene in the wild type healthy-derived human iPS cells. This was achieved 

by utilizing CRISPR-FokI nuclease to minimize off-target effects and homology-directed 

recombination with the piggyback transposase-mediated excision of a selectable cassette, 

introduced during the homology-directed recombination. The resulting cell line resulted in 

an altered 3R/4R-TAU isoform expression with high levels of 4R-TAU and displayed 

considerably increased levels of oxidative stress, ER/UPR stress and activation of 

inflammatory-related response marker genes. Overall, this cell line reproduces multiple 

neurodegenerative phenotypes associated with tauopathies including altered TAU expression 

including phosphorylated isoforms, TAU aggregation, defective neurite conformation, 

altered neuronal maturation and enhanced electrophysiological excitability. This cell line 

will prove valuable for in vitro drug discovery screens and identification of novel therapeutic 

targets for AD.

In order to unravel the function of a rare Tau variant A152T which has been shown to play a 

role in neuroinflammation and pose a significantly increased risk for FTD and other 

neurodegenerative diseases (Kara et al., 2012; Labbe et al., 2015; Decker et al., 2016; Sydow 

et al., 2016), new studies have reported on the generation of human iPS cells from A152T 

carriers and derivation of neuronal progenitor cells and differentiated neuronal cells (Silva et 

al., 2016). Utilizing various biochemical and cellular assays their studies revealed that as 

compared to the control neurons, A152T neurons exhibit accumulation, redistribution and 

decreased solubility of TAU. Further, TAU upregulation was coupled to enhanced stress-

inducible markers and cell vulnerability to proteotoxic, excitotoxic and mitochondrial 

stressors and CRISPR/Cas9-mediated targeting of TAU was sufficient to rescue viability. 

These remarkable findings highlight the potential of iPS-derived neuronal model and 

CRISPR/Cas9-mediated gene editing for developing the next generation of precision 

targeted gene and stem cell-based therapies to treat various neurodegenerative disorders.
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TAU and α-synuclein aggregates, which are the hallmarks of tauopathies and α-

synucleinopathies, require transcellular propagation, which is mediated by binding to 

heparan sulfate proteoglycans on the cell surface and their subsequent cellular uptake and 

intracellular seeding and fibrillization (Goedert et al., 1996; Holmes et al., 2013). Recent 

studies have determined the genes required for the aggregate uptake by inducing CRISPR-

mediated knockout of the major genes of the heparan sulfate proteoglycans synthesis 

pathway (Stopschinski et al., 2018). Their studies revealed that the CRISPR-mediated 

knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2) and exostosin-

like 3 (EXTL3) as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) 

significantly reduced TAU uptake while EXT1, EXT2, EXTL3 or NDST1 but not HS6ST2 
reduced α-synuclein uptake. These studies provide a novel platform for the development of 

mechanism based therapies to block transcellular propagation of TAU, α-synuclein and 

amyloid protein-based pathologies.

Fibrinogen

Fibrinogen deposition is observed in a wide variety of CNS diseases with blood brain barrier 

disruption. By directly affecting the neurons, microglia and the astrocytes, fibrinogen 

promotes neuroinflammation as well as glial scar formation. CRISPR/Cas9 was utilized to 

investigate the role of fibrinogen in oligodendrocyte progenitor cells differentiation and 

myelination (Petersen et al., 2017). CRISPR/Cas9-mediated knockout of the activing A 

receptor type 1 (ACVR1) in the primary oligodendritic progenitor cells reduced fibrinogen-

induced nuclear accumulation of phosphorylated Smad1/5 and Id1 expression and enhanced 

the formation of mature MBP+ oligodendrocytes post fibrinogen treatment. Overall, their 

results suggest that therapeutic depletion of fibrinogen decreases BMP signaling and 

enhances remyelination in vivo.

Base Editing

Base editing is a novel genome editing approach that allows the programmable conversion of 

one base pair into another without double-stranded DNA cleavage, homology-directed repair 

or excess stochastic deletions or insertions. Base editing is achieved by utilizing a base 

editor which is either a fusion protein between SpCas9 and rat APOBEC1 (apolipoprotein B 

mRNA-editing enzyme, catalytic polypeptide-like 1) (Komor et al., 2016) or Target-Aid 

(activation-induced cytidine deaminase) which is composed of SpCas9 and sea lamprey 

PmCDA1 (Petromyzon marinus cytosine deaminase) (Nishida et al., 2016). New studies 

have introduced pathogenic mutations into the mouse Psen1 gene by base editor and target-

AID and generated multiple mouse lines harboring point mutations (Sasaguri et al., 2018). 

Their studies reveal that base editor has consistently higher base-editing efficiency 

(10.0-62.8%) as compared to that of Target-AID (3.4-29.8%). Most importantly, their in vivo 
studies revealed that Psen1-436S and Psen1-P117L mice have alteration of their Aβ profile 

similar to human fAD patients. Additionally, they also identified Psen1-P436L as a potential 

novel pathogenic mutation that has not been previously reported. These exciting studies 

suggest that base editing could prove beneficial for the identification of unknown pathogenic 

mutations as well as developing novel disease models.
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Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by locomotor 

dysfunction with rigidity, bradykinesia and resting tremor. PD is the second most common 

neurodegenerative disease after AD with an overall incidence of around 15 per 100,000 

people. Genetic studies have revealed the involvement of various genes and signaling 

pathways involved in PD pathogenesis. Familial PD can result due to mutations in the 

LRRK2, PARK7, PINK1, PRKN or SNCA genes.

SNCA

Human clinical trials in PD patients utilizing human fetal mesencephalic cells have shown 

that the transplanted grafts are susceptible to Lewy body formation. To overcome this 

potential challenge, engineered synucleinopathy-resistant human dopaminergic neurons by 

CRISPR-mediated deletion of the SNCA gene in human ES cells have been reported (Chen 

et al., 2018). Their studies utilizing SNCA+/− and SNCA−/− neurons suggest that these 

neurons were resistant to the formation of protein aggregates following treatment with 

recombinant α-synuclein pre-formed fibrils. In a different study, an all in one lentiviral 

vector has achieved downregulation of SNCA expression by targeted editing of DNA 

methylation (Kantor et al., 2018).

PD modeling using iPS cells has proven to be very valuable (Chung et al., 2013). To further 

refine the approach, an efficient method to derive biallelic genomic-edited populations using 

CRISPR-Cas9 has now been developed (Arias-Fuenzalida et al., 2017). Their approach 

known as FACS-assisted CRISPR-Cas9 editing (FACE) allows the derivation of correctly 

edited polyclones carrying a positive selection fluorescent module and the exclusion of non-

edited, random integrations and on-target allele NHEJ-containing cells. They generated an 

isogenic set of human SNCA mutants for PD-specific cellular modeling. These isogenic 

lines contain disease-associated mutations p.A30P or p.A53T in the SNCA gene.

NLRP3

NLRP3 plays a crucial role in various inflammatory diseases including neuroinflammation 

especially in AD and PD. In an interesting study, a CRISPR activation approach was used to 

systematically identify regulators of neuronal fate specification (Liu et al., 2018). An 

optimized cationic lipid-assisted nanoparticle (CLAN) to deliver Cas9 mRNA and guide 

RNA targeting NLRP3 (CLANmCas9/gNLRP3) into macrophages has been reported (Xu et al., 

2018). This strategy offers a promising new avenue for treating NLRP3-dependent 

inflammatory diseases. Interestingly, deubiquitinases USP7 and USP47, which play a crucial 

role in inflammasome activation in macrophages, have been subjected to doxycycline-

inducible CRISPR-mediated knockdown causing alterations in NLRP3 ubiquitination levels 

(Palazon-Riquelme et al., 2018). These studies suggest that NLRP3, USP7 and USP47 could 

be attractive therapeutic targets for treating neuroinflammation.
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GBA

Pathogenic aggregation and misfolding of α-synuclein are implicated in the pathogenesis of 

familial and sporadic PD as well as other α-synucleinopathies. However, the precise 

molecular mechanisms underlying the regulation of α-synuclein tetramer formation are 

currently unknown. Systematic studies involving CRISPR-GBA1 knockout have 

demonstrated that mutations in glucocerebrosidase 1 (GBA1) and depletion-induced GBA1 

deficiency leading to the accumulation of glycosphingolipids are sufficient to cause 

destabilization of α-synuclein tetramers as well as increase the susceptibility of human 

dopaminergic neurons to cytotoxicity due to the exposure to pathologic α-synuclein fibrils 

(Kim et al., 2018). Their results suggest that prevention of lipid dyshomeostasis could offer 

novel therapeutic strategies to treat PD.

TFAM

Chronic manganese exposure leads to neurotoxicity and leads to the development of PD. 

Lentiviral CRISPR/Cas9-mediated gene editing of TFAM transcription factor was used to 

generate a mitochondrially defective dopaminergic cell model by (Langley et al., 2017). 

