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Abstract

Cardiovascular simulations are increasingly used for noninvasive diagnosis of cardiovascular 

disease, to guide treatment decisions, and in the design of medical devices. Quantitative 

assessment of the variability of simulation outputs due to input uncertainty is a key step toward 

further integration of cardiovascular simulations in the clinical workflow. In this study, we present 

uncertainty quantification in computational models of the coronary circulation to investigate the 

effect of uncertain parameters, including coronary pressure waveform, intramyocardial pressure, 

morphometry exponent, and the vascular wall Young’s modulus. We employ a left coronary artery 

model with deformable vessel walls, simulated via an Arbitrary-Lagrangian-Eulerian framework 

for fluid-structure interaction, with a prescribed inlet pressure and open-loop lumped parameter 

network outlet boundary conditions. Stochastic modeling of the uncertain inputs is determined 

from intra-coronary catheterization data or gathered from the literature. Uncertainty propagation is 

performed using several approaches including Monte Carlo, Quasi Monte Carlo sampling, 

stochastic collocation, and multi-wavelet stochastic expansion. Variabilities in the quantities of 

interest, including branch pressure, flow, wall shear stress, and wall deformation are assessed. We 

find that uncertainty in inlet pressures and intramyocardial pressures significantly affect all 

resulting QoIs, while uncertainty in elastic modulus only affects the mechanical response of the 

vascular wall. Variability in the morphometry exponent used to distribute the total downstream 

vascular resistance to the single outlets, has little effect on coronary hemodynamics or wall 

mechanics. Finally, we compare convergence behaviors of statistics of QoIs using several 

uncertainty propagation methods on three model benchmark problems and the left coronary 

simulations. From the simulation results, we conclude that the multi-wavelet stochastic expansion 

shows superior accuracy and performance against Quasi Monte Carlo and stochastic collocation 

methods.
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1 | INTRODUCTION

Cardiovascular disease is the leading cause of death worldwide with projected total cost of 

over 1 trillion dollars by 2035, according to the American Heart Association.1 

Cardiovascular modeling provides noninvasive tools to complement clinical diagnostics, and 

patient risk assessment as well as predictive capabilities to aid in clinical decision-making 

and treatment planning. Modern analysis and simulation of blood flow in the cardiovascular 

system requires a combination of clinical data acquisition, image processing for anatomic 

model construction, selection of appropriate physiologic boundary condition and wall 

material properties, accurate solution of the governing equations, and high-performance 

computing.2,3 Clinical applications of cardiovascular simulation include the noninvasive 

assessment of fractional flow reserve FFRCT,4 which is highly correlated with an invasive 

measurement of FFR and has drawn a great deal of attention as a reliable predictor of 

obstructive coronary disease and ischemia.5–9 Moreover, cardiovascular models have been 

used for new surgical designs for congenital heart disease,10 risk assessment in coronary 

artery bypass surgery,11 thrombotic risk stratification in Kawasaki disease,12 ventricular 

assist device design,13 aneurysm treatment,14 and stent design.15,16

However, current cardiovascular models typically provide only deterministic predictions 

while ignoring variability of simulation outputs due to numerous uncertainties in cardiac 

catheterization data, tissue properties, medical imaging, and boundary condition selection. In 

this context, as simulation data are increasingly incorporated into cardiovascular disease 

research, clinical trials, and the FDA approval process, there is a pressing need to establish 

strict guidelines and effective methods to assess the impact of uncertainty on simulation 

predictions. Cardiovascular models are increasingly assimilating data from a range of 

clinical imaging and data sources, obtained both invasively and noninvasively. Uncertainty is 

present in common noninvasive clinical data measurements (eg, heart rate or blood 

pressure), echocardiography (eg, stroke volume, ejection fraction, cardiac output, and 

acceleration times), and image data (CT or MRI). It is also present in invasively obtained 

cardiac catheterization data (pressures, intravascular ultrasound). Additional uncertainties 

stem from the vessel-wall histology and material properties. Inter-patient variability reported 

in population studies as well as intra-patient variability in repeated measurements (when 

available), can be used to inform the amount of uncertainty in the simulation inputs or 

modeling parameters.

Once variabilities in the input parameters are assessed, uncertainty quantification (UQ) tools 

provide a means to investigate the relationship between the input and output variabilities. 

Reporting mean and confidence intervals as well as higher statistical moments for clinically 

relevant quantities is key for translation of simulation tools to the clinic. However, the 

computational cost of UQ is a major bottleneck, typically requiring solution of an expensive 

model at each realization of a potentially large collection of random inputs. This cost may 
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further increase with deformable models, including fluid-structure interaction17 or with the 

inclusion of physiologic boundary conditions18 possibly assimilated from available clinical 

data under uncertainty.19,20 In this context, several one-dimensional cardiovascular models, 

assuming blood as a Newtonian fluid and fully developed, axisymmetric flow inside a 

cylindrical vessel have been employed previously to demonstrate successful integration of 

UQ in cardiovascular modeling. Taking advantage of the low computational cost of one-

dimensional hemodynamic models, several studies discussed the effect of variability in 

constitutive model parameters,21 arterial wall stiffness, inlet velocity,22 geometry, resistance, 

and pressure,23 and assessment of global sensitivity. One-dimensional models are however 

limited when one wishes to understand and quantify realistic flow patterns and local flow 

features.

Sankaran and Marsden24 proposed one of the first studies in uncertainty quantification 

applied to three-dimensional cardiovascular models, focusing on the effect of uncertainties 

in the shape optimization of a bypass grafts geometry. In addition, Sankaran and Marsden25 

applied UQ on both idealized and patient-specific models of Fontan surgical configurations 

including clinically relevant parameter uncertainty, such as the geometry, the inlet velocity, 

and the flow-split between the left and right pulmonary arteries. While these early studies 

assumed a priori distributions for the uncertain parameters, Schiavazzi et al26 leveraged 

clinical measurements of flow split and pulmonary pressure to assimilate distributions of 

outlet resistances from the solution of a Bayesian inverse problem in model configurations 

related to specific stages of single ventricle palliation surgery. More recently, Sankaran et 

al27 focused on the effect of multiple sources of uncertainty on the noninvasive estimation of 

FFRCT from cardiovascular models, and identified the minimum lumen diameter uncertainty 

as a major contributor to the FFRCT variability.

