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Abstract

Biomedical studies that use electronic health records (EHR) data for inference are often subject to 

bias due to measurement error. The measurement error present in EHR data is typically complex, 

consisting of errors of unknown functional form in covariates and the outcome, which can be 

dependent. To address the bias resulting from such errors, generalized raking has recently been 

proposed as a robust method that yields consistent estimates without the need to model the error 

structure. We provide rationale for why these previously proposed raking estimators can be 

expected to be inefficient in failure-time outcome settings involving misclassification of the event 

indicator. We propose raking estimators that utilize multiple imputation, to impute either the target 

variables or auxiliary variables, to improve the efficiency. We also consider outcome-dependent 

sampling designs and investigate their impact on the efficiency of the raking estimators, either 

with or without multiple imputation. We present an extensive numerical study to examine the 

performance of the proposed estimators across various measurement error settings. We then apply 

the proposed methods to our motivating setting, in which we seek to analyze HIV outcomes in an 

observational cohort with EHR data from the Vanderbilt Comprehensive Care Clinic.
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1 | INTRODUCTION

Modern biomedical studies are increasingly using nontraditional data sources such as 

electronic health records (EHR), which are not primarily collected for research purposes. 

These data sources have enormous potential to advance research of population-level health 

outcomes due to their large sample sizes and low cost compared to prospectively collected 

data (Beresniak et al., 2016; Hillestad et al., 2005; Jensen et al., 2012; van Staa et al., 2014). 

EHR data, however, have also been shown to be vulnerable to measurement error (Botsis et 

al., 2010; Duda et al., 2012; Floyd et al., 2012; Kiragga et al., 2011; Weiskopf & Weng, 

2013). If such errors are not accounted for in the data analysis, estimated effects of interest 

can be biased, which in turn can mislead researchers and potentially harm patients.

The measurement error found in EHR data can be complex, consisting of errors in both an 

outcome and covariates of interest, which in turn can be dependent. This complexity stems 

from the fact that variables of interest are often not directly observed in EHR data; instead, 

they need to be derived from other existing variables in the data. For example, HIV/AIDS 

studies might be interested in evaluating the association between a lab value at the date of 

antiretroviral therapy (ART) initiation and the time from ART initiation to some event of 

interest. Both the exposure and outcome in the above example depend on the ART initiation 

date; thus, if the initiation date is incorrect, the outcome and covariate in the analysis will 

both contain measurement error that is dependent (in addition to potential misclassification 

of the event).

Covariate measurement error, particularly classical measurement error or extensions of it, 

has been well studied in the literature, and methods to correct the bias resulting from such 

error have been well developed (Carroll et al., 2006). Although less attention has been given 

to errors in an outcome of interest, there has been some recent work looking at errors in 

binary outcomes (Magder & Hughes, 1997; Edwards et al., 2013; Wang et al., 2016), 

discrete time-to-event outcomes (Hunsberger et al., 2010; Magaret, 2008; Meier et al., 

2003), and to a lesser extent, continuous time-to-event outcomes (Gravel et al., 2018; Oh et 

al., 2018). There has been even less work to understand the impact of errors in both 

covariates and a time-to-event outcome, but it has recently been shown that ignoring such 

errors can cause severe bias in estimates of effects of interest (Boe et al., 2020; Giganti et al., 

2020; Oh et al., 2019).

In some cases, errors can be handled by retrospectively reviewing records and correcting all 

data points; however in most scenarios, this will be too time consuming and expensive to 

feasibly carry out. Instead, one can use a two-phase design, which involves reviewing and 

correcting only a subset of the records, to obtain consistent estimates of effects of interest. 

There have been some methods proposed recently that employ this framework to incorporate 

the large error-prone data with the smaller validated data to improve statistical inference, 

including regression calibration (Boe et al., 2020; Oh et al., 2019), multiple imputation 

(Giganti et al., 2020), and generalized raking (Oh et al., 2019). Generalized raking in 

particular has been shown to be robust to the structure of the measurement error, which can 

be quite complex for EHR data (Han et al., 2019; Oh et al., 2019). Specifically, generalized 

raking estimators use the error-prone data as auxiliary variables to improve the efficiency of 
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the analysis of the validated data without having to model the error structure, making them 

appealing for EHR settings where the true structure is likely unknown. Thus, we focus on 

the generalized raking methods in this article.

In the measurement error setting, an error-prone version of the target variable is generally 

available on all subjects at phase one, which can be used to construct auxiliary variables for 

raking. While generalized raking estimators are robust, their statistical efficiency is 

dependent on the quality of the raking variables. Specifically, the efficiency of raking 

estimators depends on the (linear) correlation between the auxiliary variables and the target 

variable (Deville & Särndal, 1992). We show that for a time-to-event outcome, where the 

event indicator is subject to misclassification, this linear correlation is generally low and 

results in inefficient estimates. In this article, we propose generalized raking estimators that 

utilize multiple imputation to construct improved auxiliary variables using imputed values of 

either the error-prone data or direct imputation of the auxiliary variables themselves to 

improve the linear correlation and, ultimately, the efficiency of the raking estimator.

Our contributions in this article are twofold. First, we develop generalized raking estimators 

that utilize multiple imputation to construct improved auxiliary variables in the presence of 

event indicator misclassification. Second, we evaluate the performance of various sampling 

designs with respect to their impact on the efficiency of the standard or proposed raking 

estimators. The rest of the paper proceeds as follows. We present our time-to-event outcome 

model and measurement error framework, and we introduce generalized raking estimators in 

Section 2. Section 3 discusses how the auxiliary variables relate to the efficiency of raking 

estimators and the need for their improvement in time-to-event settings with event indicator 

misclassification. Section 4 develops the proposed generalized raking estimators using 

multiple imputation. Section 5 compares the relative performance of the proposed estimators 

with simulation studies for various parameter settings and study designs. In Section 6, we 

apply our methods to evaluate HIV outcomes in an HIV cohort with error-prone EHR data. 

We conclude with a discussion in Section 7.

2 | MODEL SETUP AND DESIGN FRAMEWORK

This section introduces the design and estimation framework, including the time-to-event 

outcome model, measurement error framework, and generalized raking methods used to 

estimate parameters of interest.

2.1 | Time-to-event outcome model

Let Ti and Ci be the failure time and right censoring time, respectively, for subjects i = 1, …, 

N on a finite follow-up time interval, [0, τ]. Define Ui = min(Ti, Ci ) and the corresponding 

failure indicator Δi = I Ti ≤ Ci . Let Y i(t) = I Ui ≥ t  and Ni(t) = I Ui ≤ t, Δi = 1  denote the 

at-risk indicator and counting process for observed events, respectively. Let Xi be a p-

dimensional vector of discrete and/or continuous covariates that are measured with error and 

Zi a q-dimensional vector of precisely measured discrete and/or continuous covariates that 

may be correlated with Xi. We assume Ci is independent of Ti given (Xi, Zi ) and that (Ti, Ci, 

Xi, Zi ) are independently and identically distributed.
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In this paper, we consider estimating the parameters of a Cox proportional hazards model. 

Let the hazard rate for subject i at time t be given by λi(t) = λ0(t)exp βX′ Xi + βZ′ Zi , where 

λ0(t) is an unspecified baseline hazard function. Then to estimate β = βX, βZ , we solve the 

partial likelihood score equation

∑
i = 1

N ∫
0

τ
Xi, Zi ′ −

∑j = 1
N Y j t Xj, Zj ′exp βX′ Xj + βZ′ Zj

∑j = 1
N Y j t exp βX′ Xj + βZ′ Zj

dNi t = 0. (1)

2.1.1 | Error framework—Instead of observing (X, Z, U, Δ), we observe (X⋆, Z, U⋆, 

Δ⋆), where X⋆, U⋆, and Δ⋆ are the error-prone versions of X, U, and Δ, respectively. We do 

not impose any assumptions on the structure of the measurement error except that the error 

must have finite variance. In addition, we allow any of the errors to be correlated.

2.2 | Two-phase design

We consider a retrospective two-phase design where at phase one, a set of possibly error-

prone covariates and outcome information is collected on a large group of subjects. At phase 

two, the large cohort is augmented by selecting a subset of the subjects (n < N) to be 

validated, that is, to have error-free covariates and outcome information measured. As a 

result, the phase two data are often referred to as the validation subset. Since the validation 

subset is selected retrospectively, the sampling probabilities are known. This type of 

sampling strategy accommodates both fixed subsample sizes (e.g., simple random sampling) 

as well as more complex designs with random subsample sizes (e.g., case-cohort). 

Specifically, let Ri be the indicator for whether subject i = 1, …, N is selected to be in the 

validation subset with known sampling probability 0 < πi ≤ 1. Then the observed data are 

given by Xi
⋆, Zi, Ui

⋆, Δi
⋆  for Ri = 0 and Xi

⋆, Xi, Zi, Ui
⋆, Ui, Δi

⋆, Δi  for Ri = 1.

2.3 | Generalized raking

To estimate parameters in the two-phase design framework, we use generalized raking, a 

design-based estimator that combines the error-prone phase one data with the error-free 

phase two data to obtain more efficient estimates that take advantage of all the measured 

data. Let β0 denote the parameter defined by the population-estimating equations 

∑i = 1
N ψi β0 = 0. One classical estimator for two-phase designs is the Horvitz-Thompson 

(HT) estimator, βHT, which is defined as the solution to ∑i = 1
N Ri

πi
ψi(β) = 0. Under suitable 

regularity conditions, βHT is a consistent estimator of β0; however, it has been shown to be 

inefficient due to not using all of the available data at phase one (Robins et al., 1994). Let Ai 

denote a vector of auxiliary variables that are available for all N phase one subjects and 

correlated with the phase two data. Then generalized raking estimators modify the HT 

estimator design weights to new weights that incorporate the auxiliary variables such that 

∑i = 1
N Ai, the known population total of auxiliary variables, is exactly estimated by the phase 

2 subset. However, the new weights are constructed so that they are as close as possible to 
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the HT weights while still satisfying the constraint. Specifically, for some distance measure 

d(.,.), the objective can be written as

 minimize  ∑
i = 1

N
Rid

gi
πi

, 1
πi

 subject to  ∑
i = 1

N
Ai = ∑

i = 1

N
Ri

gi
πi

Ai,

where 
gi
πi

 are the raking weights that can be solved for using Lagrange multipliers (Deville & 

Särndal, 1992). Note that the constraints above are known as the calibration equations. 