Using MitoPark mice and TFAM knockout, they systematically characterized 

neurobehavioral, neurochemical and biochemical changes contributing to nigral 

dopaminergic neurodegeneration. Their studies revealed that low dose manganese toxicity 

significantly accelerates and exacerbates the motor deficits, striatal dopamine depletion and 

tyrosine hydroxylase neuronal loss in MitoPark mice. Additionally, knocking out TFAM 

induces mitochondrial deficits by impairing both basal and ATP-linked respiration capacity 

in a dopaminergic neuronal cell model.

P13

Mitochondrial dysfunction in the nigrostriatal dopaminergic neurons is crucial to the 

development of PD. Mitochondrial genome editing has the potential to revolutionize the 

development of novel mitochondria-targeted therapies. A proof of concept studies has 

demonstrated the development of MitoCas9 for the mitochondria-targeted genome editing 

(Jo et al., 2015). However, caution needs to be exercised as no mitochondrial DNA 

sequencing data was provided to conclusively validate their data. To investigate the function 

of the mitochondria-localized protein P13 in PD, new studies have described the generation 

of P13 knockout mice using CRISPR/Cas9 (Inoue et al., 2018). Their results suggest that 

heterozygous p13 knockout prevents mitochondrial dysfunction, toxin-induced motor 

deficits and the loss of dopaminergic neurons in the substantia nigra.

CHCHD2

Coiled-coil-helix-coiled-coil-helix domain containing protein 2 (CHCHD2 plays a role in 

AD, PD and FTD. Generation of CRISPR-based isogenic human ES cell lines harboring 

different PD-linked CHCHD2 mutations has led to the identification of new pathogenic 

mechanisms (Zhou et al., 2018c). The differentiated neural progenitor cells harboring 

CHCHD2 R145Q or Q126 mutation revealed impaired mitochondrial function. Further, PD-
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linked CHCHD2 mutations lost their interactions with CHCHD10. Their studies suggest that 

CHCHD2-CHCHD10 complex may be a novel therapeutic target for PD and related 

neurodegenerative disorders.

LRRK2

By exploiting CRISPR/Cas9-mediated gene editing of PD patient-specific iPS cells 

researchers have generated isogenic PD astrocytes and ventral midbrain dopaminergic 

neurons lacking the LRRK2 G2019S mutation (di Domenico et al., 2019). Their coculture 

studies of control ventral midbrain dopaminergic neurons on top of PD astrocytes revealed 

morphological signs of neurodegeneration and abnormal astrocyte-derived α-synuclein 

accumulation due to inhibition of α-synuclein lysosomal degradation. In contrast, coculture 

of PD ventral midbrain dopaminergic neurons on top of control astrocytes prevented the 

appearance of disease-related phenotypes. Further, they observed that macroautophagy was 

also markedly impaired in these cells. Their findings represent a direct indication that 

dysfunctional astrocytes play a crucial role during PD pathogenesis. Transcriptional 

repression of SNCA, MAPT, HTT and APP via targeting to the transcriptional start sites 

using dCas9, dCas9-KRAB and dCas9-VPR effector domains and the use of double-nicking 

CRISPR/Cas9 to exert precise alterations in SNCA will enable to dissect molecular as well 

as temporal course of pathogenic events underlying PD and other neurodegenerative 

diseases (Heman-Ackah et al., 2016; Heman-Ackah et al., 2017).

PRKN

Parkin gene PRKN encodes E3 ubiquitin ligase, which plays a crucial role in mitochondrial 

quality control and turnover (Arkinson and Walden, 2018). Various PRKN mutations are 

related to autosomal recessive PD. PRKN Genome-wide CRISPR screen for PARKIN 

regulators has revealed THAP11 as a negative regulator in multiple cell types (Potting et al., 

2018). Human iPS cell-derived inducible Neurogenin 2 (iNGN2) neurons in which THAP11 

was targeted by CRISPR/Cas9 revealed de-repression of PARK2 transcription and enhanced 

phosphoS65-ubiquitin accumulation thereby demonstrating the impact of PARKIN-level 

regulation.

Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Amyotrophic lateral sclerosis (ALS) also known as Lou Gehrig’s disease is a 

neurodegenerative disorder that is caused by gradual deterioration and death of motor 

neurons. In ALS, both the upper motor neurons as well as the lower motor neurons undergo 

degeneration thereby leading to muscle weakness, stiffness, fasciculations and atrophy. ALS 

is caused by the mutations in SOD1 and C9ORF72. Frontotemporal dementia (FTD) is a 

group of neurodegenerative disease conditions resulting from the progressive degeneration 

of the temporal and frontal lobes of the brain. FTD is the second most common cause of 

dementia following AD and is caused by the mutations in MAPT, GRN, C9ORF72, VPC, 

CHMP2B, TARDP, FUS, ITM2B, TBK1 and TBP genes.
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C9ORF72

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized 

by hexanucleotide repeat (GGGGCC) expansions in the C9ORF72 gene. Unfortunately, 

these hexanucleotide repeats produce sense and antisense RNA foci and are translated into 

aggregation prone neurotoxic DPR proteins by RAN translation. CRISPR-mediated genome-

wide gene-knockout screens for suppressors and enhancers of C9ORF7 DPR toxicity have 

been established recently (Kramer et al., 2018). These studies have led to the identification 

of multiple DPR toxicity modifiers, which will be very useful not only to study the 

molecular mechanisms underlying neurodegeneration but also to develop novel therapeutic 

strategies. Previously, a deactivated form of Cas9 was used to impede transcription of 

microsatellite expansion (Pinto et al., 2017). These studies revealed a repeat length-, PAM-, 

and strand-dependent-reduction of repeat-containing RNAs following direct dCas9 targeting 

to the repeat sequences. Further, they demonstrated that aberrant splicing patterns were 

rescued in DM1 cells and production of RAN peptides characteristic of DM1, DM2 and 

C9ORF72-ALS/FTD cells was drastically decreased. Additionally, systemic delivery of 

dCas9/gRNA by AAV led to reductions in pathological RNA foci, rescue of chloride channel 

1 protein expression and decreased myotonia.

Most recently, the role of C9ORF72 in ALS/FTD has been investigated (Shi et al., 2018b). 

Using human induced motor neurons their studies found that repeat-expanded C9ORF2 was 

haplsoinsufficient in ALS and it interacted with endosomes and was required for normal 

vesicle trafficking and lysosomal biogenesis in motor neurons. Further, the repeat expansion 

reduced C9ORF72 expression thereby causing neurodegeneration via dual mechanisms 

including the accumulation of glutamate receptors leading to excitotoxicity and impaired 

clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. To 

confirm that reduced C9ORF72 protein levels were sufficient to cause neurodegeneration, 

they harnessed CRISPR/Cas9-mediated genome editing to introduce a frameshift mutation 

into either one or both C9ORF72 alleles in the control iPS cells. Their data suggest that 

targeting one allele reduced C9ORF72 transcript levels, which were more severely reduced 

in homozygous mutant cells. Moreover, eliminating C9ORF72 protein expression from one 

or both alleles reduced the survival of the induced motor neurons that was comparable to 

those of patient iPS cell-derived induced motor neurons. Restoring the expression of 

C9ORF72 in C9ORF72+/− and C9ORF72−/− induced motor neurons rescued the survival of 

the induced motor neurons. Overall, these results suggest that depletion of C9ORF2 by 

CRISPR/Cas9-mediated genome editing led to the observed neurodegeneration. In a 

separate study utilizing iPS cell-derived motor neurons from ALS patients carrying 

C9ORF72 mutation, studies have interrogated the consequences of G4C2 expansion in 

human motor neurons and found that increased expression of GluA1 AMPA receptor 

(AMPAR) subunit occurs in the motor neurons with C9ORF72 mutations leads to increased 

CA2+ permeable AMPAR expression and results in enhanced selective vulnerability to 

excitotoxicity (Selvaraj et al., 2018). However, this vulnerability was abolished by CRISPR/

Cas9-mediated correction of the C9ORF72 repeat expansion in the motor neurons.
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TREM2

How homozygous TREM2 mutations lead to FTD is not very well understood. Recent 

studies have utilized CRISPR-Cas9 to generate a Trem2p.T66M knock-in mouse model 

expressing the FTD-like syndrome (Kleinberger et al., 2017). These mice exhibit an 

intracellular accumulation of immature mutant TREM2 and reduced generation of soluble 

TREM2 as well as delayed resolution of inflammation upon in vivo lipopolysaccharide 

stimulation. Further, FDG-microPET imaging studies revealed a significant reduction in 

cerebral blood flow and brain glucose metabolism. Overall, their data suggest that a TREM2 

loss of function mutation causes brain-wide metabolic alterations possibly through 

microglia-regulated brain glucose metabolism.

