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Abstract

[FeFe] hydrogenases are highly active catalysts for the interconversion of molecular hydrogen 

with protons and electrons. Here, we use a combination of isotopic labeling, 57Fe nuclear 

resonance vibrational spectroscopy (NRVS), and density functional theory (DFT) calculations to 

observe and characterize the vibrational modes involving motion of the 2-azapropane-1,3-

dithiolate (ADT) ligand bridging the two iron sites in the [2Fe]H subcluster. A –13C2H2– ADT 

labeling in the synthetic diiron precursor of [2Fe]H produced isotope effects observed throughout 

the NRVS spectrum. The two precursor isotopologues were then used to reconstitute the H-cluster 

of [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1), and NRVS was measured on 

samples poised in the catalytically crucial Hhyd state containing a terminal hydride at the distal Fe 

site. The 13C2H isotope effects were observed also in the Hhyd spectrum. DFT simulations of the 

spectra allowed identification of the 57Fe normal modes coupled to the ADT ligand motions. 

Particularly, a variety of normal modes involve shortening of the distance between the distal Fe–H 

hydride and ADT N–H bridgehead hydrogen, which may be relevant to the formation of a 

transition state on the way to H2 formation.

Molecular hydrogen is viewed as an ideal carbon-free energy carrier that could be part of a 

transition to a sustainable economy without CO2 emissions.1,2 At the moment, the majority 

of industrial hydrogen is produced by high-temperature steam reforming of natural gas 

which leads to the release of at least one molecule of CO2 for every 4 H2 produced.3 Ideally, 

electrochemical energy from solar, wind, or other carbon-free sources could be used to drive 

the water-splitting or “hydrogen evolution reaction” (HER) without CO2 release.1,4 Highly 

efficient catalysts with low overpotentials are essential for electrochemical conversions of 

hydrogen, and the high prices and scarcity of the current Pt or other noble metal HER 

catalysts have led to the search for systems that use earth-abundant materials.5–7 One source 

of inspiration driving this search is Nature, which uses plentiful transition metals Fe or Fe 

with Ni in the active sites of hydrogenases.8,9

Hydrogenases are enzymes that catalyze the reversible interconversion of molecular 

hydrogen with protons and electrons: H2 ⇌ 2H+ + 2e−. [FeFe] hydrogenases contain an 

active site “H-cluster” consisting of a [4Fe–4S]H cluster linked via a cysteine residue to a 

unique [2Fe]H subcluster (Figure 1a).11 This subcluster carries a 2-azapropane-1,3-dithiolate 

Pelmenschikov et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2022 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(ADT) ligand bridging a pair of CO and CN− ligated Fe ions. The ADT bridgehead nitrogen 

has been implicated as part of a proton transfer relay extending through a neighboring 

cysteine.12–16 In the Chlamydomonas reinhardtii [FeFe] hydrogenase (CrHydA1), the 

conserved relay consists of C169, a water molecule, and oxygens from E141, S189, and 

E144 residues.

An iron hydride form of [FeFe] hydrogenase, Hhyd, is a key intermediate of the catalytic 

cycle, and it has been studied by multiple spectroscopic and molecular modeling techniques.
17–24 The Hhyd species contains a terminal Fed–Hh (hydride) at the [2Fe]H iron site distal to 

[4Fe–4S]H (Figure 1b), with a [4Fe–4S]H
+ –Fep(II)Fed(II) redox state for the H-cluster, 

along with the –NHADT– amine form of the ADT bridgehead.18–21

Nuclear resonance vibrational spectroscopy (NRVS) has become a popular technique for 

elucidating the element-selective normal modes of appropriate Mössbauer isotopes.25–31 In 

previous work on the CrHydA1 and DdHydAB (from Desulfovibrio desulfuricans) enzymes,
20–22 we have shown that 57Fed–Hh bending modes can be observed using 57Fe-NRVS for 

the Hhyd species and that these modes exhibit peak positions that are characteristic of the 

local environment. To better identify additional normal modes of Hhyd, we proceeded to 

label the [2Fe]H subcluster not only with 57Fe but also with 13C and D in the methylene 

groups of the ADT ligand. We accomplished this by preparing a [2Fe]H precursor, the 57Fe-

labeled salt (Et4N)2 [57Fe2[(SCH2)2NH]-(CN)2(CO)4] (1) as well as its variant also labeled 

with 13C and D on the two methylene groups of the ADT ligand (13CD-1).32 We then used 

these samples to reconstitute an apo form of CrHydA1 containing the [4Fe–4S]H cluster but 

lacking the [2Fe]H subsite.33

We first examine NRVS spectra for the precursor isotopologues 1 vs 13CD-1 in Figure 2a. 