In the majority of the above-mentioned studies, the propagation of uncertainty through the 

cardiovascular models was performed using the Stochastic Collocation method (SC), which 

was often regarded as an accurate choice, particularly for smooth parametric response 

surfaces. However, the smoothness of the stochastic response is not known a priori, therefore 

it is preferred to use a UQ approach that works equally well under smooth and non-smooth 

conditions. In this context, Schiavazzi et al26,28 proposed a generalized multi-resolution 

stochastic expansion framework which performs successive binary refinements in the 

stochastic domain, builds multi-wavelet families orthogonal to the PDF of the random inputs 

in each subdivided element of the parameter space, and leverages relevance vector machine 

regression29 to minimize the number of model evaluations needed to determine accurate 

statistics of the quantities of interest. The MW approach has been shown to perform better 

than MC, QMC, and SC in various benchmarks, and applied to coronary artery bypass graft 

modeling.26,30

Many studies in the literature have focused on rigid wall models, due to the large 

computational cost of deformable wall models and the complexity of accounting for the 

interaction between fluid and structure. However, wall deformation is critical for capturing 

vascular wave propagation, and for characterizing mechanical forces acting on the vessel 

wall such as wall shear stress, which are crucial to mechanobiology. In coronary arteries, 

wall strain is considered to be a key quantity affecting the progression of atherosclerosis.31 
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In most cases, arterial wall stiffness is unknown in vivo, spatially inhomogeneous (eg, 

different for femoral, carotid, and coronary arteries,32 and even within in the same 

anatomical region), and varies with the presence and severity of atherosclerosis.33,34 

Additionally, material properties are affected by significant uncertainty with only limited 

available data, as indicated by measurement errors from postmortem vascular stiffness,32 

and intra-/inter-patient variability.32,34 The effect of material property uncertainty on one-

dimensional hemodynamics was considered in,21–23 and Biehler et al35,36 studied the effects 

of such uncertainties in the biomechanics of an aortic abdominal aneurysm using a multi-

fidelity approach. To date, Tran et al30 was among the first studies to consider material 

property uncertainty in a three-dimensional patient-specific model incorporating fluid-

structure interaction. In this work, fluid-structure interaction was enabled using a lightweight 

shell formulation via the coupled-momentum method (CMM).17

This study presents an uncertainty quantification based on a three-dimensional patient-

specific cardiovascular model with Arbitrary Lagrangian-Eulerian (ALE) fluid-structure 

interaction. ALE is a realistic and computationally intensive approach to solve the Navier-

Stokes equations, the equations for solid mechanics, and the mesh motion equations in a 

monolithic fashion. We take advantage of recent developments in the SimVascular open-

source software package,37 namely the svFSI flow solver which provides an implementation 

of ALE FSI. The aim of the study is 3-fold. First, we aim to demonstrate the application of 

various UQ propagation strategies to a realistic patient specific model with ALE. To make 

uncertainty propagation feasible, we exploit sub-modeling strategies to reduce the 

prohibitive cost of UQ in realistic models. In addition, we used the best performing linear 

solvers among other available solvers tested in our previous study, to reduce the 

computational burden in uncertainty propagation. Second, we quantify how uncertainty is 

amplified or reduced from the inputs to the outputs of the selected model. We consider 

several sources of uncertainty including pulsatile coronary pressure waveforms, 

intramyocardial pressure, vessel wall elasticity, and morphometry exponent. These quantities 

are highly relevant in coronary artery disease simulation, and therefore of key importance for 

validation and verification. In this context, it has been previously shown how FFR and wall 

shear stress in coronary arteries may be subject to significant variability as a result of 

perturbations in inlet and outlet boundary conditions.8,38,39 Third, we assess and compare 

the performance of multiple uncertainty propagation algorithms specifically applied to 

deformable coronary sub-models.

The paper is organized as follows. In section 2, we discuss governing equations, generation, 

and application of boundary conditions to our deformable left coronary artery (LCA) model. 

In section 3, we introduce uncertainties in coronary simulation parameters, and review both 

the formulation and properties of several approaches for uncertainty propagation from the 

literature. The uncertainty propagation results are discussed in section 4. We first focus on 

the results of various UQ techniques to three benchmark problems with closed-form analytic 

formulation, and proceed to show how uncertainty in the selected coronary simulation 

parameters affect a number of relevant outputs, including pressure, flow, wall shear stress 

and measures of mechanical response at the wall. We conclude with an additional discussion 

in section 5, that includes study limitations and future work.
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2 | SUB-MODELS FOR THE CORONARY CIRCULATION WITH 

DEFORMABLE WALLS

In this study, we investigate the response of a three-dimensional aorto-coronary model, 

representing right and left coronary arteries and including a segment of the aortic arch 

shown in Figure 1A. The anatomy was constructed from CT clinical images using 

SimVascular.40 The aorto-coronary model has lumped-parameter network (LPN) boundary 

conditions at the coronary artery branches and outlet of the aorta. At the inlet of the aorta, a 

physiologic pulsatile flow waveform is prescribed. The LPN parameters are tuned to match 

multiple clinical targets (stroke volume, ejection fraction, pressure, etc.) and confirmed to 

reproduce physiologically admissible responses.20

To minimize computational effort while still providing accurate coronary response, our 

study focuses on a left coronary sub-model, where appropriate boundary conditions are 

applied to match the simulation outcomes of the complete model (eg, a similar approach 

in30). This reduces the total volume of the region of interest to approximately 1/15 of the full 

aorto-coronary model. The pressure waveform Pin at the inlet of the submodel was extracted 

from the full model simulation results, while all downstream boundary conditions were kept 

the same. The lumen diameter of the left main coronary is 4 mm and the diameter of the 

distal left anterior descending artery (LAD) is 2.7 mm, consistent with the range of 

diameters on normal human left coronaries, the proximal LAD diameter d = 3.7 ± 0.4 mm, 

and distal LAD d = 1.9 ± 0.4 mm.41,42

The wall structural mesh was obtained using a uniform wall thickness h = 0.08 mm (Figure 

2). The coronary wall thickness is consistent with two electrocardiographic studies that 

consistently reported a coronary wall thickness of 1.0 ± 0.2 mm42,43 and with the 

morphometric law for coronary vessel thickness by Podesser,44 and larger than a typical 

vessel wall thickness equal to 10% of the vessel radius found in the literature.45–49

Interaction between fluid and structure is simulated through Arbitrary Lagrangian-Eulerian 

(ALE) coupling provided by the SimVascular svFSI solver, which implements a variational 

multi-scale finite element method with second order implicit generalized-α time integration.
50,51 The incompressible Navier-Stokes equations in ALE form are

ρ∂u
∂t x

+ ρv ⋅ ∇u = ρf + ∇ ⋅ σfin Ωf,
∇ ⋅ u = 0

(1)

where ρ, u = u(x, t), and f are fluid density, velocity vector, and body force, respectively, in 

the fluid domain Ωf. We model blood as a Newtonian fluid, for which σf = −p I + μ (∇u + 

∇uT) = −p I + μ ∇su, with μ the kinematic viscosity, p = p(x, t) the pressure, and v = u − u
the fluid velocity relative to the mesh. Additionally, in the solid domain Ωs, we solve the 

equilibrium equation,

ρs
∂u
∂t = ρsf + ∇ ⋅ σs in Ωs, (2)
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where ρs and σs denote the density and solid stress tensor, respectively. The spatial 

discretization is based on the variational multi-scale method.50–52 We use the Saint Venant-