CHMP2

iPS cell-derived neurons from two symptomatic FTD3 patients for modeling FTD with 

mutation in CHMP2B gene has recently been reported (Zhang et al., 2017). The FTD3 

causing mutation 31449G>C was repaired via CRISPR/Cas9 in the FTD3 isogenic human 

iPS cells. Functional studies using the FTD3 iPS cell-differentiated neurons revealed 

significant upregulation of LRRK2, down regulation of APOE, endosomal dysregulation as 

well as abnormal mitochondrial ultrastructure and function including increased oxidative 

stress. APOE plays a vital role in neuronal lipid transport, brain injury repair, facilitates the 

clearance of soluble amyloid beta and suppresses microglia activation. Therefore, 

downregulation of APOE in FTD3 neurons may contribute to microglia activation and 

trigger neuroinflammation. RNA sequencing revealed that the CHMP2B mutation manifests 

in dysregulated expression of the key genes associated with PD and AD due to perturbed 

iron homeostasis.

MAPT

Neuronal models of FTLD-Tau by Neurogenin2-induced direct neuronal differentiation from 

FTLD-Tau patient iPS cells have been created (Imamura et al., 2016). The studies reported 

that FTLD-Tau neurons either with an intronic MAPT mutation or with an exonic MAPT 

mutation developed accumulation and extracellular release of misfolded tau followed by 

neuronal death. The investigators generated isogenic control iPS cells by targeting of the 

MAPT gene by CRISPR/Cas9 in combination with the piggyBac tet-on expression system to 

introduce Ngn2. Further, they assessed the mechanistic links between the excitation of 

neurons and misfolded tau by incorporating DREADDs consisting of human muscarinic 

acetylcholine M4 receptor bearing artificial mutations into FTLD-Tau iPS cells. Their 

findings suggest that neurodegeneration in FTLD-Tau involves misfolded Tau and that it is 

modulated by neuronal activity.

To identify the genes and pathways that are dysregulated in autosomal dominant 

frontotemporal lobar degeneration with tau inclusions (FTLD-tau), researchers have 

performed transcriptomic analyses in iPS cell-derived neurons carrying MAPT p.R406W 

and CRISPR/Cas9-corrected isogenic controls (Jiang et al., 2018). They found that the 

expression of MAPT p.R406W mutation was sufficient to create a significantly different 
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transcriptomic profile compared with that of the isogenic controls leading to differential 

expression of 328 genes, which were enriched for pathways involving gamma-aminobutyric 

receptors and pre-synaptic function. These genes may play a role in the pathogenesis of 

FTLD-tau and other primary tauopathies.

Astrocytes play a crucial role in in the normal brain including supporting neurogenesis and 

synaptogenesis, provide trophic support to neurons, and protect them from oxidative stress. 

However, whether astrocytes play a crucial role in FTD pathogenesis is not very clear. 

CRISPR/Cas9-mediated gene editing in human FTD patient-specific iPS cell-derived neural 

progenitor cells to repair the FTD-associated N279K MAPT mutation in the exon 10 has 

been reported recently (Hallmann, 2017). Their study demonstrates profound intrinsic 

pathological changes in N279K MAPT astrocytes in regards to cell morphology, TAU 

expression, protein ubiquitination, susceptibility to oxidative stress and whole genome 

expression profiles. Further, co-culture of healthy control neurons with FTD or control 

astrocytes revealed alterations in stress responses and changes in gene expression patterns. 

Specifically, they observed down regulation of DHRS2, MCAT, EMP3, RNF7, RDH12, 

CDH23 and CLCNKA genes. The upregulated genes included CXCR4, ESPL1, MX1, 

KLRG1, TDG, ANXA2, CSDE1, NHLH1, NTF3, EFS and RBPJL.

p35

Aberrant Cdk5 activation and induction of neuroinflammtion, synaptic loss, Aβ 
accumulation and tau hyperphosphorylation due to accumulation of p25 is observed in 

various neurodegenerative disorders including AD. To validate the role of p25/Cdk5 in 

tauopathy, new studies have utilized FTD-patient-derived iPS cells carrying the Tau P301L 

mutation to generate P301L:Δp35KI isogenic iPS cell lines in which p35 is replaced with 

noncleavable mutant Δp35 using CRISPR/Cas9 genome editing (Seo et al., 2017). Creation 

of cerebral organoids using these isogenic iPS cell lines revealed that blockade of p25 

generation reduced the levels of phosphorylated Tau and increased the expression of 

synaptophysin. These studies suggest that inhibition of p35 can remedy neurodegenerative 

processes in the presence of pathogenic tau mutation.

FUS

Mutations in the fused in sarcoma gene are responsible for the juvenile as well as adult onset 

ALS. Researchers have generated and characterized iPS cells from the ALS patients with 

different FUS mutations as well as healthy controls (Guo et al., 2017). The differentiation of 

the ALS patient derived iPS cells into motor neurons revealed typical cytoplasmic FUS 

pathology, hyperexcitability and progressive axonal transport defects. Axonal transport 

defects were successfully rescued by CRISPR/Cas9-mediated genetic correction of the FUS 

mutation in the ALS patient derived iPS cells. Further, development of novel cell lines with 

the FUS gene modified by CRISPR has been reported (An et al., 2019). Specifically, to 

mimic genetic alterations typical observed in ALS, the investigators generated cell lines with 

the deletion of the genomic sequences encoding the 12 C-terminal amino acids of FUS by 

CRISPR/Cas9-mediated gene editing. These cell lines revealed that endogenous levels of 

mutant FUS cause accumulation of NEAT1 isoforms and dysfunctional paraspeckles.
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Recent studies have identified defects in DNA nick ligation and oxidative damage repair in a 

subset of ALS patients (Wang et al., 2018b). Their studies show that the loss of nuclear FUS 

caused DNA nick ligation defects in motor neurons due to reduced recruitment of XRCC1/

LiglII to DNA strand breaks. These DNA ligation defects in ALS patient-derived iPS cell 

lines carrying FUS mutations and in motor neurons generated there from are rescued by 

CRISPR/Cas9-mediated correction of mutation.

SOD1

Capitalizing on the role of superoxide dismutase in ALS, interesting studies have 

demonstrated that CRISPR/Cas9 can be harnessed to disrupt mutant SOD1 expression in the 

G93A-SOD1 mouse model of ALS following in vivo genome editing post AAV gene 

therapy (Gaj et al., 2017a). Genome editing reduced the expression of the mutant SOD1 

protein by >2.5 fold in the lumbar and thoracic spinal cord thereby resulting in improved 

motor function and reduced muscle atrophy. Surprisingly, the ALS mice treated by CRISPR-

mediated SOD1 genome editing had ~50% more neurons at end stage and displayed a ~37% 

delay in disease onset and a ~25% increase in survival compared to control animals.

Huntington’s Disease

Huntington’s disease (HD), a severe autosomal dominant neurodegenerative disorder is 

caused by an expanded polyglutamine repeat in the N-terminal of the Huntingtin gene, 

which leads to multiple cellular dysfunction (Bates et al., 2015; Wild and Tabrizi, 2017). 

Huntington’s disease is characterized by a combination of cognitive, motor and psychiatric 

symptoms as well as atrophy of the basal ganglia and the cerebral cortex and runs a 

progressive course leading to death within 5-20 years post manifestation of the symptoms.

Huntingtin

Earlier studies have shown that depletion of normal huntingtin in adult mouse brains does 

not affect animal survival, growth or neuronal viability (Wang et al., 2016a). Moreover, the 

N terminal region of Huntingtin has been shown to be non-essential for early embryonic 

development. Therefore, targeted genome editing of the N-terminal region of Huntingtin 

could offer a unique approach to treat Huntington’s disease. Permanent suppression of 

endogenous Huntingtin expression in the striatum of the mutant Huntingtin expressing mice 

(HD140Q-knockin mice) by AAV-CRISPR/Cas9-mediated genome editing effectively 

depleted Huntingtin aggregates and attenuated early neuropathology (Yang et al., 2017). 

Further, their data suggest that reducing Huntingtin expression in striatal neuronal cells does 

not affect the viability of the adult HD140Q-knockin mice but alleviates their motor deficits 

as well as neurological symptoms. CRISPR/Cas9-mediated Huntingtin gene inactivation was 

able to reverse the neuropathology and behavioral phenotypes even in the mice that were 9 

months old, thereby suggesting that the old neuronal cells still have the ability to clear the 

accumulated mutant proteins and repair early injury once the expression of the mutant 

proteins is blocked.
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Utilizing a slightly different approach, studies have demonstrated AAV-mediated targeted 

deletions that are sufficient to terminate Huntingtin expression (Monteys et al., 2017). They 

screened genomic regions adjacent to the Huntingtin exon 1 to identify SNPs that were 

prevalent and were within the critical position for CRISPR/cas9- or CRISPR/Cpf1-directed 

editing and tested their utility for allele-specific editing in HD patient cell lines and a mouse 

model expressing full length mutant human Huntingtin. Selective excision of ~44 kb DNA 

spanning promoter region, transcription start site and the CAG expansion mutation of the 

mutant HTT gene, results in complete inactivation of the mutant allele without impacting the 

normal allele (Shin et al., 2016). These investigators used personalized CRISPR/Cas9 

strategy to target two patient specific PAM sites simultaneously to inactivate the mutant 

alleles from the source in a completely allele-specific manner. Yet another study has utilized 

a different approach to correct HD human iPS cells using CRISPR/Cas9 and piggyback 

transposon system (Xu et al., 2017). These studies revealed that both HD and corrected 

isogenic human iPS cells could be differentiated into excitable, synaptically active forebrain 

neurons. Further, the phenotypic abnormalities in HD iPS cell-derived neural cells including 

impaired neural rosette formation, increased susceptibility to growth factor withdrawal and 

deficits in mitochondrial respiration were rescued in isogenic controls.