Close inspection reveals a number of subtle changes to band positions and intensities in the 

broad ~100–700 cm−1 range, most of them well reproduced by the DFT simulation shown in 

Figure 2b. We note that this is the first demonstration of NRVS isotope shifts from labeling 

in the second and third coordination spheres of 57Fe, although such shifts have been seen 

before in resonance Raman spectra.34,35 In the following, when referring to the bands 

observed (or vibrational frequencies calculated) for the two isotopologues, we use a 

nomenclature x → y (cm−1) where x and y represent 1 and 13CD-1, respectively.

Since the bands from 400 to 660 cm−1 are dominated by Fe–CN and Fe–CO motions, we 

focus instead on differences in the region from 100 to 350 cm−1, which contains delocalized 

bending and torsional modes as well as Fe–S stretching. In the 13CD-1 spectra, several 

bands exhibit clear downshifts from the (12CH–)1 data, for example, at 150 → 139, 168 → 
164, and 260 → 256 cm−1 (Figure 2a). This pattern is echoed in the 13CD-1 DFT 

simulations, with downshifted bands at 161 → 143, 173 → 168, and 273 → 265 cm−1 

(Figure 2b). The normal-mode analysis also reveals an isotope-dependent redistribution of 

the intensities underlying the DFT bands at 326 → 329/314 cm−1, mapping onto the NRVS 

features at 322 → 326/302 cm−1.

Having identified the most significant isotope shifts in the precursor spectra, we now 

illustrate the atomic motions deduced from the DFT calculations. As displayed in Figure 2 
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for 13CD-1, the normal mode calculated at 143 cm−1 is mostly out-of-phase rotation of the 

two ADT –μS13CD2– groups around their S–C axes, combined with some motion of the μS 

pivot points due to Fe–S–Fe bending (see animated representations of the calculated 

vibrational modes as part of the Supporting Information and their characterization in Table 

S2). The large amount of methylene motion explains the significant isotope shift. In contrast, 

the 168 cm−1 mode involves rocking of the entire –D2
13C–NH–13 CD2– assembly in one 

direction while the underlying Fe2S2 cluster (and associated ligands) rotates in the opposite 

direction. At higher frequencies, the 264 cm−1 mode involves out-of-phase displacements of 

the –μS13CD2– fragments with substantial Fe–S stretching character, while the 314 cm−1 

mode is an in-phase –13CD2– methylene group motion, accompanied by wagging of the –

NH– bridgehead in the opposite direction.

Our key observations from these precursor studies are (i) that the 13CD substitution in the 

Fe-bridging ADT ligand induces measurable isotope shifts in the 57Fe NRVS spectra, on the 

order of the 8 cm−1 instrumental resolution; (ii) that the DFT calculations are sufficiently 

accurate to reproduce these shifts, allowing confidence in the motions assigned to these 

modes; and (iii) that the calculations predict a variety of ADT flexing modes with significant 

motion of the –NH– bridgehead.

Precursors 1 and 13CD-1 were used for maturation of the apo CrHydA1 containing natural-

abundance Fe in the [4Fe–4S]H cluster. This yielded holo CrHydA1 labeled with 57Fe in the 

[2Fe]H subcluster, and with either a natural-abundance ADT ligand (1-CrHydA1) or –
13CD2– in the methylene portions of ADT (13CD-1-CrHydA1). These samples were poised 

in the Hhyd state by reduction with 100 mM sodium dithionite at pH 6. As shown by infrared 

(IR) spectra in Figure S1, both samples exhibited the standard Hhyd IR signature, with 

minimal contributions from other redox states.

NRVS data for 1-CrHydA1 and 13CD-1-CrHydA1 are shown in Figure 3a, with the 

corresponding DFT simulations in Figure 3b. The calculated spectra were generated using a 

DFT model of Hhyd including the entire H-cluster and its immediate protein environment;
21,22,36 see DFT methods and model coordinates in the Supporting Information for further 

details. Again, we focus first on differences in the low-energy region, where we see the most 

obvious isotope effects. These include NRVS downshifts at 281 → 274 and 313 → 305 cm
−1, with the DFT simulations yielding corresponding modifications at 296 → 290 and 314 

→ 308 cm−1. The 150–200 cm−1 isotope-dependent NRVS region (~174 → 166 cm−1) of 

Hhyd essentially repeats in the DFT spectra (~171 → 163 cm−1), indicating overlapping 

contributions from different modes. A complementary DFT simulation for the [4Fe–4S]H
2+ 

–Fep(II)Fed(I) redox state of the H-cluster, Hox, reveals comparable 12CH → 13CD spectral 

shifts in the broader ~150–330 cm−1 region (Figure S2); this indicates that the ADT labeling 

effects observed in NRVS are stable against potential impurities from additional redox states 

of the H-cluster.