Kirchhoff hyper-elastic constitutive model. We employ P1-P1 (linear and continuous) finite 

elements for velocity and pressure. The weak formulation of the above equations and 

process leading to an algebraic system of equations has been discussed in Esmaily-

Moghadam et al51 and Seo et al52. The solution of the linear algebraic system is computed 

using the Trilinos library,53 developed at Sandia National Laboratory and coupled with the 

SimVascular svFSI solver. We use either the Bi-Conjugate Gradient iterative linear solver 

with incomplete LU preconditioner or the Generalized Minimum Residual with a diagonal 

preconditioner. These combinations were shown to be optimal for cardiovascular simulations 

with deformable walls.52

Coronary boundary conditions54,55 are enforced at the no = 6 LCA outlets, designed to 

capture the diastolic nature of the coronary flow. These consist of a LPN circuit governed by 

the ordinary differential equations

dPp,i
dt = 1

Ca,i
Qi − Pp,i − Pd,i

Ram,i
, i = 1, 2, …, n0 . (3)

dPd,i
dt = 1

Cim,i

Pp,i − Pd,i
Ram,i

− Pd,i − P im
Rv,i

+ dP im
dt , i = 1, 2, …, no . (4)

where Pp,i and Pd,i are the proximal and distal pressures, Ca,i and Cim,i are the proximal and 

distal capacitances and Ram,i and Rrv,i are the resistances, respectively, as shown in Figure 

1C. Note that the same rate of intramyocardial pressure dPim/dt is prescribed equally at all 

the no outlets. The above equations are integrated in time using the fourth-order Runge-

Kutta method at each time step, with the final outlet pressure Po,i computed as Po,i = Pp,i + 

Ra,i Qi and coupled to the three-dimensional model solution.56

The total coronary resistance was computed assigning 4% of the cardiac output to the 

coronary arteries57 and was distributed among outlets following a morphometric relation 

associating flow rates with vessel diameters, that is, Q ∝ (d/2)m. The diameter is 

approximated using the square root of the area Ai. The resistance of a distal branch, Ri, is 

therefore computed as

Ri = ∑j Aj
m

Ai
m ⋅ Rtotal, i, j = 1, 2, …, no, (5)

while the capacitances are instead distributed proportional to the outlet area.55

Fully fixed mechanical restraint conditions were applied at the inlet and outlets, while a zero 

Neumann pressure was applied on the outer vascular wall. In addition, the diastolic 

configuration, which is acquired from the CT scans and used to reconstruct the model 

geometry, is assumed stress-free, no pre-stress analysis was performed,58 and therefore no 

uncertainty has been quantified for this pre-stress. This is consistent with our selection of the 

displacement as the preferred mechanical quantity of interest. We note that pre-stress has 
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been considered in recent work58,59 and could be a target of uncertainty analysis in future 

studies.

In the sub-modeling process, we first extracted an area-averaged flow waveform resulting 

from the full model at the location of the submodel inlet, and applied it to the submodel inlet 

as a Dirichlet boundary condition. We then verified the excellent agreement between the 

flow and pressure distributions resulting for the two models. After verifying the submodel 

for a prescribed inlet flow, we switched to a pulsatile pressure boundary condition at the 

inlet so that a change in the intramyocardial pressure at the outlets could affect the flow 

through the LCA.

Figure 2 shows the computational mesh for this study, with 567 373 tetrahedral elements for 

the LCA lumen. This optimal mesh size resulted from a convergence study where we 

compared discretizations with ≈ 500 K, 1, 2, and 4 M isotropic tetrahedral meshes, and ≈ 
500 K, 1, and 2 M meshes with boundary layers. We find that none of the outlet pressures 

and flow rates vary by more than 3%, across all tested meshes except for the 500 K isotropic 

mesh. Time-averaged wall shear stress (TAWSS) was significantly affected by the mesh 

resolution near the wall. With a coarse wall mesh size with isotropic meshing, TAWSS is 

underestimated even with a large total number of grid points (eg, 4 M). Our 500 K boundary 

layer mesh provided instead the correct TAWSS within 3% root-mean-square error against 

the finest model with boundary layers. The wall mesh contains 373 435 tetrahedral elements, 

with three elements through the thickness, which is regarded as appropriate due to the 

prevalent membrane deformations (through thickness bending is assumed to be small). We 

employed the Meshmixer application (http://www.meshmixer.com/) to enforce the nodal 

continuity at the fluid-solid mesh interface, as shown in Figure 2C.52,59,60

3 | UNCERTAINTY MODELING AND PROPAGATION METHODS

In this section, we define several sources of uncertainty relating to quantities that are 

essential for physiological admissibility of the simulation results. Uncertain inputs are 

treated as random variables or random vectors, with assumed underlying distributions. We 

chose to focus on the coronary artery inlet pressure waveform, the intramyocardial pressure, 

the morphometry exponent used in the assignment of outlet boundary conditions, and the 

material properties. Uncertainty in the coronary artery pressure is determined from clinical 

data acquired in-vivo through cardiac catheterization, while uncertainty in the morphometry 

and the material property are determined from a thorough literature review.

3.1 | Uncertainties in coronary artery pressure

Uncertainty stems from cardiac catheterization in pressure measured by inter- and intra-

patient physiologic variability, as well as systematic measurement errors. We collected intra-

coronary pressure data from six patients. Intra-coronary pressure waveforms and ECG 

signals were acquired during cardiac catheterization performed at the UCSD Medical 

Center, using a ComboWire (Volcano Inc.) catheter over more than 100 cardiac cycles. 

Patient characteristics are shown in Table 1. An example of pressure time-trace with overlaid 

ECG signal is shown in Figure 3.
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We registered the pressure waveform to lie within the cardiac cycle as shown in Figure 3B. 

The starting instance Rwave was recorded and used to calculate the heart cycle. The 

histogram of heart cycle durations for patient 1 in Figure 3C shows a narrow distribution 

around the sample mean value, that is, T ≈ 0.94, with a small number of outliers associated 

with durations T≲0.8 or T≳1.2. By tracking individual durations, we confirmed that the 

outliers were generated from measurement errors rather than physiologic variability. Thus, 

we rejected data with duration less than 80% and larger than 120% of the sample mean, 

capturing most data without errors. With the method described above, we post-processed 

pressure waveforms as shown in Figure 4.

From the intra-coronary pressure data at each point in time, we first took ensemble average 

of all pressure values and denoted ensemble averaged mean as μ, SD as σ, and the 

coefficient of variation as cv = σ /μ. Then, we averaged the ensemble averaged quantities 

over time and denoted the time-averaged quantities with bar superscript. While intra- and 

inter- patient physiologic variability was clearly observed in the mean and extreme pressures 

for each patient, we note that the time average of coefficient of variation, cv, shows a similar 

range equal to 5% to 7% across all patients (Table 2). To better identify the distribution 

characterizing the variability of coronary artery pressure at a single point in time, we plotted 

histograms at three discrete time instances in Figure 5A–C, observing a symmetric and bell-

shaped data distribution well fitted by a Gaussian. In addition, Figure 5D shows the time-

history of the coefficient of variation over one heart cycle for all patients included in this 

study. For most patients, the coefficient of variation was found to be well approximated by a 

constant. As a result we employed a non-stationary Gaussian model with time-dependent 

mean equal to average measured pressure and time-independent variance.