A lentiviral based KamiCas9 self-inactivating gene editing system to achieve transient 

expression of the Cas9 protein and high gene editing efficiency has been reported (Merienne 

et al., 2017). This system utilizes an additional sgRNA under the transcriptional control of 

the weak 7SK promoter to target the ATG of Cas9 in order to block its translation. Using the 

KamiCas9 targeted genome editing of the mutant huntingtin led to efficient inactivation in 

the Huntington disease patient-specific iPS neuronal derivatives as well as in the mouse 

models of HD. Due to the transient expression of the Cas9 by self-inactivation, this system 

offers unique advantages including high on target gene editing, reduced off target effects as 

well as minimal immune or inflammatory response. As such, KamiCas9 will prove very 

beneficial for the development of therapeutic approaches to treat neuroinflammation and 

neurodegenerative disorders.

Conclusions and Future Perspectives

Targeted genome editing holds a tremendous potential to decipher the complex molecular 

mechanisms underlying neuroinflammation and neurodegeneration. We realize that it is 

simply beyond our scope to review most of the neurodegenerative disorders that can be 

successfully targeted by CRISPR-mediated genome editing (Figure 3). Further, in the years 

to come we will see a significant emphasis on CRISPR-mediated targeted genomic and 

epigenomic editing for the development of the next generation of neurotherapeutics. These 

are exciting times for harnessing the vastly unlimited and untapped potential of genome 

editing for the treatment of currently incurable and devastating neurodegenerative diseases. 

We believe that the discovery of novel CRISPR enzymes with precision-targeted genome 

editing with minimal off target effects will herald in a new era in the field of patient-specific 

precision-targeted regenerative therapies for neurological disorders. Future genome editing 

approaches will immensely benefit from the cutting-edge scientific advancements as 

described in the following sections.
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CRISPR-Cas12a

Recently, a newer catalytically active CRISPR-Cas12a fused to a transcriptional-activator 

domain has been developed for enabling flexible switching between genome editing and 

transcriptional activation by altering guide length (Breinig et al., 2019). This was achieved 

by fusing a transcriptional activator complex VPR to catalytically active Cas12a and 

generating Cas12a-VPR and utilizing tetracycline-response element (TRE)-driven RFP. 

They were able to demonstrate AsCas12a-VPR-mediated orthogonal gene control in vivo by 

simultaneously targeting the TRE promoter for activation and Trp53 for indel formation in 

TRE-GFP reporter mice. Their research findings suggest that the ability of AsCas12a-VPR 

to activate genes while maintaining DNA cleavage activity, together with the simplicity of 

Cas12a-mediated multiplexing will be particularly valuable for in vivo applications as well 

as deciphering the higher-order genetic interactions that underlie the complex phenotypic 

traits in both healthy and diseased states.

CRISPR/Cas13

The current field of CRISPR-mediated genome editing is constantly evolving at an 

unprecedented pace. In addition to the most widely used Type II CRISPR systems, a new 

field of RNA editing using type VI CRISPR/Cas systems is gaining immense popularity 

(Cox et al., 2017). These investigators have profiled type IV CRISPR/Cas system and 

engineered a Cas13 orthologue capable of robust knockdown and demonstrated RNA editing 

by using catalytically inactive Cas13 (dCas13) to direct adenosine-to-inosine deaminase 

activity by ADAR2 (adenosine deaminase acting on RNA type 2) to transcripts in 

mammalian cells. Their system aptly referred to as RNA Editing for Programmable A to I 

Replacement (REPAIR) has no strict sequence constraints and can be successfully used to 

edit full-length transcripts containing pathogenic mutations. They have further refined their 

system by creating a high-specificity variant with a miniaturized version that can be easily 

packaged for efficient viral delivery. Similar studies have demonstrated that the class 2 type 

VI RNA-guided RNA-targeting CRISPR/Cas effector Cas13a derived from Leptotrichia 
wadei (LwaCas13a) can be utilized for the targeted knockdown of endogenous transcripts 

(Abudayyeh et al., 2017). LwaCas13a provides a platform for a range of transcriptomic 

analysis tools as well as therapeutic applications. Development of a platform termed 

SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) that combines 

isothermal preamplification with Cas13 to detect single molecules of RNA or DNA which 

can be used for diagnostic applications in patient liquid biopsy samples rapidly using a 

portable format that can be easily deployed in the field (Gootenberg et al., 2018). The 

Cas13-based SHERLOCK platform can detect Zika virus and dengue virus in patient 

samples at concentrations as low as 1 copy per microliter (Myhrvold et al., 2018). They have 

developed HUDSON (heating unextracted diagnostic samples to obliterate nucleases) 

protocol that pairs with SHERLOCK for viral detection directly from body fluids thereby 

enabling instrument-free detection of dengue and Zika virus directly from patient samples in 

less than 2 hours.
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TUNR Flexible Gene Editing Technology

A simple and predictable protocol for generating hypomorphic mutations by targeting 

translation elongation has been described recently (Arthur et al., 2017). This system involves 

adding consecutive adenosine nucleotides or polyA tracks to the gene coding sequence of 

interest to decrease translation elongation efficiency, which in turn decreases mRNA 

stability and protein expression. An advantage of this system is that the protein expression is 

adjustable independent of promoter strength and it can be further modulated by changing the 

sequence features of the polyA tracks.

Neural Blastocyst Complementation and Cortical Organoids

Neural blastocyst complementation to study the development and function of specific 

forebrain regions using CRISPR-Cas9 will be very useful (Chang et al., 2018). Neural 

blastocyst complementation was achieved by the targeted ablation of host-derived dorsal 

telencephalic progenitors during development thereby leading to the creation of vacant 

forebrain niche in the host embryo resulting in agenesis of the cerebral cortex and 

hippocampus. Subsequent injection of doublecortin-deficient ES cells-generated by 

CRISPR-Cas9 produced neural blastocyst complementation chimaeras that recapitulated the 

phenotype of conventional, germline doublecortin-deficient mice. This new approach has 

significant potential to generate complex mouse models for studying forebrain functions as 

well as organogenesis. New studies have developed functional cortical organoids that 

spontaneously display glutamatergic and GABAergic signaling dependent periodic and 

regular oscillatory network events (Trujillo and Muotri, 2018).

Predicting Genome Editing Outcome

Most recently, studies have extensively analyzed the indel profiles at over 1000 genomic 

sites in human cells and uncovered general principles guiding CRISPR-mediated DNA 

editing (Chakrabarti et al., 2018). Their studies suggest that precise targets and editing 

outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide 

upstream of the protospacer adjacent motif. If the fourth nucleotide is an A or a T, the 

genome editing outcome will be a very precise insertion, on the other hand a C will lead to a 

relatively precise deletion while a G will lead to many imprecise deletions. Further, the team 

also discovered that DNA sequence features including chromatin state influences indel 

profiles without altering dominant indels at precise sites. These interesting studies suggest 

that choosing the target sites with A or T nucleotide at −4 position of the target region is the 

most effective way to induce predictable insertions.

RNA Tracking

In an interesting study, a nuclease-inactive S. pyogenes CRISPR/Cas9 that can bind RNA in 

a nucleic-acid-programmed manner and allow endogenous RNA tracking in living cells has 

been developed (Nelles et al., 2016). This DNA targeted RCas9 which binds to RNA has 

multiple potential applications including directed cleavage, imaging, transcription 

modulation and targeted methylation. Optimization of libraries for CRISPR-Cas9 genetic 
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screens for the systemic interrogation of gene function have been described recently (Sanson 

et al., 2018). These studies evaluated genome-wide libraries for CRISPRko, CRISPRi and 

CRISPRa with S. pyogenes Cas9 via 14 screens across 3 cell lines. Recent scientific 

advancements have enabled precise conversion of single base or base pair into desired base 

or base pair without generating excess undesired editing by-products (Rees and Liu, 2018).

in utero CRISPR/Cas9

Multiple studies have demonstrated the potential of in utero CRISPR/Cas9-mediated gene 

editing (Cheng et al., 2016; Kalebic et al., 2016; Mikuni et al., 2016; Rannals et al., 2016b; 

Rannals et al., 2016a; Shinmyo et al., 2016; Tsunekawa et al., 2016; Uemura et al., 2016; 

Shinmyo and Kawasaki, 2017; Shinmyo et al., 2017; Hu et al., 2018b; Lu et al., 2018; 

Ribierre et al., 2018; Rossidis et al., 2018; Wang et al., 2018c). In an interesting study, 

taking advantage of a high-throughput electroporation-based gene editing in the zygotes, 

researchers have developed knock-in mice in which a hemagglutinin epitope was inserted in 

the Nlgn1 gene (Nozawa et al., 2018). In these mice, the HA-Nlgn1 was enriched at 

synapses between parallel fibers and molecular layer interneurons and the glomeruli in 

which mossy fiber terminals synapse onto granule cell dendrites.