Therefore, the generalized raking estimator is defined by the solution to

∑
i = 1

N
Ri

gi
πi

ψi(β) = 0. (2)

Under suitable regularity conditions and an asymptotic framework where n tends to infinity 

with N (Isaki & Fuller, 1982), the solution to (2) has been shown to be a N consistent and 

asymptotically normal estimator of β0 (Saegusa & Wellner, 2013). When β0 are the 

regression parameters from a correctly specified Cox proportional hazards model, 

ψi(β) = ψ Xi, Zi, Ui, Δi; β  is the Cox partial score equation (1) and the distance measure 

d(a, b) = alog(a/b) − a + b is used. Let λ denote a vector of Lagrange multipliers. Then 

solving the constrained minimization problem yields gi = exp λ′Ai , where 

λ = B−1 ∑i = 1
N Ri

πi
Ai − ∑i = 1

N Ai + Op n−1  and B = ∑i = 1
N Ri

πi
Ai′Ai (Deville & Särndal, 1992).

3 | CONSTRUCTION OF BETTER AUXILIARY VARIABLES

To quantify the gain in efficiency of raking estimators compared to the HT estimator, it is 

useful to consider the calibration equations, which constrain the raking weights to exactly 

estimate the known population total of the auxiliary variables. Deville and Särndal (1992) 

argued that “weights that perform well for the auxiliary variable also should perform well 

for the study variable” to provide support for such a construction. Note that study variable in 

this context represents the variable that is only observed in the phase two sample. 

Furthermore, there is an implicit assumption underlying this argument; namely that there 

exists a linear relationship between the variable of interest and the auxiliary variables of the 

form Si = γ0 + γ1Ai + ϵi, where Si and Ai are the variable of interest and auxiliary variables, 

respectively, and ϵi is a random error. Thus, the efficiency gain of raking estimators depends 

directly on the (linear) correlation between the variable of interest and auxiliary variables. 

(For more details, see Lumley et al., 2011). The true relationship between Si and Ai 

determines how to best use the auxiliary variables, which we hope to capture with the 

working model. If the true relationship between the study variable and auxiliary variables is 

nonlinear, standard generalized raking could be quite inefficient.

Assessing whether a linear working model is appropriate requires precise definitions for the 

variable of interest and auxiliary variables. In the setting of estimating regression 
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parameters, many common estimators can be written as a population mean of influence 

function (or efficient influence function for semiparametric models) terms, l0 Xi, Zi, Ui, Δi , 

using their asymptotically linear expansion. Thus, l0 Xi, Zi, Ui, Δi  is considered to be the 

variable of interest, and the auxiliary variables should be constructed to be highly correlated 

with the influence function contributions. The optimal auxiliary variable was shown by 

Breslow et al. (2009) to be E l0 Xi, Zi, Ui, Δi ∣ V , where V = X⋆, Z, U⋆, Δ⋆ , which is 

unavailable in practice. Oh et al. (2019), however, proposed an approximation, 

l0 Xi
⋆, Zi, Ui

⋆, Δi
⋆ , as the auxiliary variable, motivated by settings involving correlated 

measurement error in covariates and a censored event-time only.

Thus, the linear working model underlying the estimator from Oh et al. (2019) is given by 

l0 Xi, Zi, Ui, Δi = γ0 + γ1l0 Xi
⋆, Zi, Ui

⋆, Δi
⋆ + ϵi. To assess whether the linear fit is 

appropriate, we plot l0 Xi, Zi, Ui, Δi  against l0 Xi
⋆, Zi, Ui

⋆, Δi
⋆  from simulated data for 

various measurement error scenarios. Specifically, we plot empirical approximations of l0
using delta-beta residuals (see Oh et al., 2019, for more detail on their calculation) for 

settings with covariate error, time-to-event error, and misclassification only, as well as 

combinations of all three in Figure 1. The plots of l0 Xi, Zi, Ui, Δi  against l0 Xi
⋆, Zi, Ui

⋆, Δi
⋆

for additive errors in the time-to-event or covariate show that the assumption of a linear 

relationship is mostly justified, albeit with some heteroscedasticity. However, when there is 

misclassification of the event indicator, a linear working model appears to be a very poor fit 

and including additional errors in variables as in Figure 1D worsens the fit.

3.1 | Model calibration

Wu and Sitter (2001) proposed an alternative calibration method to handle settings where the 

true relationship between the variable of interest and the auxiliary variables may be 

nonlinear. Specifically, they assume the relationship between Si and Ai can be characterized 

by the first and second moments, with the first moment equals to E Si ∣ Ai = μ Ai; θ , where 

μ is a known function of Ai and θ. Then using the validation subset, one obtains fitted values 

of μ Ai; θ , μ Ai; θ  and performs the raking procedure using them as auxiliary variables. 

Specifically, the generalized raking objective can be written as

 minimize  ∑
i = 1

N
Rid

gi
πi

, 1
πi

 subject to  ∑
i = 1

N
μ Ai; θ = ∑

i = 1

N
Ri

gi
πi

μ Ai; θ 0. (3)

Wu and Sitter (2001) showed that this method yields more efficient estimates than the 

traditional raking estimator but still retains all of its statistical properties for a true nonlinear 

relationship between the variable of interest and auxiliary variables. Inspired by the model-

calibration approach, we propose a data imputation approach that imputes the true Δ to 

obtain an auxiliary variable that has higher linear correlation with l0 Xi, Zi, Ui, Δi  than 

l0 Xi
⋆, Zi, Ui

⋆, Δi
⋆  does. Additionally, we propose a novel application of the Wu and Sitter 
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(2001) approach that directly imputes l0 Xi, Zi, Ui, Δi  based on a (potentially nonlinear) 

working model.

4 | PROPOSED MULTIPLE IMPUTATION METHODS FOR GENERALIZED 

RAKING

In this section, we propose methods to improve the efficiency of the generalized raking 

estimators under measurement error settings involving event indicator misclassification. Our 

methods use multiple imputation to impute the event indicator and then construct new 

auxiliary variables using the imputed values to solve the raking estimating equation. For 

settings involving errors beyond just misclassification (e.g., additional time-to-event and/or 

covariate error), we propose a method using the fully conditional specification multiple 

imputation procedure that additionally imputes the other error-prone variables iteratively. 

These methods are related to those of Han (2016), who proposed combining an empirical 

likelihood approach with multiple imputation to construct multiply robust estimators that are 

consistent if one of the sampling models or data-generating models are correctly specified. 

Our approach differs in that we assume known phase two sampling probabilities possibly 

specified using a complex sampling design and study specific efficiency issues for time-to-

event data. We additionally consider directly imputing the true population influence 

functions via a working model to use as auxiliary variables as a novel application of Wu and 

Sitter (2001). Lastly, we consider various study designs, including outcome-dependent 

sampling designs, for the selection of the validation subset in the two-phase design 

framework and discuss their varying impact on the efficiency of the proposed methods.

As alluded to in Section 2.3, our estimators are N consistent and asymptotically normal 

estimators of β0. We provide a brief explanation of the conditions required in Appendix A in 

the Supporting Information. The proposed methods all focus on adjusting the working model 

of the population influence functions to construct auxiliary variables closer to the optimal 

auxiliary variable. If the working model is misspecified, or does not capture the true 

relationship well, the proposed estimators still yield consistent and asympotically normal 

estimates (Breslow et al., 2009). If, however, the working model is correct, the estimators 

will yield the most efficient design-consistent estimator (Han, 2016). We note that imputing 

the auxiliary variables as we propose to do will not add any bias to the parameter estimates 

under regular working models. We provide justification for this in Appendix A in the 

Supporting Information.

4.1 | Multiple imputation for the event indicator

Traditional multiple imputation in missing data settings (Rubin, 2004) involves developing 

statistical models for the distributions of the variables subject to missingness conditional on 

the fully observed variables. The missing variables are sampled M times from their 

distribution to generate M imputations of the missing data. The original data are augmented 

with the imputations, yielding M complete imputed datasets. Each of the M imputed datasets 

are then used to separately estimate the parameters of interest and the average of the M 
estimates is the multiple imputation estimator. The variance of the estimates can be 
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calculated using Rubin’s rules (Barnard & Rubin, 1999) or the estimators proposed by 

Robins and Wang (2000).

Multiple imputation for generalized raking follows similarly, with the exception that the M 
imputed datasets are first used to construct auxiliary variables for the influence functions for 

the target parameters.