The atomic motions deduced from the DFT calculations on Hhyd are displayed in Figure 3 

and animated as part of the Supporting Information. The 162 cm−1 band of 13CD-1-

CrHydA1 contains [2Fe]H modes heavily mixed with the protein environment, but an 

important feature here is rocking of the –NHADT– bridgehead toward the distal iron hydride 
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Fed–Hh, along with out-of-phase rotation of the ADT –13CD2– groups; this character 

matches the 13CD-1 precursor mode at 143 cm−1. At higher energies, the 291 cm−1 mode 

exhibits a breathing motion of the Fe2S2 moiety, which leads to changing the distance 

between Fep and the [4Fe–4S]H cluster; in this case, there is an in-phase motion of the ADT 

methylene groups in the opposite direction of the amine bridgehead, similar to the 13CD-1 
mode at 314 cm−1 described above. The 308 cm−1 mode exhibits an entire ADT fragment 

wagging/rotation relative to Fep and Fed, equivalent to the 13CD-1 mode at 287 cm−1. We 

also illustrate the 73 cm−1 mode, which is highly delocalized with torsional motions of the 

entire H-cluster.

We now turn to the higher-energy side of the Hhyd spectra, which contains two distinct Fed–

Hh bending mode peaks observed at 679/676 and 748/746 cm−1, and calculated at 670/670 
and 753/750 cm−1 (Figure 3). These were the focus of previous studies because they 

characterize the terminal iron hydride bonding and its interactions with the surroundings.
20–22 The two main features arise from the relatively pure Hh hydride bending motion 

perpendicular to and parallel to the plane defined by the Fep–Fed axis and the Fed–Hh bond, 

respectively. Although the isotope-dependent shifts in these bands are small and nearly 

unmeasurable, the fine structure of the underlying normal modes displays a difference. In the 

current DFT analysis there are 1-/13CD-1-CrHydA1 “perpendicular” modes at 670/665,671 
cm−1, and “parallel” modes at 752,754/749,758 cm−1 respectively. The 13CD-labeling 

introduces NADT–HADT bending admixtures to the Fed–Hh modes, where the HADT and Hh 

nuclei displace either in- or out-of-phase; e.g., the 758 cm−1 “parallel” mode (Figure 3) 

brings Hh and HADT closer during half of each excursion cycle. The calculations suggest an 

increased involvement of the heavier 13CD-ADT fragment in the Fed–Hh bends, with 

rotations of the two –13CD2– methylene groups contributing at least 16% to the vibrational 

kinetic energy. Similar modes are calculated in the ADT-labeled 13CD-1 precursor in the 

~670–770 cm−1 region, while the unlabeled (12CH–)1 variant produces their counterparts at 

frequencies only above 800 cm−1 (Table S2).

The DFT analysis therefore indicates that some modes in the Fed–Hh bending region involve 

mixing with motions inherent to the 13CD-labeled ADT ligand. A search for such “satellite” 

modes is what initially prompted our isotopic labeling investigation. The experimental data 

might show weak “satellite” features on either side of the main Fed–Hh bending peaks 

(Figure 3). However, despite prolonged data collection in this region to improve the signal-

to-noise (S/N) ratio, firm assignment of the small differences to “satellites” is not yet 

possible. The exact calculated energies of the “satellites” should also be taken with caution, 

because they are governed by motion of a very light Hh nucleus that mediates interaction 

between 57Fed and the ADT bridgehead. Further experimental insight into these modes will 

require a significantly higher NRVS photon flux, which may be available in the next 

generation of synchrotron sources, e.g., PETRA-IV.37

The accuracy of the DFT calculations at reproducing the experimental NRVS spectra of the 

unlabeled and isotopically labeled precursor and [2Fe]H, here and in our previous work,
20–22,36 gives us confidence that it is valuable to consider the predicted “satellite” modes in 

Hhyd, whether or not they can be conclusively detected by NRVS. Illustrations of these 

“satellite” modes at 720 and 765 cm−1 are included in Figure 3. The latter two modes 
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involve “parallel” Fed–Hh bending, similar to the 749 and 758 cm−1 modes. Interestingly, 

some of these modes involve motion of the nearby cysteine at the end of the proton transfer 

channel leading to the ADT ligand. These vibrational modes appear to represent a pathway 

for coupled proton transfer from (C169)SC–HC to NADT and from NADT–HADT to Fed–Hh.