A pioneering approach SLENDR (single-cell labeling of endogenous proteins by CRISPR/

Cas9-mediated HDR) developed recently, utilizes in utero electroporation to introduce an 

epitope tag or a fluorescent reporter in to a gene of interest by CRISPR/Cas9-mediated HDR 

(Mikuni et al., 2016). Using this approach allows simultaneous multiplex labeling of 

multiple neuronal proteins and the protein dynamics can be visualized in real-time at a very 

high resolution by live imaging. To further advance their technology, they have now reported 

the development of vSLENDR (virus-mediated single-cell labelling of endogenous proteins 

via HDR) by combining CRISPR/Cas9-mediated DNA cleavage and AAV-mediated delivery 

of donor template in the mature postmitotic neurons in the mouse brain (Nishiyama et al., 

2017). They utilized a dual AAV system one expressing Cas9 and the other expressing a 

guide RNA and the donor DNA. In the next decade, gazing beyond the realms of the 

scientific boundaries we can envision CRISPR and base editors being harnessed for in utero 

correction of genetic mutations underlying neurodegenerative disorders in human embryos 

and fetus.

in vivo Bar Coding

In an exciting study, to address the complexity of mammalian development, investigators 

have utilized in vivo barcoding and engineered a mouse line via homing CRISPR carrying 

60 independent loci of homing guide RNAs (Kalhor et al., 2017; Kalhor et al., 2018). 

Crossing the hgRNA line with a Cas9 line resulted in developmentally barcoded offspring 

due to the fact that hgRNAs stochastically accumulate mutations throughout the gestation 

period thereby generating unique mutations in each lineage without deleting the prior 

mutations. These barcoded offspring were used to address lineages above the first lineages in 

the tree with a focus on the establishment of the anterior-posterior (A-P) axis versus the 

lateral (L-R) axis in the brain. Their results suggest that commitment of the A-P axis is 
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established before commitment to the L-R axis during development of the central nervous 

system. These studies may be very useful for connectome mapping in the brain.

dCas9 Transgenic Mice

In a an interesting study, scientists have generated a transgenic mouse using an improved 

dCas9 system that enables simultaneous and precise in vivo transcriptional activation of 

multiple genes and long noncoding RNAs in the nervous system (Zhou et al., 2018a). Using 

these mice, they were able to achieve in vivo direct conversion of astrocytes into functional 

neurons by targeted activation of endogenous genes Ascl1, Neurog2 and NeuroD1. To 

induce neuronal conversion of astrocytes in vivo, AAV-sgRNAs targeting Ascl1, Neurog2 
and NeuroD1 was coinjected with AAV-GFAP-mCherry to label astrocytes in the midbrain. 

They observed a significant increase in the proportion of mCherry+NeuN+ cells one-month 

post AAV injection. Using further refinements, they were able to simultaneously target and 

control ten genes within the brain.

AD-BXD

A new emerging paradigm is that herpesviruses play a crucial role in AD pathology (Costa 

et al., 2017; Eimer et al., 2018; Kristen et al., 2018; Readhead et al., 2018). Furthermore, gut 

microbes have been demonstrated to play a crucial role in neuroinflammation, 

autoimmunity, neurogenesis and neurodegenerative diseases including AD and PD (Kumar 

et al., 2016; Mohle et al., 2016; Fung et al., 2017). Hence, there is a need to develop novel in 
vitro as well as in vivo models that accurately recapitulate AD pathology. In this regard, a 

novel AD-BXD panel that faithfully recapitulates key aspects of human AD including 

phenotypic variation in disease onset and severity, sensitivity to genetic variations in genes 

known to confer risk for human late-onset AD and a high level of concordance with 

transcriptional aspects of human disease has been developed (Neuner et al., 2018). Latest 

research findings suggest that a sushi-containing neurotransmitter receptor in the brain, 

GABABR1a interacts with APP as an activity-dependent negative-feedback mechanism to 

preserve homeostatic control of neural circuits in the aged brain (Rice et al., 2019).

3K3A-APC

Exciting studies have shown that vasculoprotective, neuroprotective and anti-inflammatory 

factor 3K3A-activated protein C (3K3A-APC) blocks amyloidogenic BACE1 pathway and 

improves functional outcome in 5XFAD mouse model of AD (Lazic et al., 2019). These 

studies found that 3K3A-APC effectively inhibited parenchymal accumulation of Aβ40 and 

Aβ42 in the hippocampus and cortex respectively, normalized hippocampus-dependent 

behavioral deficits and cerebral blood flow responses, improved cerebrovascular integrity 

and diminished neuroinflammatory responses. Thus, it would be interesting to supplement 

CRISPR-mediated genome editing with 3K3A-APC treatment for maximizing the 

synergistic effects.
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BDNF

Brain derived neurotrophic factor has been shown to be essential for establishing activity-

related neural plasticity. Reducing BDNF production by CRISPR-Cas9 in the ventral 

hippocampal neurons impairs recall of avoidance extinction (Rosas-Vidal et al., 2018). For 

testing the effect of BDNF knockdown in ventral hippocampal neurons, rats were infused 

with a lentiviral vector expressing CRISPR/Cas9 and BDNF specific sgRNA. The treated 

rats revealed significant reduction of BDNF in ventral hippocampal neurons and exhibited 

extinction of avoidance. These findings support the growing body of knowledge implicating 

the role of the hippocampal-prefrontal pathway in anxiety-related disorders and extinction-

based therapies.

Identification of Phagocytosis Regulators

Phagocytosis plays a crucial role in a wide variety of biological processes including 

development, apoptotic cell clearance, synaptic pruning and elimination of cellular debris 

post injury. Studies utilizing genome wide CRISPR screens have led to the identification of 

phagocytosis regulators (Haney et al., 2018). These remarkable studies have uncovered the 

role of NHLRC2 as a key player in phagocytosis by regulating RhoA-Rac1 signaling 

cascade. These studies have shown that a previously uncharacterized AD-associated gene 

TM2D3 can preferentially influence the uptake of amyloid-β aggregates. Additionally, an 

important finding was that the very-long-chain fatty acids are essential for efficient 

phagocytosis of certain substrates.

Future research will determine the molecular and cellular mechanisms and uncover novel 

signaling pathways that may prove very beneficial for the development of the next 

generation of precision-targeted personalized gene and stem cell-based therapies for the 

treatment of neurodegenerative disorders. We believe that CRISPR-mediated genetic 

engineering is a powerful new approach to develop novel and robust in vivo models of 

neurodegenerative disorders for improved rigor and reproducibility in preclinical studies.
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Figure 1: CRISPR-Mediated Genome Editing for Neurodegenerative Diseases:
Neuroinflammation plays a crucial role in the initiation and progression of various 

neurodegenerative disorders. Activation of astrocytes and microglia induces the expression 

of proinflammatory cytokines and chemokines including GMF, IL1-β, IL-6, IL-8, TNF, 

IL-12, IL-23, IL-33, CXCL10 and CXCL12. Because of neuroinflammation, there is 

increased phosphorylation of p38MAPK/ERK pathways, which leads to activation, and 

nuclear translocation of NFκB thereby causing increased oxidative stress, mitochondrial 

dysfunction and apoptosis. These deleterious effects ultimately lead to neurodegenerative 

disorders and impaired blood brain barrier. The progression of neurodegenerative cascade 

results in impaired cognitive function and loss of memory. CRISPR/Cas9-mediated genome 

editing is a powerful tool for inducing gene correction, disease modeling, transcriptional 

regulation, epigenome engineering, chromatin visualization as well as development of 

neurotherapeutics. It can be used to increase the levels of anti-inflammatory cytokines (IL-4, 

IL-6, IL-10, IL-11, IL-13, IL-33, TGFβ, CXCL16) and neurotrophic factors (BDNF, CDNF, 