First, we posit an imputation model for Δ, f Δ ∣ Δ⋆, X⋆, U⋆, Z; η , with parameter vector η, 

and specify a noninformative prior distribution, f(η). We then fit the imputation model using 

the validation subset, generate the posterior distribution for η, and then sample M times from 

this posterior distribution to obtain η⋆
(1), …, η⋆

(M). The parameter draws are used to sample 

Δi
(m) ∼ f Δ ∣ Δi

⋆, Xi
⋆, Ui

⋆, Zi; η⋆
(m)  for all N phase one subjects and m = 1, …, M . Δ(1), …, Δ(M)

are then augmented with the phase one data to yield M complete imputed datasets. Then for 

m = 1, ... , M, the estimating equation ∑i = 1
N ψ Xi

⋆, Zi, Ui
⋆, Δi

(m); β = 0 is solved to obtain 

β (m). For each subject i = 1, ... , N, the auxiliary variable Ai, is defined as

Ai = 1
M ∑

m = 1

M
l0 Xi⋆, Zi, Ui⋆, Δi

(m); β(m) ,

where l0 Xi
⋆, Zi, Ui

⋆, Δi
(m)

 is the influence function for the estimating equation from the mth 

imputation and can be empirically approximated as

l0 Xi⋆, Zi, Ui⋆, Δi
(m) ≈ Δi

(m) Xi⋆, Zi ′ − S(1) ⋆ (β, t)
S(0) ⋆ (β, t)

− ∑
i = 1

n ∫0
τ exp βX′ Xi⋆ + βZ′ Zi

S(0) ⋆ (β, t)
Xi⋆, Zi ′ − S(1) ⋆ (β, t)

S(0) ⋆ (β, t)) dNi(t),

where S(r) ⋆ (β, t) = n−1∑j = 1
n Y j

⋆(t) Xj
⋆, Zj

′ ⊗ rexp βX′ Xj
⋆ + βZ′ Zj  (a ⊗ 1 is the vector a and 

a ⊗ 0 is the scalar 1), Y j
⋆(t) = I Uj

⋆ ≥ t  t), and Ni(t) = I Ui
⋆ ≤ t, Δi

(m) = 1 .

Finally, to obtain estimates of the parameter of interest, we solve the raking estimating 

equation with adjusted weights calculated using Ai as auxiliary variables in (2).

4.2 | Fully conditional specification multiple imputation

If there exists measurement error in variables beyond just the event indicator (e.g., additional 

time-to-event and/or covariate error), it is possible to gain efficiency by additionally 

imputing all error-prone variables iteratively using the fully conditional specification 

multiple imputation (FCSMI) method (Van Buuren, 2007). FCSMI involves specifying 

univariate models for the conditional distribution of each of the variables observed only at 

phase two given all phase one variables. Each missing variable is repeatedly imputed using 
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the specified models and conditioning on the most recent imputations of the other variables. 

We explicate the FCSMI method for generalized raking in the presence of misclassification, 

covariate error, and time-to-event error. The method assumes a working model for the 

censored time-to-event that takes the form U⋆ = U + W (Δ, X, Z), where W(Δ,X,Z) is an 

arbitrary function of Δ,X, and Z. Note that if the working error model is misspecified, the 

raking estimator will still be consistent, albeit with some loss of efficiency.

First, we posit imputation models for Δ,X, and W, as well as noninformative prior 

distributions for their parameter vectors η, θ,  and ω, respectively, to generate posterior 

distributions. We then draw parameters from their posteriors as follows: 

η⋆
(0) ∼ f Δ ∣ Δ⋆, X⋆, U⋆, Z; ηV f ηV ,

θ⋆
(0) ∼ f X ∣ Δ⋆, X⋆, U⋆, Z; θV f θV  and ω⋆

(0) ∼ f W ∣ Δ⋆, X⋆, Z; ωV f ωV . Then Δ,X, and U 

are imputed for all N phase one subjects by sampling from the imputation models using the 

initial parameter draws: Δ(0) ∼ f Δ ∣ Δ⋆, X⋆, U⋆, Z; η⋆
(0) , X(0) ∼ f X ∣ Δ⋆, X⋆, U⋆, Z; θ⋆

(0) , 

and U(0) = U⋆ − W (0), where W (0) ∼ f W ∣ Δ⋆, X⋆, Z; ω⋆
(0) . Then for iteration l = 1, …, L, 

the algorithm proceeds as follows:

η⋆
(l) ∼ f Δ ∣ Δ⋆, X(l − 1), U(l − 1), Z; η f(η)

Δ(l) ∼ f Δ ∣ Δ⋆, X(l − 1), U(l − 1), Z; η⋆
(l)

θ⋆
(l) ∼ f X ∣ Δ(l), X⋆, U(l − 1), Z; θ f(θ)

X(l) ∼ f X ∣ Δ(l), X⋆, U(l − 1), Z; θ⋆
(l)

ω⋆
(l) ∼ f W ∣ Δ(l), X(l), Z; ω f(ω)

U(l) = U⋆ − W (l),  where  W (l) ∼ f W ∣ Δ(l), X(l), Z; ω⋆
(l) .

The algorithm continues sampling and imputing Δ, X, and U for L iterations, after which it is 

assumed a stationary distribution has been reached. The above steps are repeated for M 

iterations, where Δ(L), X(L),  and U(L) are taken to be the imputed values of Δ,X, and U, 

respectively, for each m = 1, …, M . Δ(m), X(m),  and U(m) are then augmented with the phase 
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one data to yield M complete imputed datasets. Then for m = 1, ...,M, the estimating 

equation ∑i = 1
N ψ Xi

(m), Zi, Ui
(m), Δi

(m); β = 0 is solved to obtain β (m). Then the auxiliary 

variable for each subject, Ai is defined as

Ai = 1
M ∑

m = 1

M
l0 Xi

(m), Zi, Ui
(m), Δi

(m); β(m)

and l0 Xi
(m), Zi, Ui

(m), Δi
(m)

 can be empirically approximated as

l0 Xi
(m), Zi, Ui

(m), Δi
(m) ≈ Δi

(m) Xi
(m), Zi

′ − S(1)(β, t)
S(0)(β, t)

− ∑
i = 1

n ∫0
τ exp βX′ Xi

(m) + βZ′ Zi

S(0)(β, t)
Xi

(m), Zi
′ − S(1)(β, t)

S(0)(β, t)
dNi(t),

where S(r)(β, t) = n−1∑j = 1
n Y j(t) Xj

(m), Zj
′ ⊗ r

exp βX′ Xj
(m) + βZ′ Zj  (a ⊗ 1 is the vector a and 

a ⊗ 0 is the scalar 1), Y j(t) = I Uj
(m) ≥ t , and Ni(t) = I Ui

(m) ≤ t, Δi
(m) = 1 .

Lastly, to obtain estimates of the parameter of interest, we solve the raking estimating 

equation with adjusted weights calculated using Ai, as auxiliary variables in (2).

4.3 | Model-calibration multiple imputation

We propose a multiple imputation application of the Wu and Sitter (2001) model-calibration 

approach by specifying a working model for the population influence function and using the 

fitted values as auxiliary variables for raking in repeated iterations. First, we impute the 

error-prone variable(s) using MI or FCSMI as described in Sections 4.1 and 4.2. For the 

purposes of exposition, assume that FCSMI is used to impute Δ,X, and U to obtain 

Δ(m), X(m), and U(m). We posit a working model

E l0 Xi, Zi, Ui, Δi ∣ l0 Xi
(m), Zi, Ui

(m), Δi
(m) = μ l0 Xi

(m), Zi, Ui
(m), Δi

(m) ; γ(m) ,

where l0 Xi
(m), Zi, Ui

(m), Δi
(m)

 is constructed using the empirical approximation given in 

Section 4.2. Here, μ can capture nonlinear relationships, and the model is fit on the 

validation subset to obtain γ (m). The above steps are repeated m = 1,..., M iterations to obtain 

γ (1), …, γ (M). The auxiliary variable for each subject, Ai is then defined as

Ai = 1
M ∑

m = 1

M
μ l0 Xi

(m), Zi, Ui
(m), Δi

(m) ; γ(m) .
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Finally, estimates of the parameter of interest are obtained by solving the raking estimating 

equation with adjusted weights calculated using Ai, as auxiliary variables in (2).

4.4 | Sampling design considerations

In validation study settings, such as those considered in this article, researchers can define 

the phase two sampling probabilities as functions of the phase one data to select more 

informative subjects for increased efficiency. For example, researchers may want to 

oversample cases in rare-event settings or oversample subjects at underrepresented levels of 

informative covariates. Although generalized raking can easily accommodate such designs, 

the interplay between sampling designs and raking has not been well studied. We consider 

the effects of three different sampling designs on the efficiency of raking estimates: simple 

random sampling (SRS), case-control (CC), and covariate stratified case-control (SCC).

5 | SIMULATION STUDY

In this section, we study the finite sample performance of the proposed raking estimators 

utilizing multiple imputation in the presence of event indicator misclassification. We 

compare these estimators to the raking estimator that constructs auxiliary variables using the 

naive error-prone data (GRN), the HT estimator, and the true estimator, that is, the Cox 

proportional hazards model fit with the error-free data for all subjects. We considered three 

different measurement error scenarios where different variables are observed with error: (1) 

(X, Z, U, Δ*), (2)(X, Z, U*,Δ*), and (3) (X*, Z, U*, Δ*). For each error scenario, we 

considered the proposed raking estimator utilizing MI to impute the event indicator only, 

referred to as generalized raking multiple imputation (GRMI) hereafter. For error scenarios 2 

and 3, which include errors in other variables besides the event indicator, we additionally 

considered the proposed raking estimator utilizing FCSMI to impute all error-prone 

variables iteratively, referred to as generalized raking fully conditional specification multiple 

imputation (GRFCSMI) hereafter. We refer to these estimators as encompassing the data 

imputation approach. For all three error scenarios, we also considered the corresponding 

model-calibration multiple imputation methods described in Section 4.3, which we similarly 

refer to as encompassing the influence function (IF) imputation approach. We present % 
biases, average model standard errors (ASE), empirical standard errors (ESE), relative 

efficiency (RE) calculated with respect to the HT ESE, mean squared errors (MSE), and 

95% coverage probabilities (CP) for varying values of the log hazard ratio βX, % censoring, 

cohort and validation subset sizes, and validation subset sampling designs. We additionally 

present type 1 error results for βX = 0 and α = 0.05. All standard errors were calculated 

using sandwich variance estimators. Source code to reproduce the results is available as 

Supporting Information on the journal’s web page (http://onlinelibrary.wiley.com/doi/

10.1002/bimj.202000187/suppinfo).