For our forward propagation study, we use a Karhunen-Loève (K-L) expansion for the 

coronary pressure waveform for each patient, resulting in a Gaussian process parameterized 

through multiple independent Gaussian random variables.61 Similar approaches have been 

previously demonstrated in the literature. For example, a spectral decomposition is proposed 

in Brault et al22 to model the random distribution of aortic stiffness in a one-dimensional 

cardiovascular model, while the Expansion Optimal Linear Estimation (EOLE) approach is 

used in Tran et al30 to model the spatial distribution of material properties in a coronary 

bypass graft. In this study, we assume an exponential covariance function, K(t, t′) = 

σ2exp(−|t − t′|/lc), where t and t′are two arbitrary time points, lc is the correlation length, 

and σ2 the process variance. The K-L expansion of the stochastic process P(t, ω) is

P(t, ω) = P(t) + ∑
i = 1

N
λiψi(t)ξi(ω), (6)

where ξ(ω) = (ξ1(ω), ξ2(ω), …, ξN(ω)) is a collection of independent standard Gaussian 

random variables, λi and ψi are the eigenvalues and eigenvectors of the selected covariance 

kernel, K t, t′ = ∑i = 1
N λiψi(t)ψi t′ , respectively,62 and N is the truncation level, the number 

of modes included in the expansion. After examining the covariances for the six patients, we 

selected a correlation length lc = T/2 = 0.5 second, which produced a satisfactory 

approximation of P(t, ω) using only the first four eigenmodes. Specifically, the largest scaled 
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eigenvalue spectra of the covariance function, λi/maxi(|λi|), are λ2/λ1 = 34%, λ3/λ1 = 14%, 

λ4/λ1 = 7%, and decays to less than 5% after the first four modes. We set the process 

variance to 7% of the mean value as observed from the cardiac catheterization data. Samples 

from ξi(ω), i = 1, …, 4 are obtained by projecting a four-dimensional Sobol sequence 

through the inverse multivariate Gaussian CDF. We plot a finite collection of eigenfunctions 

from the covariance in Figure 6A, and realizations from the identified pressure stochastic 

process in Figure 6B.

3.2 | Uncertainty in the intramyocardial pressure

In cardiovascular modeling, specialized boundary conditions are typically employed to 

model coronary physiology.54 While the contraction of the cardiac muscle impedes coronary 

flow during systole, coronary arterial flow rates increase and reaches their maximum during 

diastole following relaxation of the heart muscle. The coronary flow waveform is therefore 

out-of-phase with the aortic pressure which is maximum at systole (see Figure 1B). To 

model this effect, a special coronary outlet boundary condition, consisting of an RCRCR 

circuit connected to an intramyocardial pressure, is employed in Kim et al54. Since a direct 

measurement of intramyocardial pressure is unavailable due to the difficulty of measuring 

this indicator in-vivo, it is often approximated by the left ventricular pressure and its time-

derivative.11,20,30,55 However, despite the importance of this quantity in driving coronary 

flow, the effect of this approximation is unclear. Therefore, in this work, we model the 

uncertain intramyocardial pressure time-derivative Pim,t with a stochastic process and assess 

the corresponding variability in the simulation outputs. We first obtained a baseline Pim,t(t) 

waveform from our previous study,20 and perturbed the intramyocardial pressure time 

derivative in the systolic phase of the heart cycle using a K-L expansion with process 

variation σ equal to 10% of the maximum value assumed by Pim,t(t) during the heart cycle. 

Note that variability in the intramyocardial pressure time-derivative is only considered, in 

this study, during systole (t < 0.5 second) as ventricular contraction determines the diastolic 

nature of coronary flow. During filling the uncertainty is instead considered negligible. The 

perturbed Pim,t(t), and the reconstructed left ventricular pressure Plv(t) (up to a constant) are 

both shown in Figure 6C.

3.3 | Uncertainty in the morphometry exponent

The morphometry law defines the mathematical relationship between vessel size and flow 

rate distribution after vascular branching, Q ∝ rm, where Q is the flow rate in a vessel, r is 

vessel radius, and m is the morphometry exponent. Morphometry exponents selected on 

physiological grounds have been used to assess distal coronary resistance as R ∝ r−m.
4,11,30,55 However, since the exponent m is typically obtained empirically, uncertainty arises 

when choosing a single value for the exponent in simulations, and there is no quantitative 

understanding of how variability in m affects simulation results.

A morphometry exponent equal to three was first proposed by Murray,63 based on the 

minimum work principle, where the vessel wall diameter adapts to conserve wall shear 

stress in bifurcations. By analyzing Mall’s histological data,64 Sherman65 validated the cube 

law (m = 3), showing that the order of magnitude of the sum of cubed diameters, ∑ri3 is 

conserved over the entire vasculature tree, which is consistent with the conservation of mass, 
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∑Qi = const. While Mayrovitz et al66 also validated the cubic dependence for the 

microvasculature, exponents other than three provided a better fit for larger vessel sizes. 

Hutchins et al67 reported m = 3.2 ± 1.6 for the left coronary in the healthy human, while the 

mean of m decreases to m = 2.2 ± 2.1 with increasing severity of arteriosclerosis, and to m = 

2.7 ± 1.3 for other epicardial coronary arteries. Additionally, Zamir et al68 demonstrated that 

m = 2 fits the histological data better than m = 3 in the major branches of the aortic arch, 

such as the carotid artery and sinus bifurcation. They argued that the shear stress is not 

constant for all vessel sizes, and rather increases for smaller vessel sizes, leading to an 

exponent m that should be less than three. Based on the above studies, and on the fact that 

the size of the coronary arteries is smaller than the aortic branches but larger than the 

microvasculature, a reasonable value of m should lie between m = 2 and m = 3. Recent 

studies reported morphometry exponents for the LCA ranging from 2.45 to 2.5169 and m = 

2.6 ± 0.64 for LCA in.70

The total resistance of the downstream vasculature has been determined using various 

exponents m in coronary hemodynamics literature. Coronary models in Sankaran et al55 

assumed that the resistance is inversely proportional to the area of the distal branch with m = 

2. Taylor et al4 used m = 3 instead for boundary conditions in aorto-coronary models. Jaquet 

et al71 and other recent studies11,30 adopted m = 2.6 for coronary arteries. In our study, we 

assume the morphometry exponent as a uniformly distributed random variable, m(ω) 

between 2.4 and 2.8, that is, m U(2.4, 2.8).