Are any other modes relevant to H2 production catalysis? We inspected the DFT calculations 

for changes in HADT···Hh and NADT···HC distances that occur during normal mode 

displacements (see Figure S3). The results for the modes with the greatest distance changes 

are summarized in Table S1. The equilibrium 2.06 Å HADT···Hh distance is already firmly in 

the 1.7–2.2 Å range for a “dihydrogen bond”,38 and it is similar to the 2.02 Å value seen as 

the shortest H···H distance in solid BH3NH3.39 We found that a few modes contribute a 

disproportionate amount of motion involving the HADT···Hh distance as well as the 

NADT···HC distance. In particular, the “parallel” Fed–Hh bending modes at 752/758 cm−1 

yield the record ~0.14/0.15 Å contractions in the HADT···Hh distance across the entire 

vibrational spectra. For the NADT···HC distance, the largest vibrational contraction of ~0.11 

Å is achieved in the SC–HC stretching mode calculated at 2449/2449 cm−1.

From time-resolved photochemical IR studies, Sanchez et al. have shown that the decay of 

Hhyd is kinetically competent as a near-final step in the [FeFe] hydrogenase catalytic cycle.
40 However, since the pKa for a neutral secondary amine such as the ADT bridgehead 

nitrogen is extremely high, an intervening protonated ADT –NH2
+– intermediate, HhydH+, 

has often been included in the catalytic cycle.17,24,41–44 Our results, which document the 

role of ADT flexibility in normal modes that bring HADT and Hh closer together, offer the 

possibility of a mechanism update.

In this speculative scenario, high-frequency modes such as at 752/758 and 2449/2449 cm−1, 

combined with low-frequency modes such as at 73 cm−1, would involve coordinated motion 

of HADT toward Hh, while HC moves toward NADT. This might precipitate a “deep 

tunneling” transfer of HADT to Hh, while SC–HC transfer replenishes the NADT–HADT, and 

with the SC–HC proton reloaded from the H2O in the proton transfer chain. Champion and 

co-workers have shown that deep tunneling can allow high pKa residues to participate in 

proton transfer chains, as invoked for a serine residue in the green fluorescent protein.45 If 

the transfer reaction for Hhyd were facilitated by electron transfer from the [4Fe–4S]H
+ to 

the [FeIIFeII]H subsite, the overall PCET reaction would yield an Hox electronic state with 

bound H2. This scenario agrees with calculations on the reverse reaction of H2 activation by 

Greco et al.46

In summary, we have investigated vibrations of the [FeFe] hydrogenase active site in the 

Hhyd state through 57Fe, 13C, and D isotopic labeling, combined with 57Fe NRVS 

measurements and DFT calculations. This represents the first observation of second and 

third coordination sphere isotope effects using NRVS. We identified normal modes involving 

the flexing of the bridging ADT ligand that point to its unique properties as an active site 

ligand. The combined motions of the Fed–Hh, NADT–HADT, and (C169)SC–HC protons are 

presumably coupled to the remainder of the proton transfer chain as well as electron transfer. 

These effects may be important for catalysis and will be investigated in future studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) [FeFe] hydrogenase active site including key amino acids in the proton transfer pathway 

(based on the PDB 4XDC10 structure of the CpI enzyme from Clostridium pasteurianum, 

but using CrHydA1 sequence numbering). (b) Schematic structure of the [2Fe]H subcluster 

in the Hhyd state, showing the isotopically labeled nuclei 57Fe, 13C, and D (i.e. 2H). The 

important hydrogens, Hh (catalytic hydride at the distal Fed iron), HADT (at the ADT NADT 

nitrogen), and HC (at the SC C169 sulfur), are shown.
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Figure 2. 
57Fe-PVDOS for the [2Fe]H precursor isotopologues 1 (blue) vs 13CD-1 (red) from (a) 

NRVS experiments and (b) DFT calculations. Sticks correspond to individual DFT normal 

mode energies and intensities before lineshape convolution. For 13CD-1, important band 

positions are labeled, and atomic motions in selected normal modes are shown.
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Figure 3. 
57Fe-PVDOS for the Hhyd state isotopologues 1-CrHydA1 (blue) vs 13CD-1-CrHydA1 (red) 

from (a) an NRVS experiment and (b) DFT calculations. Sticks correspond to individual 

DFT normal mode energies and intensities before broadening. For 13CD-1-CrHydA1, 

important band positions are labeled, and atomic motions in selected normal modes are 

shown. Only the [2Fe]H and C169 fragments of the DFT model are shown with the 

methylene, Hh, and HADT hydrogen nuclei displacements indicated by red arrows.
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