5.1 | Simulation setup

All simulations were run 2000 times using R version 3.6.2 (R Core Team, 2019). Cohort and 

validation subset sizes of {N,n} = {2000,400} and {N, n} = {10000,2000} were considered. 

Univariate X and Z were considered and were generated as a bivariate normal distribution 

with means μX, μZ = (0, 2), variances σX
2 , σZ

2 = (1, 1), and ρX, Z = 0.5. The true log hazard 
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ratios were set to be βX ∈ log(1.5), log(3)  and βZ = log(0.5). The true survival time T was 

generated from an exponential distribution with rate equal to λ0exp βXX + βZZ  where 

λ0 = 0.1 . Censoring times were simulated for each βX and βZ to yield 50%>,75%>, and 

90%> censoring rates. Specifically, they were generated from Uniform distributions of 

varying lengths to mimic studies of different lengths.

The error-prone data were generated as follows:

1. Scenario 1: (X, Z, U, Δ *), where

Δ⋆ =  Bernoulli(expit( − 1.1 + 3Δ − 0.3X − 0.2U + 0.1Z))

2. Scenario 2: (X, Z, U*, Δ *), where

Δ⋆ =  Bernoulli(expit( − 1.1 + 3Δ − 0.3X − 0.2U + 0.1Z))

U⋆ = U + W = U + σv ⋅ 3 − 0.2X − 1.05Z + v

3. Scenario 3: (X*,Z, U*, Δ*), where

Δ⋆ =  Bernoulli(expit( − 1.1 + 3Δ − 0.3X − 0.2U + 0.1Z))

U⋆ = U + W = U + σv ⋅ 3 − 0.2X − 1.05Z + v

X⋆ = 0.2 + X − 0.1Z − 0.4Δ + 0.25U + ϵ .

Note that the choice of the intercept term in the event time error model is such that the error-

prone time is a valid event time (i.e., greater than zero) with high probability. The few 

censored event times that were less than 0 were reflected across 0 to generate valid 

outcomes. For scenario 3, the error terms (ϵ, ν) were generated from a bivariate normal 

distribution with means μ∈, μν = (0, 0), variances σ∈2 , σv2 = (0.5, 0.5), and ρϵ, v = 0.5.ν was 

generated from a univariate normal distribution for scenario 2 with the same mean and 

variance as in scenario 3. Supplementary Materials Table 1 presents the sensitivity, 

specificity, positive predictive value, and negative predictive value for the misclassified event 

indicator across all error scenarios.

For the working imputation models, we fit logistic regression models for Δ and linear 

regression models for X and W. Under the error-generating process considered in this 

section, analytical expressions for the true imputation models do not exist. Therefore, we 

considered two types of working imputation models: those including only main effects and 
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those additionally adding all possible interaction effects to potentially specify an imputation 

model closer to the truth. Specifically, the imputation models including only main effects 

(referred to as generalized raking multiple imputation simple (GRMIS) and generalized 

raking fully conditional specification multiple imputation simple (GRFCSMIS) hereafter) 

were specified as follows:

1. Scenario 1: (X,Z,U,Δ*)

logit P(Δ = 1) ∣ Δ⋆, X, U, Z = η0 + η1Δ⋆ + η2X + η3U + η4Z

2. Scenario 2: (X, Z, U*,Δ *)

logit P(Δ = 1) ∣ Δ⋆, X, U⋆, Z = η0 + η1Δ⋆ + η2X + η3U⋆ + η4Z

E W ∣ Δ⋆, X, Z = ω0 + ω1Δ⋆ + ω2X + ω3Z

3. Scenario 3: (X*,Z, U*,Δ*)

logit P(Δ = 1) ∣ Δ⋆, X⋆, U⋆, Z = η0 + η1Δ⋆ + η2X⋆ + η3U⋆ + η4Z

E W ∣ Δ⋆, X⋆, Z = ω0 + ω1Δ⋆ + ω2X⋆ + ω3Z

E X ∣ Δ⋆, X⋆, U⋆, Z = θ0 + θ1Δ⋆ + θ2X⋆ + θ3U⋆ + θ4Z .

The imputation models containing interaction terms (referred to as generalized raking 

multiple imputation complex (GRMIC) and generalized raking fully conditional 

specification multiple imputation complex (GRFCSMIC) hereafter) include the same 

predictors as above as well as all possible interaction terms. For each error scenario and all 

parameter settings, the number of imputation iterations was set to 50 and the FCSMI 

estimators performed 500 iterative updates to the imputed variables per imputation iteration. 

Appendix C provides further detail on the implementation of the multiple imputation 

procedures. For the IF imputation approach, linear regression models were fit for the 

working models of the true influence function for each covariate. For example, the following 

model was fit for error scenario 1:

E l0 ∣ l0 = γ0 + γ1l0 + γ2Δ + γ3U + γ4X + γ5Z

+γ6 l0 × Δ + γ7 l0 × U + γ8 l0 × X + γ9 l0 × Z .

Oh et al. Page 13

Biom J. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For error scenarios 2 and 3, the same models were fit except U and X were replaced by U
and X.

We considered validation subsets selected via simple random sampling for all three error 

scenarios. For the rare-event setting of 90% censoring in error scenarios 2 and 3, we 

additionally compared the performance of the estimators using validation subsets selected 

via case-control sampling and stratified case-control sampling. For these sampling design 

comparisons, we considered {N, n} = {4000,800} and generated the error-prone event 

indicator according to the model described in Supplementary Materials Table 2. The 

covariate and time-to-event error were generated using the same previous models. To 

perform case-control sampling, all error-prone cases were selected and a simple random 

sample of error-prone controls was selected to yield a nearly one-to-one ratio of error-prone 

cases to controls. To perform stratified case-control sampling, we stratified the continuous 

covariate X (or X* for settings involving covariate error) into four discrete categories by 

setting cutpoints at the 20th, 50th, and 80th percentiles. We then selected an equal number of 

subjects from each of the eight strata defined by the combinations of the error-prone case 

status and the covariate strata (i.e., the balanced sampling design proposed by Breslow & 

Chatterjee, 1999). Note that for CC and SCC sampling, the data imputation models and 

influence function working models for the IF imputation approach were inverse-probability 

weighted to account for the sampling design of the validation subsets. For the proposed 

raking estimators utilizing MI or FCSMI for data imputation only, the imputation models 

were not weighted as we included all stratification variables in the models (Cochran, 2007), 

and we noticed no empirical differences between including weights or not.

5.2 | Simulation results

In the scenarios considered, all of the considered estimators were nearly unbiased for all 

settings, as expected, with the exception of a few specific rare-event settings with {N, n} = 
{2000,400} and simple random sampling, due to relatively few true events (40 on average) 

in the validation subset. Since the proposed estimators construct improved auxiliary 

variables to increase efficiency compared to GRN, we focus on the ESE, RE (with respect to 

the HT estimator), MSE, and CP and how these performance measures differed across 

settings.

Table 1 presents the relative performance under error scenario 1 for estimating 

βX ∈ log(1.5), log(3)  using the data imputation approach for {N, n} = {2000,400}, {50%, 

75%, 90%} censoring, and simple random sampling of the validation subset. GRN had 

increased efficiency compared to HT with the RE ranging from 1.24 for 50% censoring to 

1.06 for 90% censoring. However, GRMIS and GRMIC both had higher RE than GRN for 

nearly all parameter settings, ranging from 1.41 for 50% censoring to 1.16 for 90% 
censoring. GRMIS and GRMIC had comparable REs, lower MSE than HT and GRN, and 

CPs near 95% for all parameter settings.

Supplementary Materials Table 3 presents the relative performance under error scenario 2 

for estimating βX ∈ log(1.5), log(3)  using the data imputation approach for {N, n} = 

{2000,400}, {50%>, 75%>, 90%>} censoring, and simple random sampling of the 
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validation subset. GRN again had increased efficiency compared to HT with the RE ranging 

from 1.21 to 1.07. GRMIS, GRMIC, GRFCSMIS, and GRFCSMIC, however, all had higher 

RE than GRN for all parameter settings, ranging from 1.43 to 1.14 for GRMI and 1.45 to 

1.14 for GRFCSMI. Comparing GRMIS to GRMIC and GRFCSMIS to GRFCSMIC, we 

observed nearly no difference in efficiency. Comparing GRMI to GRFCSMI, GRFCSMI had 

higher or equal RE for nearly all settings, although the difference was sometimes small. In 

addition, GRMI and GRFCSMI had lower MSE than HT and GRN and CPs by 5–6% for all 

settings.

Table 2 presents the relative performance under error scenario 3 for estimating 

βX ∈ log(1.5), log(3)  using the data imputation approach for {N, n} = {2000,400}, {50%, 

75%, 90%>} censoring, and simple random sampling of the validation subset. In this more 

complex error scenario, GRN had a small improvement in efficiency over HT, with its RE 

peaking around 1.05 across all settings. GRMIS and GRMIC similarly showed minor 

efficiency improvements compared to HT with its RE ranging from 1 to 1.06. However, 

GRFCSMIS and GRFCSMIC had appreciable gains in efficiency, with RE ranging from 

1.12 to 1.25 for all settings except for 90% censoring, where the RE was less than 1.1. These 

efficiency gains suggest that, in the presence of covariate measurement error that depends on 

the outcome, multiply imputing all error-prone variables was advantageous over only 

imputing the misclassified event indicator. Overall, GRFCSMI had lower MSE than all other 

estimators (albeit with some bias for 90% censoring) and CPs that ranged from 94 to 95% 
for all settings.