3.4 | Uncertainty in the material properties of vascular tissue

A stochastic model is particularly appropriate to represent inter- and intra- patient variability 

in the vessel wall elasticity due to the challenges of making direct in-vivo assessment of 

vascular tissue histology. A study by Gow et al32 reported the Young’s modulus for the 

femoral artery, coronary artery and aortic arch in nine dogs, leading to several studies 

applying a Young’s modulus equal to 1.15 MPa.11,30,72 In this study, we use a more recent 

quantification of elastic modulus, obtained from tensile tests on 13 human coronary vessels, 

reporting a mean modulus of μ[Es] = 1.48 MPa and SD of σ[Es] = 0.24 MPa.34 From this 

data, the vessel Young’s modulus is simulated as a spatially uniform Gaussian random 

variable Es N 1.48, 0.242 . Since this distribution is sufficiently bounded away from zero, it 

almost coincides with a lognormal distribution having the same mean and variance. In 

addition, we note that all Young’s modulus realizations used in this study belong to a 

physiologically admissible range for coronary arteries, from 0.95 to 2.29 MPa.

3.5 | Uncertainty propagation methodologies

Several approaches for uncertainty propagation have been proposed in the literature. Monte 

Carlo sampling (MC) is the simplest method with many advantages over other approaches. 

Specifically, MC is unbiased, it can handle arbitrary distributed and correlated inputs, its 

mean square error (MSE) does not depend on the random input dimensionality, and the 

model evaluations can be solved independently in an embarrassingly parallel fashion. 

However, its slow convergence rate, MSE ∝ O(1/ N), makes this technique cost prohibitive 

in many applications. Stratified or low-discrepancy sampling strategies, such as Latin 
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Hypercube or Quasi Monte Carlo sequences (QMC), provide a more uniform coverage of 

the input domain and have been shown to improve the convergence rate of MC estimators up 

to O lnNd/N . Popular examples include the Sobol’73 or Halton74 sequences, together with 

techniques, which improve the discrepancy in high dimensional settings such as Faure 

permutations.75,76 Other families of propagation approaches are based on numerical 

integration. Stochastic Collocation (SC) methods use multivariate numerical quadrature to 

compute the expansion coefficients of the system stochastic response according to families 

of polynomials orthogonal with respect to the probability measure of the random inputs. 

These coefficients are then used to compute the statistics of interest. In addition, the 

Smolyak algorithm77 has been introduced to effectively reduce the computational burden 

due to the exponential increase in computational cost of evaluating tensor product 

polynomials or quadrature rules in high dimensions. However, SC suffers from multiple 

shortcomings, for example, the difficulty of handling discontinuous response surfaces,26,78 

and the inability to compute the expansion coefficients at the predetermined integration 

order, when a deterministic solver crashes at a single quadrature point. This precludes SC 

from being practically usable for a possibly large number of model evaluations. More 

recently, significant research has been devoted to the development of adaptive approaches 

where model evaluations are iteratively placed at appropriate new input realizations, 

informed by metrics that are progressively refined. In this context, popular approaches are 

the multi-element generalized polynomial chaos,79 LARS-based approaches80 and 

generalized multi-resolution basis (MW).26,28,30 Finally, we would also like to mention the 

use of stochastic surrogates based on Gaussian process regression or Kriging81 are recently 

applied to the solution of forward and inverse problem in cardiovascular modeling reported, 

for example, in Kissas et al82.

In this study, we focus on the MW framework, which is flexible in terms of the locations of 

the random input samples and well suited to handle response surfaces characterized by sharp 

gradients or discontinuities. In section 4 we evaluate how fast MC, QMC, SC, and MW 

schemes converge on three simple analytic, and one non-linear benchmark problems. We use 

the Halton sequence for the QMC, and a sparse Smolyak Clenshaw-Curtis grid for SC. 

Propagation with MW is computed using both random input samples from integration grids 

(MW-Grid) and random samples (MW-Random). In MW for propagation in the LCA model, 

we use the same free parameters and threshold quantities listed in Schiavazzi et al26

3.6 | Uncertainty propagation through the LCA model

We performed 1203 cardiovascular simulations in total, each consisting of four cardiac 

cycles. All simulations were performed in parallel on 48 and 96 cores either using the Comet 

and the Stampede cluster available through the NSF-funded XSEDE portal, or using the 

Notre-Dame Center for Research Computing cluster. The parallel scalability has been tested 

and the number of mesh elements per core used in this study shown to achieve excellent 

efficiency.52 For all simulations we confirmed that the transient effect from the initial 

condition was eliminated after two cardiac cycles, and we post-processed data only in the 

last two cycles. Both QMC Sobol’ sequences and sparse grid stochastic collocation were 

used to produce input parameter realizations. In each Pin and Pim,t study, we use four 

dimensional independent random variables to represent the perturbed pressure waveforms 
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using the K-L expansion. For each Es and m, we use one dimensional random variable. 

Lastly, we perturbed all quantities of interest simultaneously, resulting in a total of 10 

random inputs. Using the QMC sampling, we performed 200 simulations for the inlet 

pressure stochastic process Pin, 200 simulations for the intramyocardial pressure Pim, 100 

simulations for the Young’s modulus Es and 100 simulations for the morphometry exponent, 

m. We then performed 200 simulations with all input parameteres perturbed, including Pin, 

Pim, m, and E. Additionally, we ran 137 simulations for Pin, 137 simulations for Pim, and 

129 simulations for Es, all from a Smolyak sparse grid.77

We focused on four quantities of interests (QoI) related to both hemodynamics and wall 

mechanics. We calculated the branch flow rate Qi(t), pressure Pi(t), time-averaged wall shear 

stress TAWSSi(x), wall deformation Deformationi(x) in all six branches (i = 1, …, no). The 

pressure and flow is area-averaged at each branch outlet, while the shear stress, τ (x, t) and 

wall displacement δ (x, t) are time-averaged and spatially averaged over the vessels 

circumference, that is,

TAWSSi
x
Li

= ∫
C

1
T ∫

0

T
τ (x, t)dt ds,  Deformationi

x
Li

= ∫
C

1
T ∫

0

T
δ (x, t)dt

ds,
(7)

where T is the cycle duration, t is time, x is the spatial distance along the centerline of the 

vessel branch, Li is the axial length of a vessel branch, and C the circumference of the slice 

plane perpendicular to the centerline.

4 | UNCERTAINTY PROPAGATION RESULTS

4.1 | Benchmark: Continuous and discontinuous analytic functions

We first tested several UQ methodologies on a sinusoidal response surface with two-

dimensional random variables, ξ1 and ξ2, that is,

u ξ1, ξ2 = sin πξ1 sin πξ2 , (8)

in which ξ1 and ξ2 are uniform random variables ranging between 0 and 1. Samples from 

MC, QMC, SC, and MW methods are plotted on the sinusoidal response surface in Figure 7, 

respectively. In terms of convergence, SC is out-performing all methods (Figure 7G), 

resulting, as expected, in excellent accuracy on smooth response surfaces. For this 

benchmark, we confirm the superiority of low-discrepancy QMC sequences (Figure 7C) 

over standard Monte Carlo. MW with random samples led to comparable performance 

against QMC, while MW with the quadrature grid showed superior performance against 

QMC. Next, we consider a truncated sine surface,

u ξ1, ξ2 =
sin πξ1 sin πξ2 if  ξ1 ≤ 0.5, ξ2 ≤ 0.5
0 otherwise

, (9)
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which is positive in the third quadrant of the stochastic domain, and zero elsewhere. In this 

case, the performance of SC deteriorates as shown in Figure 8, and shown previously in 

literature for problems with stochastic responses characterized by sharp gradients and 

discontinuities.78 QMC shows faster convergence than MC. MW, especially MW-Grid, 

substantially outperforms all other methods on this second benchmark.