GDNF, MANF, NGF, NT3, NT4, NRTN) which in turn can stimulate the proliferation and 

expansion of neural stem cells, neurogenesis, gliogenesis, remyelination and neural 

plasticity thereby ultimately leading to improved cognitive function and memory 

enhancement.
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Figure 2: Role of Glia Maturation Factor (GMF) in Neuroinflammation and Neurodegenerative 
Diseases:
GMF is a 141 amino acid multifunctional intracellular protein, which is predominantly 

expressed in the central nervous system and plays a crucial role in the growth and 

differentiation of glia and neurons. GMF overexpression, which is observed in several 

neurodegenerative diseases, induces the activation of the p38MAPK/ERK signaling leading 

to activation and nuclear translocation of NFκB resulting in a significant increase in the 

secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is a 

proinflammatory cytokine and a potent mitogenic factor for microglia. Activation and 

proliferation of microglia induces the secretion of various proinflammatory cytokines/

chemokines including TNF-α, IL-1β, IL-6 and IFNγ (represented as red spheres) and leads 

to oxidative stress, mitochondrial dysfunction as well as apoptosis. These deleterious effects 

induce neurodegeneration and blood brain barrier dysfunction, which in turn lead to 

impaired cognitive function and loss of memory. CRISPR-mediated targeted GMF gene 

editing leads to GMF knockdown and very effectively blocks the proinflammatory 

downstream signaling pathways thereby delaying or halting the progression of 

neurodegenerative disorders, enhancing the proliferation and differentiation of neural stem 

cells, improving neurogenesis, producing neurotrophins (depicted as blue spheres) 

neuroplasticity and improving the cognitive function.
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Figure 3: CRISPR-mediated Genome Editing of Neuroinflammation and Neurodegenerative 
Disorders:
A wide spectrum of neurodegenerative disorders can be efficiently targeted by CRISPR-

mediated genome editing to either correct the genetic defect, restore the functional 

expression of the protein, knockdown the expression of the defective protein, as well as 

achieve epigenetic modifications. A wide variety of CRISPR enzymes are available to 

achieve desired genetic modification. Temporo-spatial regulation of precision-targeted 

CRISPR-mediated genome editing holds the key to successful correction of the genetic 

defect without any off target effects.
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Table1:

CRISPR Types and their PAM Recognition Sequences

CRISPR Species PAM Sequence References

SaCas9 Staphylococcus aureus 5’NNGRRT/NNNRRT (Ran et al., 2015)

SaCas9 KKH Staphylococcus aureus 3’NNNRRT (Kleinstiver et al., 2015a)

SpCas9 Streptococcus pyogenes 3’NGG (Cong et al., 2013)

SpCas9 D1135E Streptococcus pyogenes 3’NGA (Reduced NAG 
binding)

(Kleinstiver et al., 2015b)

SpCas9 VRER Streptococcus pyogenes 3’NGCG (Kleinstiver et al., 2015b)

SpCas9 EQR Streptococcus pyogenes 3’NGAG (Kleinstiver et al., 2015b)

SpCas9 VQR Streptococcus pyogenes 3’NGAN/NGNG (Kleinstiver et al., 2015b)

SpCas9 HF1 (N497A/
R661A/Q695A/
Q926A)

Streptococcus pyogenes 3’NGG (Reduced off-target 
effect)

(Kleinstiver et al., 2016)

Sp-nCas9 (D10A or 
H840H)

Streptococcus pyogenes 5’NGG (Jinek et al., 2012)

Sp-nCas9 (D10A/
H840H)

Streptococcus pyogenes 5’NGG (Nuclease deficient) (Jinek et al., 2012)

NmCas9 Neisseria meningitidis 5’NNNNGMTT (Lee et al., 2016)

SpCas9 Streptococcus pasteurianus 3’NNGTGA (Ran et al., 2015)

ScCas9 Streptococcus canis 5’NNG (Chatterjee et al., 2018)

eSPCas9 (1.0/1.1) Streptococcus pyogenes 5’NGG (Reduced Off-target 
effect)

(Slaymaker et al., 2016)

Fok1-Sp-dCas9 
(D10A/H840A+FokI)

Streptococcus pyogenes 5’NGG (Richter et al., 2016)

FnCas9 Francisella novicida 5’NGG (Hirano et al., 2016)

FnCas9 RHA 
(E1369R/E1449H/
R1556A)

Francisella novicida 5’YG (Hirano et al., 2016)

AsCpf1 Acidaminococcus sp. BV3L6 5’TTTV (Zetsche et al., 2015)

LbCpf1 Lachnospiraceae bacterium ND2006 5’TTTV (Zetsche et al., 2015)

CMtCpf1 Candidatus Methanoplasma termitum Not known (Zetsche et al., 2015)

BpCpf1 Butyrivibrioproteoclasticus Not known (Zetsche et al., 2015)

FnCpf1 Francisella novicida 3’TTN/KYTV/CTA (Zetsche et al., 2015)

MbCpf1 Moraxella bovoculi 5’TTN (Zetsche et al., 2015)

PdCpf1 Prevotella disens Not known (Zetsche et al., 2015)

PcCpf1 Prophyromonas crevioricanis Not known (Zetsche et al., 2015)

PbCpf1 Parcubacteria bacterium Not known (Zetsche et al., 2015)

Lb3Cpf1 Lachnospiraceae bacterium MC2017 Not known (Zetsche et al., 2015)

SsCpf1 Smithella sp. SC_K08D17 Not known (Zetsche et al., 2015)

EeCpf1 Eubacterium eligens Not known (Zetsche et al., 2015)

Lb2Cpf1 Lachnospiraceae bacterium MA2020 Not known (Zetsche et al., 2015)

LiCpf1 Leptospira inadai Not known (Zetsche et al., 2015)
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CRISPR Species PAM Sequence References

PeCpf1 Peregrinbacteria bacterium 
GW2011_GWA_33_10

Not known (Zetsche et al., 2015)

AsCpf1 RR (S542R/
K607R)

Acidaminococcus sp. 5’TYCV/CCCC (Gao et al., 2017)

AsCpf1 RVR (S542R/
K548V/N552R)

Acidaminococcus sp. 5’TATV/TTTV (V=A,C,G) (Gao et al., 2017)

St1Cas9 Streptococcus thermophilus 3’NNAGAAW/NNGGAA (Garneau et al., 2010)

St3Cas9 Streptococcus thermophilus 5’NGGNG (Magadan et al., 2012)

CjCas9 Campylobacter jejuni 3’NNNVRYAC/
NNNNRYAC

(Kim et al., 2017)

xCas9 3.7 TLIKDIV 
SpCas9

Streptococcus pyogenes 3’NGT/NG (Hu et al., 2018a)

TdCas9 Treponema denticola 3’NAAAAC (Esvelt et al., 2013)

Cas12a or Cpf1 Clostridium aceticum 5’TTTN (makes staggered 
cuts)

(Zetsche et al., 2015)

AacCas12b Alicyclobacillus acidoterrestris 5’TTN (Shmakov et al., 2015)

BhCas12b Bacillus hisashii 5’ATTN (Strecker et al., 2019)

PspCas13 Prevotella buccae Targeted RNA knockdown (Abudayyeh et al., 2016)

PspCas13a Prevotella buccae Targeted RNA knockdown (Abudayyeh et al., 2016)

LwaCas13a Leptotrichia wadeii Targeted RNA knockdown (Abudayyeh et al., 2017)

PspCas13b Prevotella sp. P5-125 Targeted RNA knockdown (Abudayyeh et al., 2016; Smargon et 
al., 2017)

PspCas13c Prevotella buccae Targeted RNA knockdown (Abudayyeh et al., 2016)

PspCas13d Prevotella buccae Targeted RNA knockdown (Konermann et al., 2018; Yan et al., 
2018)

RfxCas13d Ruminococcus flavefaciens Targeted RNA knockdown (Konermann et al., 2018)

Cas14a Uncultivated Archaea bacteria Targets ssDNA without PAM (Harrington et al., 2018)

Cas14b Uncultivated Archaea bacteria Targets ssDNA without PAM (Harrington et al., 2018)

Cas14c Uncultivated Archaea bacteria Targets ssDNA without PAM (Harrington et al., 2018)

Archael Cas9 Candidatus Micrarchaeum acidophilum 
ARMAN-1, Candidatus Parvarchaeum 
acidiphilum ARMAN-4

5’NGG (Burstein et al., 2017)

plmCasX Planctomycetes, Deltaproteobacteria 5’TTCN (makes staggered 
cuts)

(Burstein et al., 2017)

DpbCasX (D672A/
E769A/D935A)

Planctomycetes, Deltaproteobacteria 5’TTCN (Liu et al., 2019)

CasY Katanobacteria, Kerfeldbacteria, 
Vogelbacteria, Parcubacteria, 
Komeilibacteria

5’TA (Burstein et al., 2017)
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Table 2:

Select Neurodegenerative Disorders and Targets for Genome Editing

Neurodegenerative
Disease

Genetic Basis Pathological
Findings

Interventions/
Therapeutic

Targets

References

Alzheimer’s Disease ABCA7, AKAP9, APOE 
ε4, Mutations in PSEN1, 
PSEN2, APP (T48P, L52P, 
K53N), TREM2 variants 
97C→A, 140C→T, 
185C→T, 259C→T, 
469C→T, 632C→T, 
CD33, CLU, SORL1, 
BIN, CD2AP, PICALM, 
PLD3, CASS4, CELF1, 
DSG2, FERMT2, DRB5/
HLA-DRB1, INPP5D, 
MEF2C, NME8, PTK2B, 
SLC24H4-RIN3, 
SQSTM1, TTC3, UNC5C, 
ZCWPW1

Amyloid plaques, neurofibrillary 
tangles, tau 
hyperphosphorylation , GMF 
overexpression, mitochondrial 
dysfunction, neuroinflammation, 
neurodegeneration

PSEN1a, PSEN2b, 
APPc, GMFd, 
TREM2e, 
APOE4f, 
BACE1g, [EXT1, 
EXT2, EXTL3, 
NDST1, 6-O-
sulfotransferase 
(HS6ST2)]h, 
ACVR1i, NLRP3j, 
Cystatin Ck, 
Progranulinl, 
TM2D3m, CLUn, 
CR1o, SORL1p, 
ABCA7q, 
CXCR3r, Fibrins, 
Fmn2t, STIM1u, 
TAUv

(Sasaguri et al., 2018)a, 
(Ortiz-Virumbrales et al., 
2017)b, (Frederiksen et al., 
2018; Gyorgy et al., 2018; 
Hung and Livesey, 2018; 
Nagata et al., 2018; Sun et 
al., 2019)c, (Raikwar et al., 
2018)d, (Krasemann et al., 
2017; Cheng-Hathaway et 
al., 2018; Claes et al., 2018; 
Xiang et al., 2018)e, (Huang 
et al., 2017; Lin et al., 2018; 
Wang et al., 2018a)f, (Inoue 
et al., 2017)g, (Stopschinski 
et al., 2018)h, (Petersen et 
al., 2017)i, (Heneka et al., 
2013; Schmid-Burgk et al., 
2016; Xu et al., 2018)j, 
(Kaeser et al., 2007; Mi et 
al., 2007; Sun et al., 2008)k, 
(Minami et al., 2014; 
Suarez-Calvet et al., 2018)l, 
(Haney et al., 2018)m, 
(Robbins et al., 2018)n, 
(Marzi et al., 2018)o, 
(Young et al., 2015)p, 
(Steinberg et al., 2015)q, 
(Krauthausen et al., 2015)r, 
(Ryu et al., 2018)s, (Agis-
Balboa et al., 2017)t, 
(Pascual-Caro et al., 2018)u, 
(Garcia-Leon et al., 2018)v

Parkinson’s Disease Mutations in SNCA, 
PARK2, PINK1, UCHL1, 
DJ1, LRRK2, SIPAiL2, 
INPP5F, microRNA4697 , 
GCH1, DDRGK1, 
EIF4G1, VPS35, VPS13C, 
SQSTM1, TREM2 
variants 140C→T

GMF overexpression, 
mitochondrial dysfunction, 
neuroinflammation, 
neurodegeneration, Lewy bodies 
in brain stem, minimal striatal α-
synuclein pathology, resting 
tremor, stiffness, slowness and 
walking/balance problems

GMFaa, NLRP3bb, 
GBA1cc, TFAMdd, 
P13ee, LRRK1ff, 
PARKIN
+MIDNgg, 
CHCHD2hh, 
PINK1ii, SNCA/
α-Synucleinjj, 
DJ1kk

(Kempuraj et al., 2018b; 
Kempuraj et al., 2018a; 
Selvakumar et al., 2018a)aa, 
(Gordon et al., 2018)bb, 
(Kim et al., 2018)cc, 
(Langley et al., 2017)dd, 
(Inoue et al., 2018)ee, 
(Giaime et al., 2017)ff, 
(Wang et al., 2016b; Obara 
et al., 2017; Potting et al., 
2018)gg, (Zhou et al., 
2018c)hh, (Zhou et al., 
2015)ii, (Tagliafierro and 
Chiba-Falek, 2016; Arias-
Fuenzalida et al., 2017; 
Heman-Ackah et al., 2017; 
Mor et al., 2017; Chen et al., 
2018; Kantor et al., 2018; 
Zhu et al., 2018)jj, (Prasuhn 
et al., 2017)kk

Parkinson’s Disease 
Dementia

GBA mutations, MAPT 
H1 variant, 
COMTval158met 

polymorphism, APOE-ε4,

Diffuse Lewy body proteins, 
neurofibrillary tangles, senile 
plaques, extensive striatal α-
synuclein pathology, postural 
instability, gait abnormalities, 
rapid motor decline, frequent 
falls,

SNCA*, GBA#, 
LRP10%

(Tagliafierro and Chiba-
Falek, 2016; Heman-Ackah 
et al., 2017; Chen et al., 
2018; Kantor et al., 2018)*, 
(Kim et al., 2018)#, (Quadri 
et al., 2018)%
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Neurodegenerative
Disease

Genetic Basis Pathological
Findings

Interventions/
Therapeutic

Targets

References

Lewy Body Disease SNCA, SNCB, BCHE, 
APOE, GBA

Lewy body proteins, neuritic 
plaques, neurofibrillary tangles, 
resting tremor, bradykinesia, 
stiffness, slowness and walking/
balance problems, memory/
thinking problems, visual 
hallucinations, excessive day 
time drowsiness, unpredictable 
fluctuating levels of attention or 
alertness,

APOE^@, 
SNCA@, GBA@, 
GABRB3@, 
BCL7CI/STX1B@

(Tsuang et al., 2013; 
Dickson et al., 2018; 
Tulloch et al., 2018)^, (Chen 
et al., 2018; Guerreiro et al., 
2018)@

Amyotrophic Lateral 
Sclerosis

TREM2 variants 
140C→T,

Degeneration of and loss of the 
large motor neurons in the 
anterior horn of the spinal cord, 
spongiosis, Bunina bodies 
positive for Cystatin c in the 
motor neurons of the spinal cord 
and brain stem, activated 
microglia, neuroinflammation, 
TDP-43

C9ORF72+, 
SOD1§, TREM2Δ, 
FUS●, SRSF1■, 
TDP-43♦

(Kramer et al., 2018; 
Selvaraj et al., 2018; Shi et 
al., 2018b)+, (Bhinge et al., 
2017)§, (Krasemann et al., 
2017)Δ, (Lagier-Tourenne et 
al., 2012)●, (Hautbergue et 
al., 2017)■, (Fratta et al., 
2018)♦

Frontotemporal 
Dementia

TREM2 variants 42+3 
delAGG, 97C→A, 
113A→G, 140C→T, 
197C→T, 257A→T, 
286C→A, 598G→A, 
632C→T, Progranulin, 
ADNP, FUS, CHMP2B, 
C9ORF72, Cystatin C, 
MAPT

TREM2α, 
Progranulinβ, 
ADNPγ, FUSδ, 
CHMP2Bε, 
C9ORF72ε, 
MAPTζ

(Valdez et al., 2017)α, 
(Nguyen et al., 2018)β, 
(Schirer et al., 2014)γ, 
(Lopez-Erauskin et al., 
2018)δ, (Zhang et al., 2016; 
Zhang et al., 2017; Kramer 
et al., 2018)ε, (Coppola et 
al., 2012)ζ

Frontotemporal 
Lobar Dementia

TREM2 variants 42+3 
delAGG, 97C→A, 
113A→G, 140C→T, 
197C→T, 257A→T, 
286C→A, 598G→A, 
632C→T, MAPT

TREM21‡, 
MAPT∞

(Valdez et al., 2017)‡, 
(Imamura et al., 2016; Jiang 
et al., 2018)∞

Huntington’s Disease More than 39 
polyglutamine repeats in 
HTT, SQSTM1, 
H3K4me3

Polyglutamine expansion in the 
first exon of huntingtin

HTT exon 1⊥ (Malkki, 2016; Shin et al., 
2016; Kolli et al., 2017; 
Malankhanova et al., 2017; 
Wild and Tabrizi, 2017; Xu 
et al., 2017; Yang et al., 
2017)⊥

Multiple Sclerosis/
Experiment al 
autoimmune 
encephalomyelitis

HLA-DRB1* 15:01, 
IL-7R, DDX39B, IL2RA, 
TNFRF1A, EVI5, IRE1α-
XBP1

Neuroinflammation, prickiling 
or tingling sensation 
(paresthesia), numbness, pain, 
itching, Lhermitte sign, tremors, 
muscle stiffness (spasticity), 
exaggerated reflexes 
(hyperreflexia), weakness or 
partial paralysis of the limb 
muscles, difficulty walking, poor 
bladder control

Fibrin!! (Petersen et al., 2017; Ryu 
et al., 2018)!!