Results for {N, n} = {10000,2000}, keeping all other parameters the same as Table 1, 

Supplementary Materials Table 3, and Table 2, are presented in Supplementary Materials 

Tables 4, 5, and 6, respectively. The conclusions for these large cohort settings were similar 

to those with {N, n} = {2000,400}. For error scenario 1, GRMI provided appreciable 

efficiency gain over GRN. For error scenario 2, both GRMI and GRFCSMI provided 

comparable and significant efficiency gain over GRN. For error scenario 3, only GRFCSMI 

yielded appreciable efficiency gain over GRN and both GRMI and GRFCSMI were nearly 

unbiased even with 90%> censoring.

We present the type 1 error results under error scenario 3 for estimating βX = 0 using the 

data imputation approach for {N, n} = {10000,2000}, {50%, 75%, 90%} censoring, and 

simple random sampling of the validation subset in Supplementary Materials Table 7. For 

the 50% and 75% censoring levels, the type 1 error of the proposed GRMI and GRFCSMI 

estimators ranged from 0.052 to 0.064. For the 90%> censoring setting, the number of cases 

in the phase two data was very small at 40, and the type 1 error ranged from 0.068 to 0.072 

for the proposed methods. However, we note that the type 1 error could likely be improved 

by using the bootstrap to calculate standard errors instead of the sandwich variance 

estimators (see Oh et al., 2019, for more detail).

Results for the IF imputation approach under error scenario 3 for {N, n} = {2000,400}, 

keeping all other parameters the same as Table 2, are presented in Table 3. We note that the 

RE of the proposed estimators cannot be directly compared to those from the data 

imputation tables due to the HT ESE varying slightly. Overall, the conclusions for this 
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approach were very similar to those of the data imputation approach. Comparing the IF 

imputation estimators to the data imputation estimators, the ESE was very similar across all 

settings; this suggests that in the relatively simple error settings considered, the data 

imputation improved most of the auxiliary variable nonlinearity issues. Similar tables for 

error scenarios 1 and 2 are presented in Supplementary Materials Tables 8 and 9, and similar 

conclusions were reached. Results for the IF imputation approach for {N, n} = 
{10000,2000}, keeping all other parameters the same as Supplementary Tables 4, 5, and 6, 

are presented in Supplementary Materials Tables 10,11, and 12, respectively. The efficiency 

conclusions were similar to those observed under {N, n} = {2000,400}, with the larger 

sample sizes again removing any observed bias.

Table 4 presents the relative performance under error scenario 3 for estimating βX using the 

data imputation approach comparing simple random sampling to case-control and stratified 

case-control sampling, where {N, n} = {4000,800} and censoring was 90%. GRFCSMI had 

increased efficiency compared to HT and GRN for nearly all designs, whereas GRMI did 

not; however, the absolute gain in efficiency varied by sampling design. The RE for 

GRFCSMI was higher for SRS than for CC and SCC, ranging from 1.10 to 1.15 for SRS 

compared to 0.99 to 1.11 for CC and SCC. Although the RE for the proposed estimators was 

lower for the CC and SCC designs than for SRS, the actual standard errors (ESE and ASE) 

themselves were lower under these outcome-dependent designs. HT was quite inefficient 

under SRS, leading to a greater gain in efficiency for GRFCSMI; in contrast, HT under SCC 

was often nearly as efficient as GRFCSMI under SRS. For instance, the ESE of HT for βx = 
log(3) and SCC is 0.126, compared to the ESE of 0.128 for GRFCSMIC for SRS. Similar 

conclusions were observed for error scenario 2 in Supplementary Materials Table 13, with 

all other parameters the same as Table 4, except both GRMI and GRFCSMI had slightly 

increased efficiency compared to HT and GRN for all designs. Thus, we observed less 

overall efficiency gain in the outcome-dependent sampling designs for the proposed methods 

but still constructed more efficient estimators generally. Results for the IF imputation 

approach, keeping all other parameters the same as Supplementary Materials Table 13 and 

Table 4, are presented in Supplementary Materials Tables 14 and 15, respectively. The 

conclusions follow very similarly to those of the data imputation approach.

We considered the relative performance of our proposed methods under error scenario 3 

where the misclassification generation process additionally included interaction terms 

(shown in Supplementary Materials Table 16). Results for estimating βX using the data 

imputation and IF imputation approaches are shown in Supplementary Materials Tables 17 

and 18, respectively, with {N, n} = {2000,400} and simple random sampling of the 

validation subset. While the conclusions regarding the comparisons of GRMI and 

GRFCSMI to GRN were very similar to previous tables under error scenario 3, the 

efficiency gains of GRFCSMI were much larger than under the more simple 

misclassification scenarios. Overall, the RE ranged from 1.03 to 1.34 and the reduction in 

MSE compared to that of GRN was appreciable across all settings. These results suggest that 

our methods yield larger efficiency gains with increased nonlinearity. In addition, we 

observed greater efficiency gains for GRFCSMIC compared to GRFCSMIS, especially for 

75%o and 90%> censoring where the positive predictive value (PPV) was very low. This 

high censoring and low PPV setting is common for EHR studies and thus suggests that more 
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complex multiple imputation models to model potential nonlinearity would be helpful. The 

same set of results for error scenarios 1 and 2, namely with added interaction terms into the 

error models, was also generated (not presented), and we observed even greater efficiency 

gains for both GRMI and GRFCSMI with the more complex imputation approaches.

To evaluate the robustness of our estimators, we considered the performance of our proposed 

methods under error scenario 3 where the imputation models for the event indicator and the 

covariate X were badly misspecified as the true error-generating processes involved 

significant nonlinearities. Results for estimating βX using the data imputation approach are 

shown in Supplementary Materials Table 19 with {N, n} = {2000,400} and simple random 

sampling of the validation subset. Overall, there are little to no efficiency gains for any of 

the raking estimators; however, GRFCSMIC has RE at least that of HT in all but one setting, 

demonstrating that even in badly misspecified settings, raking performs no worse than HT.

6 | VCCC DATA EXAMPLE

In this section, we applied the proposed raking methods to EHR data on 4797 patients from 

the Vanderbilt Comprehensive Care Clinic (VCCC), a large HIV clinic. Health care 

providers at the clinic routinely collect and electronically record data on patients, including 

demographics, laboratory measurements, pharmacy dispensations, clinical events, and vital 

status. A recent project at the VCCC performed a full chart review for all records to validate 

important clinical variables, including antiretroviral dispensations and AIDS-defining events 

(ADEs). Due to the comprehensive chart reviews, two full datasets were available; the first, 

which we refer to as the unvalidated data, contains the values for all patients prior to chart 

review, and the second, which we refer to as the validated data, contains the true values after 

chart review. Additional details on the study design and data validation are in Giganti et al. 

(2020).

In this example, we were interested in estimating the association between the covariates 

CD4 cell count and age at the time of ART and the outcome of time from the start of ART to 

the first ADE. As is common for studies based on EHR data, the outcome and covariates 

used in the analysis were derived variables. Specifically, CD4 cell count and age at the time 

of ART were extracted from tables of laboratory measurements and demographics, 

respectively, by matching the test date or visit date to the ART start date. In addition, the 

time from ART start to first ADE is extracted by finding the date of first ADE and the ART 

start date and calculating the time elapsed. A comparison of the unvalidated data to the 

validated data revealed errors in the ART start date in about 41%0 of subjects, which led to 

downstream errors in the covariates and outcome of the statistical analysis. In addition, the 

ADE event was very rare with 93.8%> censoring and was subject to appreciable 

misclassification at 11%, suggesting that raking estimators that ignore the misclassification 

will be inefficient. The misclassification yielded sensitivity, specificity, positive predictive 

value, and negative predictive value of 0.879,0.892, 0.351, and 0.991, respectively. The exact 

eligibility criteria used for the analysis and degree of measurement error in the covariates 

and outcome are given in Appendix K.
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For this analysis, we considered the validated data to be the “truth” and defined the hazard 

ratio (HR) estimates calculated using the entire validated dataset to be the true, gold-

standard estimates. The naive estimator that calculates the HRs using the entire unvalidated 

dataset was also considered, along with the HT estimator, the GRN estimator proposed by 

Oh et al. (2019), and the proposed raking estimators using multiple imputation (GRMI and 

GRFCSMI) for both the data imputation and IF imputation approaches. Although we had a 

fully validated dataset, we retrospectively sampled 100 different validation subsets as if we 

did not have validated data for all records in order to examine the estimators’ performance. 

Due to the rare-event setting, we considered two different validation subset sampling 

designs: CC and SCC. Two variants of SCC were considered: (1) stratified case-control 

balanced (SCCB), which is described in Section 5.1, and (2) stratified case-control Neyman 

allocation (SCCN), where the number of subjects sampled in each strata is proportional to 

the product of the phase one stratum size and the within-stratum (error-prone) influence 

function standard deviation. In addition, we considered two different validation subset sizes, 

340 and 680, representing roughly 21% and 43% of the cohort, respectively. For CC, all 248 

error-prone cases were selected along with a random sample of 92 (or 432) error-prone 

controls. For SCCB and SCCN, CD4 count was stratified at cutpoints of 100, 200, and 400 

to create four discrete covariate groups for sampling. These cutpoints were selected to 

strategically oversample more informative subjects. Specifically, given that CD4 count is an 

important indicator of HIV severity, someone with CD4 count below 200 cells/mm3 is 

considered to be at high risk of getting an ADE. Thus, we selected cutpoints at 100 and 200 

cells/mm3 to oversample subjects clinically defined as high risk for an ADE to try to select 

more true cases and increase efficiency. For each sampling design, the same imputation 

models (both with and without interaction terms) and influence function working models 

were fit as described in the Simulation section for error scenario 3 with CD4 cell count and 

age at ART start corresponding to X* and Z, respectively.