In addition, we performed uncertainty propagation using two high-dimensional response 

functions. We selected the two Sobol’ functions83:

s1(ξ) = ∏
i = 1

d 4ξi − 2 + pi
1 + pi

,  and s2(ξ) = ∏
i = 1

d 1 + 3piyi2

1 + pi
, (10)

where ξ ∈ [0, 1]d and p = (p1, p2, …, pd) is a vector of non-negative and positive parameters 

for s1(ξ) and s2(ξ), respectively. Here we select d = 10 and pi = 2, i = 1, …, d for both 

functions. Integration of the above functions with respect to the uniform measure in [0, 1]d 

leads to:

μ s1 = 1,  and σ s1 = ∏
i = 1

d 1
1 + pi

2 4
3 + pi2 + 2pi − 1, (11)

and

μ s2 = 1,  and σ s2 = ∏
i = 1

d 1
1 + pi

2 9
5 pi2 + 1 + 2pi − 1 . (12)

Figure 9 illustrates the efficiency of several methods in computing the mean and SD of these 

functions. SC performs poorly in this case, even though the response surface is not 

discontinuous. QMC and MC performed almost equally fast. MW-Random shows the 

superior performance for estimation of means, especially in low number of samples around 

100.

4.2 | Benchmark: 2D Kraichnan-Orzag

The performance comparison continues with the Kraichnan-Orszag (K-O) system, a well-

known benchmark for adaptive propagation. This is a differential system consisting of three 

equations

du1
dt = u1u3, du2

dt = − u2u3, du3
dt = u1

2 + u2
2, (13)

which is a nonlinear, three dimensional, time-dependent differential system derived, by 

truncation, from the Navier-Stokes Equations.84,85 The initial condition centered at (u1, u2, 

u3) = (1, 0, 0) is perturbed in two directions as

u1(t = 0) = 1, u2(t = 0) = 0.2ξ1 − 0.1, u3(t = 0) = 2ξ2 − 1, (14)
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in which ξ1 and ξ2 are uniform random variables with range in [0, 1]. This perturbation 

significantly alters the solution, particularly at large integration times with a resulting 

stochastic response at time 10 characterized by sharp edges as shown in Figure 10A. As 

shown in Figure 10B,C, the performance of QMC is superior to MC, as expected. SC shows 

slower convergence than QMC below 1000 samples, but faster with additional samples and 

quickly converge after 1000 samples. MW-Grid shows good accuracy in computing the 

response mean, especially with a small number of samples, but with a larger SD than MC. 

MW-Random exhibits superior performance for both the mean and SD.

From the three benchmarks above, we confirm the superiority of QMC with respect to MC. 

In addition, we observe outstanding performance of SC on a smooth response surface, but 

confirm that this approach is not designed to handle discontinuities or sharp gradients. MW 

shows faster convergence than QMC in most cases, and outperforms SC in problems with 

non-smooth response. Based on these commulative results, we chose to apply QMC (with 

Sobol’ sequences), SC, and MW forward propagation to our LCA model. Note that 

adaptivity in MW is restricted only to the input domain partitions, keeping the number of 

samples in the QMC sequence fixed, or, in other words, no samples are incrementally added 

with respect to the QMC sequences or quadrature grids selected a priori.

4.3 | LCA: Effects of uncertainty in the inlet pressure, Pin

Figure 11 shows 200 realizations of waveforms for the output QoIs in six left coronary 

branches resulting from perturbing the inlet pressure, and indicating all the QoIs at all 

branches to be significantly affected by this perturbation.

Additionally, we quantified CDF estimates, the mean, SD and coefficient of variation of all 

QoIs in the six branches (Figure 12). A consistent cv equal to 7% in the outlet pressures at 

all branches is directly induced by 7% cv in the variability of the inlet pressure. In our 

model, only viscous resistance at the wall plays a contributing role for the pressure drop 

from the inlet to the outlets of the model, since the model is free from sudden geometric 

variations in diameter, that may induce a significant pressure drop (eg, stenosis). In this case, 

the outlet pressure is related to the inlet pressure through the relation, Poutlet (t) = Pin(t) − 

RQ(t), where R(dyne s/cm5) is viscous resistance of a vessel branch and Q(t) (mL/s) is 

corresponding the flow rate. Since Q(t) is mainly determined by the pressure difference 

between Pim(t) and Pin(t), and R is independent of the pressure (8 μL/πr4 for the Poiseuille 

flow), changes in the inlet pressure directly translate to pressure changes at the outlets.

The displacement of the wall also exhibits the same coefficient of variation prescribed for 

the inlet pressure, 7% cv. In this context, we recall the expression of the radial displacement 

δr of an ideal thick-walled cylinder subject to an internal pressure p

δr = pri
E

ro2 + ri2

ro2 − ri2
+ ν , (15)

where E is the elastic modulus, ri and ro are the inner and outer diameter, respectively and ν 
is the Poisson ratio. Although our deformation measures the displacement in any direction, 
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δr ∝ p provides a good explanation for the linear transformation of the 7% cv from inlet 

pressure to the 7% cv in the wall radial displacement.

Flow rates and TAWSS are instead characterized by coefficients of variation slightly less 

than 7%. Particularly the branches with higher flow rate have larger coefficient of variation, 

for example, i = 1, 3. This means that the elevation of inlet pressure has a greater effect on 

the longer major coronary artery branches with larger flow rate, while the smaller bifurcated 

branches are less affected by inlet pressure changes. The wall shear stress in Poiseuille flow 

is characterized by the expression

τ = 4μQ
πri3

(16)

where Q is the instantaneous flow rate and μ the dynamic viscosity. Therefore, the 

proportionality between τ and Q justifies the similar cv obtained for both flow rate and wall 

shear stress. In later sections with additional propagation studies, we will show that the cv in 

p and δ are closely related, and cv in Q and TAWSS are directly associated, consistent with 

the above Equations (15) and (16).

Lastly, we note the inverse relationship between the variations of cross-sectional area and 

variations of TAWSS along the axial location in a vessel branch. In Figure 11, TAWSS has 

high peaks where the cross sectional area is small, and low peaks where the cross sectional 

area is large. This is consistent with prior findings reported for coronary bypass grafts,30 and 

the fact that the morphometry exponent is less than three for coronary arteries. In contrast, 

the wall deformation curve along the axial location shows similar trends to the area change. 