Autism ADNP, ANK2, ARID1B, 
ASH1L, ASXL3, 
CACNA1H, CHD2, 
CHD8, CNTN4, 
CNTNAP2, CTNND2, 
DSCAM, DYRK1A, 
GABRB3, GRIN2B, 
KATNAL2, KDM5B, 
MECP2, MYT1L, 
NLGN3, NRXN1, POGZ, 
PTCHD1, PTEN, RELN, 
SCN2A, SHANK2, 
SHANK3, SYNGAP1, 
TBR1

Impaired ability to interact with 
other people, difficulty 
understanding and using non-
verbal cues, reduced eye contact 
and social interaction, repetitive 
behavior, preservation, difficulty 
tolerating sensory stimuli, mild 
to moderate intellectual 
disability,

CHD8◄, 
MECP2►, (AFF2/
FMR2, ANOS1, 
ASTN2, ATRX, 
CACNA1C, 
CHD8, DLGAP2, 
KCNQ2, SCN2A, 
TENM1)◙, 
SRRM4○

(Wang et al., 2015; Platt et 
al., 2017; Wang et al., 
2017b)◄, (Liu et al., 
2016b)►, (Deneault et al., 
2018)◙, (Gonatopoulos-
Pournatzis et al., 2018)○
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Neurodegenerative
Disease

Genetic Basis Pathological
Findings

Interventions/
Therapeutic

Targets

References

Fragile X Syndrome Expansion of CGG repeat 
in FMR1 gene

Delayed development of speech, 
intellectual disability, cognitive 
impairment

FMR1♫ (Park et al., 2015; Xie et al., 
2016; Li et al., 2017)♫

Charcot Marie Tooth 
Disease

AARS, ABHD12, AIFM1, 
ARHGEF10, ATP1A1, 
ATP7A, BAG3, BSCL2, 
CNTNAP1, COA7, 
COX6A1, DCTN1, 
DCTN2, DHTKD1, 
DNAJB2, DNM2, 
DNMT1, DRP2, EGR2, 
FGD4, FIG4, GARS, 
GDAP1, GJB1, GNB4, 
HARS, HINT1, HK1, 
HSPB1, HSPB3, HSPB8, 
IGHMBP2, INF2, JPH1, 
KARS, KIF1B, KIF5A, 
LITAF, LMNA, LRSAM1, 
MARS, MCM3AP, 
MED25, MFN2, MME, 
MORC2, MPV17, MPZ, 
MT-ATP6, MTMR2, 
NAGLU, NDRG1, NEFH, 
NEFL, PDK3, PLEKHG5, 
PMP22, PRPS1, PRX, 
PTRH2, RAB7A, SBF1, 
SBF2, SCO2, SETX, 
SGPL1, SH3TC2, 
SIGMAR1, SLC5A46, 
SPG11, SPTLC1, SURF1, 
TRIM2, TRPV4, VCP, 
WARS, YARS, 
Chromosome 17

Muscle atrophy in feet, 
abnormalities in myelin, fibers 
or axons

MORC2Ω, FIG4Σ (Tchasovnikaro va et al., 
2017)Ω, (Gentil et al., 
2017)Σ

Spinocerebellar 
Ataxia 1-3

ATXN1, ATXN2, ATXN3, 
CACNA1A,

Numbness, tingling or pain in 
arms and legs (sensory 
neuropathy, dystonia, atrophy, 
fasciculations, chorea etc.

SCA2ψ, SCA3ω, 
SCAR16κ

(Marthaler et al., 2016a, c; 
Marthaler et al., 2016b)ψ, 
(Ouyang et al., 2018)ω, (Shi 
et al., 2018a)κ

Spinal Muscular 
Atrophy I-III

SMN1 Hypotonia, SMN1λ (Zhou et al., 2018b)λ

Motor Neuron 
Disease (ALS, PMA, 
PBP, PLS)

TDP43, FUS/TLS, 
Optineurin, UBQLN2, 
C9ORF72, SPATACSIN, 
SENATAXIN, ALSIN

Chronic progressive illnesses, 
muscle wasting, muscle 
weakness, fasciculations, speech 
problems, spasticity, swallowing 
problems, excessive saliva, 
neurodegeneration

TDP-43μ, 
SCYL1π

(Fratta et al., 2018)μ, 
(Kuliyev et al., 2018)π

Epilepsy AARS, ALDH7A1, 
ANO3, ARV1, 
ARHGEF9, ALG13, 
BCL11A, CACNA1H, 
CACNB4, CDKL5, 
CERS1, CHD2, 
CHRNA2, CHRNA4, 
CLCN2, CNTN2, CPA6, 
CSTB, DEPDC5, DNM1, 
DOCK7, EEF1A2, 
EFHC1, EPM2A, 
FRRS1L, GAL, GUF1, 
GABRD, GRIK1, 
GRIN2A, GABRA1, 
GABRB3, GABRG2, 
GOSR2, HCN1, ITPA, 
KCNC1, KCNMA1, 
KCNQ2, KCNQ3, 
KCNT1, KCTD7, LGI1, 
LMNB2, NECAP1, 
NHLRC1, PCDH7, 
PCDH19, PLCB1, PNPO, 

Convulsions, stiffness, confused 
memory, hippocampal sclerosis, 
focal cortical dysplasia, 
cerebellar atrophy,

DEPDC5ρ, 
SCN1Aσ

(Hughes et al., 2017)ρ, (Liu 
et al., 2016a)σ

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2021 June 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Raikwar et al. Page 52

Neurodegenerative
Disease

Genetic Basis Pathological
Findings

Interventions/
Therapeutic

Targets

References

PRDM8, PRICKLE1, 
PRRT2, QARS, SCARB2, 
SCN1A, SCN1B, SCN2A, 
SCN9A, SLC2A1, 
SLC6A1, SLC12A5, 
SLC13A5, SLC25A12, 
SLC25A22, SNN8A, 
SPTAN1, STAT4, 
ST3GAL5, STX1B, SZT2, 
TBC1D24, TTC21B, 
ZEB2, 16p11.2 
microduplication, 
WWOX,

Friedreich’s Ataxia GAA repeats in FXN gene Reduced elongation and 
impaired transcription of FXN 
gene

FXNτ (Vannocci et al., 2015; 
Ouellet et al., 2017)τ

Tay-Sachs Disease HEXA Reduced Hexosaminidase A, 
abnormal buildup of GM2 
ganglioside in the nerve cells, 
seizures, vision and hearing loss, 
muscle weakness, cherry red 
spots in the eyes, loss of motor 
skills

HEXAυ (Tropak et al., 2016)υ

Sandhoff Disease HEXB Reduced Hexosaminidase B, 
abnormal buildup of GM2 
ganglioside in the nerve cells, 
neuroinflammation, gliosis, 
progressive neurodegeneration

HEXBφ (Allende et al., 2018)φ

Canavan Disease NAT8L, ASPA Toxic accumulation of N-
acetylaspartate causing diffuse 
spongiform white matter 
degeneration, disrupted 
development, macrocephaly, 
seizures, CNS vacuolization, 
hypomyelination

ASPAχ (Gessler et al., 2017)χ

Batten Disease/
Neuronal Ceroid 
Lipofuscinoses

CLN1/PPT1, CLN2/TPP1, 
CLN3, CLN4, CLN5, 
CLN6, CLN7, CLN8, 
CLN9, CLN10, CLN11, 
CLN12, CLN13, CLN14

Lysosomal accumulation of 
pathological lipofuscin-like 
material in neurons and glia, 
neuron loss, early impairment of 
vision, progressive decline in 
cognitive and motor functions, 
seizures, progressive neuron loss

CLN1/PPT1ω (Shyng et al., 2017; Yao et 
al., 2017)ω

Nasu-Hakola Disease TYROBP, TREM2 
variants, 40G→T, 
97C→A, 132G→A, 
233G→A, 267delG, 
313delG, 377T→G, 
401A→G, 482+2T→C, 
588G→A, DAP12, 
TYROBP

Progressive presenile dementia 
associated with recurrent bone 
fractures, extensive 
demyelination 
(leukoencephalopath y), 
astrogliosis, accumulation of 
axonal spheroids, activation of 
microglia in the white matter of 
frontal temporal lobes, 
overexpression of gp91phox in 
microglia

TREM2ᴓ (Valdez et al., 2017; Garcia-
Reitboeck et al., 2018)ᴓ

Prion Disease PRNP (P102L) Prion protein in the substantia 
gelatinosa, spinothalamic tracts, 
posterior columns and nuclei and 
in the neuropil surrounding 
anterior horns (Gerstmann-
Straussler-Scheineker syndrome)

PrP⍑ (Mehrabian et al., 2014; 
Kaczmarczyk et al., 2016)⍑

Note: Alphabets, Roman Numerals and symbols depicted in superscript in column 4 correspond with the respective references in column 5 in the 
Table 2.
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