The median of the 100 HRs and the median of their corresponding 95% confidence interval 

(CI) widths for the proposed methods using the data imputation approach are presented in 

Table 5. For each subset size and sampling design, the naive estimator had significant bias 

(calculated with respect to the true estimator) for both covariates (31.3% for CD4 and 31.1% 

for age). In contrast, HT and all of the raking estimators yielded nearly unbiased estimates of 

the true estimates for both covariates. In addition, GRN had narrower 95% CI widths than 

that of HT for all sampling designs. For a subset size of 340, GRMI and GRFCSMI both had 

narrower CI widths than those of GRN for all sampling designs. However, the degree of 

efficiency gain differed by sampling design; namely, we observed a larger increase in 

efficiency (around a 5% decrease in CI width) from GRMI and GRFCSMI under CC 

sampling compared to SCCB or SCCN (at most a 3% decrease in CI width). GRMI and 

GRFCSMI under CC sampling had the narrowest median CI widths among all estimators for 

the 340 subset size. When the validation size was 680, the efficiency gain from GRMI and 

GRFCSMI over GRN was comparable across sampling designs and the median widths of 

the CIs were similar. The more modest efficiency gains from GRMI and GRFCSMI over 

GRN compared to those observed in the simulations can likely be attributed to relatively 

poor imputation models. The small number of cases at phase one and low PPV of the error-

prone event indicator made imputation models difficult to build due to the validation subset 
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containing an extremely small number of true cases. Across the 100 sampled validation 

subsets, the average area under the receiver operating characteristic curve (ROC AUC) for 

the imputed event indicator ranged from 0.652 to 0.670 across all sampling designs, 

suggesting that the imputations of the event indicator were poor. Interestingly, GRMI had 

comparable, if not narrower, CI widths than GRFCSMI across sampling designs and subset 

sizes. This is likely due to the fact that the amount of covariate error present was very small, 

which corresponds to error scenario 2 in the simulations where GRMI and GRFCSMI had 

comparable efficiency. Supplementary Materials Table 20 presents the median HRs and 95% 

CI widths across the 100 validation subsets for the IF imputation approach. The conclusions 

about the comparisons of the naive, HT, and GRN estimators are very similar to those of the 

data imputation approach. For both subset sizes, GRMI and GRFCSMI under CC and SCCB 

were less efficient than GRN, except for GRMIC under SCCB for the 340 subset size. 

GRMI and GRFCSMI under SCCN had slightly better performance, with narrower CI 

widths for the 340 subset size but not the 680 subset size. The lack of efficiency gains 

observed for the IF imputation approach can be attributed to the very poor influence function 

imputation working models. Across the 100 sampled validation subsets, the average R-

squared for the CD4 influence function working models ranged from 0.099 to 0.194, 

indicating a lack of predictive accuracy. In small samples, such low correlation between the 

target and auxiliary variables can limit the improvement over the HT estimator, indicating 

the need to carefully examine the performance of the imputation working models, especially 

under complex error scenarios. In the rare event setting, validation sampling strategies that 

target missed true cases, such as by stratifying on risk factors that may be less prone to error, 

will also help efficiency.

7 | DISCUSSION

The increasing availability of EHR data collected on large patient populations has allowed 

researchers to study possible associations between a wide array of risk factors and health 

outcomes rapidly and cost-effectively. However, estimating such associations without bias 

requires precisely measured data on the variables of interest, an assumption that is often not 

met with EHR data due to errors in derived variables, error-prone record entry, or other error 

mechanisms. To address such bias, Oh et al. (2019) proposed validating a subset of records 

and applying generalized raking estimators, including GRN studied in this article. However, 

we demonstrated in this article that GRN, which builds the raking variables from the error-

prone data, is inefficient in the presence of event indicator misclassification. In addition, we 

proposed two classes of generalized raking estimators utilizing multiple imputation to 

estimate the optimal auxiliary variable, one that yields the optimal efficiency. Both MI 

approaches yield estimates of the expected value of the influence function for the target 

parameter based on the error-free data. The data imputation estimators impute either the 

event-indicator or all error-prone variables (if applicable) to construct auxiliary variables 

with increased degree of linearity with the true population influence functions. The IF 

imputation estimators take the data imputations and then fit a (potentially flexible, 

nonlinear) working model of the true population influence functions to construct auxiliary 

variables. These raking estimators are very appealing for the analysis of EHR data because 

their validity is not sensitive to the true measurement error structure nor do they require 
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correct specification of the imputation or influence function working models, all of which 

are generally unknown for such large observational data. These features do, however, affect 

their efficiency and thus constructing estimators with increased efficiency has been the main 

focus of this article.

Overall, the proposed raking estimators using multiple imputation performed well, yielding 

nearly unbiased estimators, the highest RE, and the lowest MSE across all simulation 

settings. For settings involving misclassification only or misclassification and event-time 

error, both GRMI and GRFCSMI had large efficiency gains compared to GRN for all 

parameter settings. For the most complex error setting involving errors in the covariates, 

event-time, and event indicator, GRFCSMI had appreciable efficiency gains compared to 

GRN and GRMI for all parameter settings, which increased when nonlinear error functions 

were simulated. For all error scenarios, we observed more appreciable efficiency gains under 

50% and 75% censoring compared to 90%> censoring. It is of note that these simulations 

involved error settings with very low sensitivity or PPV to mimic real EHR analysis 

scenarios. In simulations with higher sensitivity or PPV (not presented), larger efficiency 

gains were realized for GRMI and GRFCSMI, with RE greater than 1.5. The data analysis, 

which involved an event with over 90% censoring and very low PPV, resulted in similar 

conclusions. Nevertheless, we observed that GRMI and GRFCSMI yielded around a 5% 

reduction in CI widths for both covariates, an appreciable gain in a data poor setting. In 

addition, we considered outcome-dependent sampling designs to select the validation subset 

to increase efficiency in rare event settings where the number of cases is small. Specifically, 

we evaluated case-control and stratified case-control sampling designs and found that while 

the gain in efficiency for GRMI or GRFCSMI over GRN is smaller compared to the 

efficiency gain under SRS, the overall standard errors are lower, yielding more efficient 

estimates across all designs. While good imputation models are difficult to construct in rare 

events settings, one can still obtain more precise estimates overall by selecting more 

informative subjects to be validated at phase two.

Another possible estimation approach for the considered settings is the direct multiple 

imputation estimator, which uses MI to impute the error-prone variables and plug into the 

Cox model to obtain estimates without the use of raking. Giganti et al. (2020) considered 

this approach using discrete failure time models but noted challenges with correctly 

specifying the imputation model. While the MI estimator will be more efficient than raking 

estimators if the regression and imputation models are correctly specified, Han et al. (2019) 

showed that in the nearly true model framework of Lumley (2017), even slight 

misspecification of the models result in bias and worse MSE than raking. This robustness 

makes raking a very appealing approach in practical settings where the true models are 

generally unknown. An alternative approach to handle the nonlinear influence functions is to 

separate them into parts that may not be so nonlinear and calibrate separately. While this 

approach is appealing, there is an important trade-off to consider. Namely, there could be 

efficiency gained from the improved raking of each part as the linearity assumption is more 

reasonable and no imputation is required; however, there could be efficiency loss from the 

increased number of parameters to estimate with multiple calibration equations. This trade-

off would be of particular importance when the validation subset is relatively small, where it 

is more plausible that the efficiency loss from the increased number of parameters outweighs 

Oh et al. Page 20

Biom J. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



any gain from improved raking. It is likely that in the small validation subset setting, there 

would need to be a careful evaluation of the trade-off between the number of separate parts 

to calibrate and the number of parameters to estimate, which would be very problem 

dependent. Moreover, this trade-off would be very difficult to evaluate in practice as the 

increase in standard errors from estimating more parameters is a second-order property. We 

believe more research is needed to properly understand how to evaluate this trade-off.

The two-phase design framework considered in this article is a specific missing data setting 

where the data are missing by design. This missing data lens allows us to consider the 

augmented inverse probability weighted (AIPW) estimators proposed by Robins et al. 

(1994), who showed that the class of AIPW estimators contains all regular asymptotically 

linear estimators consistent for the design-based parameter of interest. There is a close 

relationship between AIPW and raking estimators, in that the class of AIPW estimators 

contains the raking estimators, but the raking estimators include all of the best AIPW 

estimators (Lumley et al., 2011). Thus, raking estimators are asymptotically efficient among 

design-based estimators and provide simple, easy to compute AIPW estimators. In 

particular, the raking estimators utilizing multiple imputation proposed in this article yield 

practical methods to approximate the optimal AIPW estimator in settings involving complex 

measurement error that is often seen in EHR data. In addition, these estimators are 

consistent without requiring correct specification of the imputation or working models; 

however, they yield the most efficient design-based estimator if the models are correctly 

specified. The proposed raking estimators, however, do not improve efficiency if the 

auxiliary variables have no correlation with the variables of interest. We believe that this will 

generally not be an issue for settings similar to those considered in our paper, namely 

settings where the phase one data are error-prone versions of the phase two data. That is, in 

practice, useless error-prone variables would not be considered for use in analysis.