The linear relationship between inner wall diameter and the radial displacement in (15), 

assuming the outer diameter is proportional to the inner diameter, is consistent with our 

finding.

4.4 | LCA: Effects of uncertainty in the intramyocardial pressure, Pim, t

Next, we perturb the time derivative of the intramyocardial pressure, Pim,t(t), through a K-L 

expansion, using a SD equal to 10% of the maximum absolute value in the baseline curve 

(see Figure 6C). In our coronary model, a pressure Neumann boundary condition is imposed 

at the inlet and the flow is driven by the pressure differences between the inlet and the 

downstream pressure. This way, a perturbation in the intra-myocardial pressure will directly 

affect the pressure difference between inlet and outlets and hence affect the flow. This 

contrasts with other approaches in the literature where the inlet flow is prescribed as a part 

of open loop boundary conditions.

The results indicate that a 10% change in Pim,t(t) leads to significant change in TAWSS and 

flow rate, up to 27% cv, on the left coronary model (Figures 13 and 14).

The coefficient of variation and error bars for all branches are summarized in Figure 14. The 

results show a remarkable similarity between the variability in the flow rate Q and TAWSS, 

and between the variability in pressure and vessel wall deformation, respectively.
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Increasing flow rate is the main source of increase in TAWSS, and the degree of variability 

cv  in TAWSS is directly transferred to the variability of flow rate. On the other hand, the 

outlet pressures and deformations are not significantly altered. Figure 14 shows cv for 

pressure and deformation less than 3%. As discussed in the previous section, the outlet 

pressure is directly translated from the fixed inlet pressure, while changes in the downstream 

intra-myocardial pressure do not significantly affect the pressures at the outlet. Since the 

intra-luminal pressure is the major source of the wall deformation, the wall displacement 

variability is low, of the same order than the variability in the pressure.

4.5 | LCA: Effects of uncertainty in the morphometry exponent, m

The morphometry exponent m is sampled from the uniform distribution U(2.4, 2.8), and used 

to distribute the total downstream resistances among outlets. The results of the propagation, 

together with the outlet area and the resistances, are plotted in Figure 15. Perturbation of the 

morphometry exponent produces changes in the distribution of the vascular resistances, Ri in 

the six branches, leading up to 4% cv in resulting Ri. The variability of flow rate is reduced 

from the 4% cv in Ri to a maximum cv less than 2% for Qi, whereas other QoIs exhibit 

negligible changes. With fixed model outlet areas, the variations in the morphometry 

constant produces a little change in the downstream resistances and the variability on the 

flow rate is further reduced. From the results in this section it can be concluded that, the 

range of morphometry exponents considered in our study does not lead to sensible effects in 

the simulation outputs.

4.6 | LCA: Effects of uncertainty in the material property, Es

We propagated the uncertainty in a spatially uniform, Gaussianly distributed elastic 

modulus, that is, Es(ω) N 1.48, 0.282  MPa through the structural mechanics in our coronary 

vessel submodel. The results showed a cv equal to 17% in the wall deformation, while all 

other hemodynamic QoIs see limited changes, that is, no more than 1% (Figure 16). Note 

that, in our simulations, the magnitude of the wall deformation is small, only up to about 1% 

of the vessel radius, therefore not enough to affect flow and pressure (ie, the 

hemodynamics). The coefficient of variation in the wall deformation directly corresponds to 

cv = 17% in the imposed material property uncertainty, due to the direct proportionality 

between p and δr, discussed in the previous sections. This result suggests a loose coupling 

between hemodynamics and solid mechanics, where uncertainties tend to affect one of the 

two physics, but not both, as previously observed in Tran et al.30

4.7 | LCA: Effects of uncertainty in Pin, Pim,t, m, Es

Lastly, we simultaneously perturbed all input parameters including Pin, Pim,t, m, Es. Figure 

17 shows the combined effects of all input parameter perturbations on the resulting 

variabilities in QoIs. The pressure uncertainty up to 7% cv is mainly caused by the 

perturbation of Pin since other input parameters do not affect the Pin significantly, as shown 

in section 4.4–4.6. The flow and TWASS variabilities, cv ≈ 27%, are mainly governed by the 

perturbation of Pim,t and the effect of perturbation of Pin is not cumulatively added. 

However, the variability in deformation, cv ≈ 24%, appears to be a cumulative sum of 
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resulting variabilities in deformation from the perturbations in Pin and Es, which was ≈ 7% 

and ≈ 17%, respectively.

4.8 | Performance of UQ methodologies

As previously discussed in section 3.5, we compare the performance of several UQ 

propagation approaches applied to our coronary model problem. Convergence in the QoI 

means and SDs are plotted in Figures 18 and 19, vs the number of associated model 

evaluations.

For uncertainty in the inlet pressure Pin, we observe that QMC converges slowly to the 

solution, and moment estimates for TAWSS and displacements are off the converged values 

provided by other methods. With only 9 samples, the SC produces accurate estimates of the 

mean QoIs, but higher order integration with 41 samples is necessary to capture the SD with 

sufficient accuracy. MW on QMC grid provided a better estimate of the statistics overall, 

even for TAWSS and wall deformation.

For an uncertain Pim,t, we observed fast convergence of SC after level 2, consistent with the 

case above with random Pin, while MW estimates confirmed to be superior to QMC, using 

the same underlying samples. With the uncertain Es, all methods converge quickly after 10 

samples. QMC showed consistent errors when estimating mean of TAWSS, while MW 

corrects the mean estimates. MW showed lower mean and standard deviations for the 

displacement measurement. When all parameters are simultaneously perturbed, MW has less 

error at relatively low number of samples below 100 than QMC. Finally, we find that, for the 

analyzed model problem, an accurate measure of the first two moments of the QoIs requires 

approximately at least 50 samples.

5 | DISCUSSION

Recent advances in model-based diagnostics of coronary artery disease have demonstrated 

how models can be successfully integrated in clinical routines, but have raised questions 

related to their robustness, in light of possible uncertainty or ignorance associated with their 

input parameters. In this study, we focus on four clinically relevant parameters, coronary 

artery pressure, intramyocardial pressures, wall stiffness, and the morphometry exponent, 

which need to be invariably specified for coronary models. Uncertainty is injected in these 

parameters through stochastic processes in time, represented by a finite collection of 

independent random variables following K-L expansion.

In this study, uncertainty in the intra-coronary pressure waveform was directly estimated 

using repeated measurements from cardiac catheterization in six patients. The pressure 

waveform data were characterized by a different mean but a consistent 5% to 7% coefficient 

of variation at all times. We also considered uncertainty in another important boundary 

condition parameter, the intramyocardial pressure time-derivative, assuming a 10% 

variability with respect to the maximum absolute value of this derivative during the cardiac 

cycle. The morphometry exponent and the vessel elastic modulus are modeled as random 

variables whose moments are inferred from literature data on human coronary physiology.
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In our forward propagation study, we use a multi-scale cardiovascular model with 

deformable walls and arbitrary Lagrangian Eulerian (ALE) fluid-structure interaction with 

conforming fluid and wall mesh interfaces. A sub-model representing the left-coronary 

artery and its branches was extracted from a full aorto-coronary model, thus providing 

significant computational cost savings. Despite common perceptions that UQ is too 

expensive for large-scale problems, we demonstrated application of several UQ propagation 

strategies to a patient-specific ALE model, facilitated by the use of a sub-model to reduce 

cost. We ran 1203 simulations in parallel, and identified four quantities of interest including 

branch pressure, flow rate, time-averaged wall shear stress, and wall deformation.