In this work we proposed a novel estimation method to improve raking estimators and 

showed additional efficiency could be gained by pairing these estimators with a more 

efficient two-phase sampling design. While this article considered outcome-dependent 

sampling designs to improve efficiency in rare-event settings, we believe that more 

theoretical and empirical work studying sampling designs and their effects on efficiency for 

failure time outcomes is needed. In particular, constructing multiphase sampling designs 

would be a fruitful avenue for future work. (See McIsaac & Cook, 2015, Chen & Lumley, 

2020, and Han et al., 2020, for some initial work.) These authors considered designs where a 

pilot sample could initially be selected from the cohort to obtain information on the 

validated data that can be used to guide follow-up sampling waves. We believe more work is 

needed to understand how best to take advantage of such strategies for the continuous failure 

time setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 

Plots of the true influence function l0 Xi, Zi, Ui, Δi  against the error-prone version l0
⋆ with 

the variables subject to measurement error noted in the graph subtitle. For example, (A) 

displays l0 Xi, Zi, Ui, Δi  against l0 Xi
⋆, Zi, Ui, Δi . Univariate and normally distributed X 

and Z were generated. Survival times were generated from an exponential distribution with 

rate λ0exp βXX + βZZ , where λ0 = 0.1, βX = log(1.5), and βZ = log(0.5), with 90% 

independent censoring. The error was generated as 
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X⋆ = 0.2 + X − 0.1Z − 0.4Δ + 0.25U + ϵ, U⋆ = U + σv ⋅ 3 − 0.2X − 1.05Z + v, and 

Δ⋆ = Bernoulli(expit( − 1.1 + 3Δ − 0.3X − 0.2U + 0.1Z)), where (ϵ, v) were normally distributed 

with μϵ, μv = (0, 0), variances σϵ2, σν2 = (0.5, 0.5), and ρϵ, v = 0.5
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TABLE 1

Simulation results for estimating βx using the data imputation approach for error scenario 1 (error only in 

event indicator) with N = 2000, n = 400, and simple random sampling. The % bias, empirical standard error 

(ESE), relative efficiency (RE), average standard error (ASE), mean squared error, and coverage probabilities 

(CP) are presented for 2000 simulated datasets

βz % Cens βx Method % Bias ESE RE ASE MSE CP

log(0.5) 50 log(1.5) True −0.03595 0.039644 2.289193 0.039422 0.001572 0.956

HT 1.228958 0.090753 1 0.087874 0.008261 0.949

GRN 1.40684 0.07401 1.226214 0.072528 0.00551 0.95

GRMIS −0.08937 0.065693 1.381469 0.06386 0.004316 0.948

GRMIC −0.42527 0.064598 1.404892 0.063389 0.004176 0.946

log(3) True 0.041168 0.041582 2.453957 0.04415 0.001729 0.948

HT 0.631089 0.10204 1 0.097775 0.01046 0.939

GRN 0.282312 0.082568 1.235824 0.080447 0.006827 0.942

GRMIS 0.108883 0.072166 1.413959 0.069818 0.005209 0.948

GRMIC 0.007399 0.072275 1.411835 0.069152 0.005224 0.948

75 log(1.5) True 0.119394 0.051672 2.266392 0.053276 0.00267 0.954

HT 0.781363 0.117109 1 0.118644 0.013725 0.952

GRN 0.916624 0.097339 1.203106 0.096548 0.009489 0.945

GRMIS 0.188371 0.093537 1.252017 0.091773 0.00875 0.944

GRMIC 0.096736 0.096302 1.216058 0.090939 0.009274 0.94

log(3) True −0.01311 0.06088 2.241353 0.059211 0.003706 0.949

HT 1.034735 0.136454 1 0.131041 0.018749 0.938

GRN 0.386125 0.119288 1.143905 0.113786 0.014248 0.934

GRMIS 0.197862 0.102954 1.325384 0.102518 0.010604 0.943

GRMIC 0.040924 0.101157 1.348933 0.101394 0.010233 0.944

90 log(1.5) True 0.0138 0.084364 2.222885 0.083155 0.007117 0.947

HT 1.805251 0.187531 1 0.184444 0.035222 0.943

GRN 0.30929 0.167181 1.121725 0.165789 0.027951 0.94

GRMIS 0.192308 0.161702 1.159732 0.160033 0.026148 0.944

GRMIC −0.55691 0.159657 1.174587 0.158312 0.025495 0.936

log(3) True −0.04654 0.088525 2.315872 0.089229 0.007837 0.95

HT 1.160558 0.205013 1 0.197598 0.042193 0.938

GRN 0.945284 0.194363 1.054793 0.187058 0.037885 0.941

GRMIS 0.26163 0.175215 1.17007 0.16969 0.030708 0.94

GRMIC −0.31527 0.17402 1.178102 0.169034 0.030295 0.939
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TABLE 2

Simulation results for estimating βx using the data imputation approach for error scenario 3 (errors in event 

indicator, failure time, and X) with N = 2000, n = 400, and simple random sampling. The % bias, empirical 

standard error (ESE), relative efficiency (RE), average standard error (ASE), mean squared error, and coverage 

probabilities (CP) are presented for 2000 simulated datasets

βz % Cens βx Method % Bias ESE RE ASE MSE CP

log(0.5) 50 log(1.5) True 0.07661 0.039569 2.328964 0.039418 0.001566 0.95

HT 1.342474 0.092155 1 0.088213 0.008522 0.937

GRN 2.100967 0.093898 0.98143 0.087678 0.008889 0.928

GRMIS 1.308134 0.092762 0.993454 0.088003 0.008633 0.935

GRMIC 1.276032 0.092487 0.996408 0.088048 0.008581 0.935

GRFCSMIS 0.798683 0.075276 1.224217 0.074605 0.005677 0.948

GRFCSMIC 0.407051 0.073879 1.247364 0.074138 0.005461 0.942

log(3) True −0.00837 0.041674 2.491381 0.04412 0.001737 0.951

HT 0.777852 0.103825 1 0.097835 0.010853 0.944

GRN 1.177403 0.101197 1.02597 0.097568 0.010408 0.943

GRMIS 0.846726 0.103247 1.005597 0.097632 0.010747 0.944

GRMIC 0.816276 0.103057 1.007453 0.097623 0.010701 0.945

GRFCSMIS 0.60425 0.088082 1.178736 0.087678 0.007802 0.939

GRFCSMIC 0.333361 0.088859 1.168426 0.087836 0.007909 0.938

75 log(1.5) True −0.11172 0.050646 2.445003 0.053272 0.002565 0.946

HT 2.494616 0.12383 1 0.119095 0.015436 0.945

GRN 3.469044 0.121951 1.015403 0.116576 0.01507 0.944

GRMIS 3.493033 0.123515 1.002552 0.117963 0.015456 0.94

GRMIC 3.755253 0.123088 1.006027 0.117855 0.015383 0.938

GRFCSMIS 1.830123 0.107038 1.156879 0.103193 0.011512 0.946

GRFCSMIC 1.848374 0.106441 1.163367 0.102455 0.011386 0.947

log(3) True −0.01819 0.05804 2.37266 0.05929 0.003369 0.948

HT 0.939605 0.13771 1 0.13192 0.019071 0.95

GRN 1.291495 0.133879 1.028617 0.129447 0.018125 0.947

GRMIS 1.13204 0.134928 1.020621 0.130678 0.01836 0.948

GRMIC 1.21211 0.137343 1.002675 0.130285 0.01904 0.947

GRFCSMIS 0.749482 0.123367 1.116261 0.119853 0.015287 0.946

GRFCSMIC 0.725826 0.120588 1.14199 0.119671 0.014605 0.944

90 log(1.5) True 0.0138 0.084364 2.227607 0.083155 0.007117 0.947

HT 2.839981 0.18793 1 0.184457 0.03545 0.944

GRN 4.005694 0.180168 1.043079 0.178185 0.032724 0.94

GRMIS 4.361114 0.177508 1.05871 0.17808 0.031822 0.937

GRMIC 4.460343 0.178246 1.054326 0.176558 0.032099 0.936

GRFCSMIS 1.373064 0.176884 1.062444 0.170686 0.031319 0.943

GRFCSMIC 2.936905 0.173456 1.08344 0.169147 0.030229 0.938

log(3) True −0.04654 0.088525 2.300257 0.089229 0.007837 0.95
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βz % Cens βx Method % Bias ESE RE ASE MSE CP

HT 0.99248 0.203631 1 0.198896 0.041584 0.945

GRN 1.644558 0.192597 1.05729 0.193718 0.03742 0.942

GRMIS 1.503862 0.196311 1.037287 0.192159 0.038811 0.945

GRMIC 1.581827 0.19941 1.021165 0.19132 0.040067 0.943

GRFCSMIS 1.162629 0.195142 1.043502 0.189566 0.038243 0.947

GRFCSMIC 1.150689 0.196691 1.035282 0.188478 0.038847 0.946
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TABLE 3

Simulation results for estimating βx using the IF imputation approach for error scenario 3 (errors in event 

indicator, failure time, and X) with N = 2000, n = 400, and simple random sampling. The % bias, empirical 

standard error (ESE), relative efficiency (RE), average standard error (ASE), mean squared error, and coverage 

probabilities (CP) are presented for 2000 simulated datasets

βz % Cens βx Method % Bias ESE RE ASE MSE CP

log(0.5) 50 log(1.5) True −0.03595 0.039644 2.357942 0.039422 0.001572 0.956

HT 0.968647 0.093478 1 0.087968 0.008754 0.944

GRN 2.48905 0.092254 1.013273 0.087589 0.008613 0.942

GRMIS 1.27812 0.095618 0.977622 0.082415 0.00917 0.904

GRMIC 0.702605 0.094581 0.988339 0.082057 0.008954 0.912

GRFCSMIS 1.176668 0.076746 1.218027 0.072894 0.005913 0.932

GRFCSMIC 0.766525 0.076361 1.224153 0.072638 0.005841 0.938

log(3) True 0.041168 0.041582 2.490834 0.04415 0.001729 0.948

HT 0.313211 0.103573 1 0.097851 0.010739 0.942

GRN 0.725322 0.104082 0.995114 0.097532 0.010897 0.945

GRMIS 1.421894 0.102001 1.015417 0.091883 0.010648 0.924

GRMIC 1.487215 0.102937 1.006184 0.091601 0.010863 0.926

GRFCSMIS 0.262352 0.096256 1.076016 0.08654 0.009274 0.934

GRFCSMIC 0.102202 0.095132 1.088739 0.08656 0.009051 0.934

75 log(1.5) True 0.119394 0.051672 2.316876 0.053276 0.00267 0.954

HT 1.004049 0.119718 1 0.118566 0.014349 0.948

GRN 1.661829 0.119968 0.997919 0.116507 0.014438 0.945

GRMIS 4.68564 0.122646 0.976125 0.107653 0.015403 0.92

GRMIC 5.039218 0.121839 0.98259 0.107163 0.015262 0.916

GRFCSMIS 1.012435 0.104425 1.146449 0.100447 0.010921 0.948

GRFCSMIC 1.16514 0.108355 1.104869 0.099865 0.011763 0.946

log(3) True −0.01311 0.06088 2.250031 0.059211 0.003706 0.949

HT 0.836351 0.136982 1 0.131293 0.018849 0.952

GRN 1.114833 0.133936 1.022745 0.12923 0.018089 0.952

GRMIS 1.098573 0.134396 1.019243 0.119741 0.018208 0.931

GRMIC 1.354594 0.135155 1.013522 0.119708 0.018488 0.93

GRFCSMIS −0.52327 0.128106 1.069285 0.115569 0.016444 0.928

GRFCSMIC −0.46431 0.127535 1.074077 0.115312 0.016291 0.934

90 log(1.5) True 0.0138 0.084364 2.251745 0.083155 0.007117 0.947

HT 1.897751 0.189966 1 0.183082 0.036146 0.94

GRN 1.897914 0.183304 1.036344 0.176042 0.03366 0.942

GRMIS 8.193088 0.198884 0.955159 0.163381 0.040658 0.902

GRMIC 8.29543 0.195141 0.97348 0.162322 0.039211 0.894

GRFCSMIS 4.745953 0.177903 1.067808 0.159259 0.03202 0.918

GRFCSMIC 3.798847 0.181029 1.049366 0.157469 0.033009 0.908

log(3) True −0.04654 0.088525 2.348938 0.089229 0.007837 0.95
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βz % Cens βx Method % Bias ESE RE ASE MSE CP

HT 0.928622 0.207941 1 0.196985 0.043343 0.939

GRN 1.061707 0.203441 1.022115 0.192655 0.041524 0.943

GRMIS 4.095097 0.206598 1.006498 0.181218 0.044707 0.913

GRMIC 3.94024 0.205562 1.011573 0.180065 0.044129 0.91

GRFCSMIS 1.614577 0.194645 1.068304 0.175683 0.038201 0.906

GRFCSMIC 1.290465 0.198216 1.049058 0.174164 0.039491 0.904
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TABLE 4

Simulation results for estimating βx using the data imputation approach for error scenario 3 (errors in event 

indicator, failure time, and X) with N = 4000, n = 800 comparing simple random sampling (SRS), case-control 

sampling (CC), and stratified case-control sampling (SCC). The % bias, empirical standard error (ESE), 

relative efficiency (RE), average standard error (ASE), mean squared error, and coverage probabilities (CP) are 

presented for 2000 simulated datasets

βz % Cens βx Design Method % Bias ESE RE ASE MSE CP

log(0.5) 90 log(1.5) SRS True −0.19575 0.056825 2.306052 0.058701 0.00323 0.953

HT 1.348122 0.131041 1 0.130666 0.017202 0.943

GRN 0.599619 0.123075 1.064728 0.120298 0.015153 0.942

GRMIS 1.352229 0.120274 1.089521 0.121238 0.014496 0.942

GRMIC 1.064436 0.12481 1.049923 0.120657 0.015596 0.938

GRFCSMIS 0.372602 0.116359 1.126176 0.115015 0.013542 0.938

GRFCSMIC 0.262224 0.118828 1.102777 0.114345 0.014121 0.936

CC True −0.19575 0.056825 2.307166 0.058701 0.00323 0.953

HT 1.278795 0.131104 1 0.121309 0.017215 0.938

GRN 1.295066 0.128054 1.023824 0.120734 0.016425 0.943

GRMIS 1.925384 0.129153 1.015113 0.122768 0.016741 0.942

GRMIC 1.665403 0.12981 1.009974 0.123029 0.016896 0.94

GRFCSMIS 1.221831 0.119855 1.093861 0.11281 0.01439 0.938

GRFCSMIC 0.804186 0.117846 1.112503 0.112475 0.013898 0.938

SCC True −0.19575 0.056825 1.941845 0.058701 0.00323 0.953

HT −0.6459 0.110345 1 0.110845 0.012183 0.957

GRN −0.09306 0.109473 1.00797 0.110642 0.011984 0.952

GRMIS 0.081196 0.110714 0.996668 0.111346 0.012258 0.954

GRMIC −0.02695 0.108453 1.017446 0.111431 0.011762 0.954

GRFCSMIS −0.16322 0.101909 1.082777 0.105767 0.010386 0.954

GRFCSMIC −0.10748 0.100555 1.097364 0.105699 0.010111 0.952

log(3) SRS True 0.1293 0.064842 2.25486 0.06303 0.004206 0.954

HT 0.974558 0.146209 1 0.140603 0.021492 0.948

GRN 0.744679 0.129418 1.129747 0.130516 0.016816 0.94

GRMIS 0.713557 0.131614 1.110893 0.131276 0.017384 0.942

GRMIC 0.650456 0.131029 1.115852 0.131065 0.01722 0.94

GRFCSMIS 0.627308 0.127227 1.149195 0.127457 0.016234 0.942

GRFCSMIC 0.60765 0.128461 1.138158 0.126735 0.016547 0.944

CC True 0.1293 0.064842 2.208732 0.06303 0.004206 0.954

HT 1.422661 0.143218 1 0.130477 0.020756 0.928

GRN 1.646294 0.141186 1.014393 0.129232 0.020261 0.927

GRMIS 1.614425 0.1409 1.016452 0.130462 0.020167 0.931

GRMIC 1.506875 0.139858 1.024024 0.130487 0.019834 0.926

GRFCSMIS 1.395031 0.13998 1.023132 0.124715 0.019829 0.925

GRFCSMIC 1.32011 0.137537 1.041307 0.124594 0.019127 0.922
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βz % Cens βx Design Method % Bias ESE RE ASE MSE CP

SCC True 0.1293 0.064842 1.938671 0.06303 0.004206 0.954

HT 0.82001 0.125707 1 0.123465 0.015883 0.938

GRN 0.693561 0.126412 0.99442 0.122793 0.016038 0.94

GRMIS 0.733702 0.126538 0.99343 0.123577 0.016077 0.94

GRMIC 0.70857 0.127711 0.984303 0.123601 0.016371 0.936

GRFCSMIS 0.771774 0.127503 0.985911 0.119766 0.016329 0.944

GRFCSMIC 0.614896 0.124678 1.008254 0.119554 0.01559 0.946
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TABLE 5

The median hazard ratios (HR) and their corresponding 95% confidence interval (CI) widths calculated using 

the data imputation method from 100 different sampled validation subsets for a 100 cell/mm3 increase in CD4 

count at ART initiation and 10-year increase in age at CD4 count measurement

Subset size Sampling Method CD4 HR CD4 CI width Age HR Age CI width

340 CC True 0.693 0.19 0.829 0.361

Naive 0.91 0.125 1.087 0.275

HT 0.669 0.313 0.829 0.579

GRN 0.674 0.274 0.819 0.465

GRMIS 0.679 0.26 0.824 0.44

GRMIC 0.678 0.264 0.83 0.438

GRFCSMIS 0.675 0.265 0.824 0.444

GRFCSMIC 0.677 0.261 0.824 0.44

SCCB True 0.693 0.19 0.829 0.361

Naive 0.91 0.125 1.087 0.275

HT 0.686 0.283 0.823 0.573

GRN 0.687 0.28 0.82 0.494

GRMIS 0.689 0.272 0.835 0.496

GRMIC 0.689 0.278 0.826 0.491

GRFCSMIS 0.687 0.275 0.839 0.498

GRFCSMIC 0.689 0.276 0.814 0.495

SCCN True 0.693 0.19 0.829 0.361

Naive 0.91 0.125 1.087 0.275

HT 0.69 0.308 0.779 0.665

GRN 0.688 0.308 0.807 0.599

GRMIS 0.684 0.303 0.813 0.608

GRMIC 0.684 0.299 0.807 0.596

GRFCSMIS 0.687 0.302 0.818 0.614

GRFCSMIC 0.69 0.297 0.803 0.598

680 CC True 0.693 0.19 0.829 0.361

Naive 0.91 0.125 1.087 0.275

HT 0.692 0.237 0.826 0.412

GRN 0.693 0.23 0.825 0.385

GRMIS 0.693 0.228 0.826 0.38

GRMIC 0.697 0.228 0.826 0.382

GRFCSMIS 0.693 0.228 0.826 0.383

GRFCSMIC 0.696 0.229 0.821 0.382

SCCB True 0.693 0.190 0.829 0.361

Naive 0.910 0.125 1.087 0.275

HT 0.695 0.234 0.837 0.416

GRN 0.695 0.233 0.830 0.395

GRMIS 0.693 0.232 0.829 0.393
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Subset size Sampling Method CD4 HR CD4 CI width Age HR Age CI width

GRMIC 0.697 0.233 0.831 0.393

GRFCSMIS 0.693 0.231 0.826 0.393

GRFCSMIC 0.694 0.232 0.832 0.394

SCCN True 0.693 0.19 0.829 0.361

Naive 0.91 0.125 1.087 0.275

HT 0.69 0.229 0.826 0.43

GRN 0.689 0.228 0.821 0.406

GRMIS 0.689 0.226 0.823 0.404

GRMIC 0.689 0.228 0.825 0.401

GRFCSMIS 0.689 0.226 0.822 0.403

GRFCSMIC 0.689 0.228 0.821 0.406
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