Simulation results reveal that 7% cv in the inlet pressure produces 7% cv in pressure and wall 

deformation at all branches, while flow rate and wall shear stress outputs are found to be 

associated to variabilities (ie, cv) of ~5%. Moreover, 10% cv in the intramyocardial pressure 

led instead to 27% cv in the flow rate and wall shear stress, while pressure and deformation 

variability remains limited to 3% cv in all branches. Conversely, an uncertain morphometry 

exponent m uniformly distributed between 2.4 and 2.8, seems not to affect simulation 

results. A Gaussian uncertainty with 17% cv in the Young’s modulus of the vessel wall 

material seems to only affect the wall deformation QoI with equal 17% variability, leaving 

other QoIs unperturbed.

The significant variability of TAWSS (27% cv) due to small perturbations of the 

intramyocardial pressure (10% cv) suggests that a reduction in the intramyocardial pressure 

uncertainty is important to provide accurate estimates of TAWSS in coronary artery 

simulations. TAWSS has been identified as a major factor implicated in intimal thickening, 

and the progression of atherosclerosis and its rupture in coronary arteries.86–88 Recent 

studies89–91 have demonstrated that low TAWSS computed from CFD is well correlated with 

coronary artery plaque progression. In future application of CFD for prediction of 

atherosclerotic plaque rupture, ignoring variability of TAWSS may lead to inaccurate risk 

stratification of atherosclerosis. In addition, the variability of pressure in coronary artery due 

to the corresponding inlet pressure uncertainty may lead to variability of FFRCT in coronary 

artery models.

A main purpose of this study is to compare the performance of several approaches for 

uncertainty propagation, Monte Carlo and Quasi Monte Carlo sampling, Stochastic 

Collocation, and multi-resolution stochastic expansion. In this context, the performance of 

each approach was tested on three analytic models and one nonlinear equation system. In the 

test problems, SC showed fast convergence on smooth response surfaces, but failed to 

provide accurate estimates of the statistical moments for response surfaces containing sharp 

gradients or discontinuities. In addition, QMC produced better convergence rates than MC, 

and MW produced convergence rates comparable to QMC. In high-dimensional problems, 

MW showed superior performance in estimating mean, and showed slower convergence in 

estimating SD than QMC. The MW showed but showed the best performance on 

discontinuous response surfaces. Finally, we investigated and compared the convergence of 

QMC, SC, and MW on a patient-specific coronary model. We find that SC requires a 

sufficient level refinement to get correct SD estimates, and QMC shows slow convergence 
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and incorrect estimates for TAWSS and wall deformations. MW shows superior performance 

and accuracy over the QMC method, and better performance than SC especially with the 

small number of samples below 50. Overall, the MW method achieved the best performance 

of the methods compared, achieving fast convergence without sacrificing accuracy.

This study demonstrates the effects of uncertainty in the selection of four very important 

parameters affecting coronary flows, and takes an important step in comparing competing 

methods for uncertainty propagation on a realistic 3D problem. However, we recognize 

several limitations. This study did not investigate all the possible sources of uncertainty in 

coronary models and additional sources should be added in future studies. One of the most 

important sources, for example, relates to uncertainty in the lumen diameter due to 

limitations in the resolution of the selected imaging modality and operator-dependent 

segmentation. The effects of this type of uncertainty are particularly relevant on stenotic 

coronary anatomies, which justifies our choice of analyzing a model without significant 

lumen reductions, and to withhold consideration of output quantities such as FFR until 

future work. All uncertain parameters were considered independent, and interactions among 

them have been neglected. A future study will quantify the correlations among uncertain 

inputs and their interactions. An isotropic and homogeneous elastic vessel wall was assumed 

instead of more accurate descriptions, for example, characterized by three-layer models 

consisting of intima, media, and adventitia with distinct material properties,92 or using more 

sophisticated hyperelastic constitutive models.93,94 Additionally, the distribution of the 

random inputs were assumed in this study rather than inferred from available clinical data, as 

discussed in some of the studies in the literature.30 We selected the wall displacement as the 

mechanical output of interest and neglected both the pre-stress in the vessel walls and the 

extra stiffness (assumed negligible) associated with it. Finally, tissue growth and remodeling 

due to biological adaptation was not considered, though uncertainty in these models has 

been considered in prior studies.

Future work will also focus on systematic use of new estimators, such as multi-fidelity 

control variate estimators that show significant promise in computational cost saving for 

computationally expensive models.95 The multi-fidelity approach has been recently applied 

to cardiovascular simulations96,97 to achieve significant improvements of accuracy and 

variance reduction, leveraging the low computational cost of reduced-order models (eg, one-

dimensional wave propagation model or zero-dimensional lumped parameter model), with a 

fraction of the three-dimensional model cost.
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FIGURE 1. 
A, Left coronary artery (LCA) sub-model and geometrically multi-scale patient-specific 

aorto-coronary model. B, Typical coronary pressure and flow outputs from LCA model. C, 

Lumped parameter boundary conditions prescribed at each outlet
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FIGURE 2. 
LCA computational mesh with deformable walls. The lumen mesh is colored with cyan and 

the wall mesh is colored with gray. A, LCA model with branch naming conventions, B, inlet 

mesh and (C) a cut-through view of the vessel wall mesh
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FIGURE 3. 
Clinical data from cardiac catheterization. A, Seven measurements of pulsatile pressure 

waveforms in the coronary artery from Patient 1. The labels R1-R7 represent different 

measurements. B, Pulsatile pressure waveforms overlaid with the patient ECG. A starting 

instance of the cardiac cycle is recorded by Rwave. C, A cardiac cycle duration histogram for 

Patient 1
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FIGURE 4. 
Post-processed intra-coronary pressure waveforms from six patients. Each pressure 

waveform is plotted in the associated heart cycle
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FIGURE 5. 
A–C, Histograms of Patient 1 pressure data at three points in time. The red lines represent a 

Gaussian distribution fit using the first two sample moments. D, The time-history of 

coefficient of variation, cv for patients 1 to 6
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FIGURE 6. 
Stochastic modeling using the Karhunen-Loève expansion. A, Eight modes of scaled 

eigenfunctions from the exponential covariance function, K(t, t′). B, 100 realizations of the 

perturbed coronary pressure waveform Pin, C, 100 realizations of the perturbed time 

derivative of the intramyocardial pressure, Pim,t(t). Inset: Reconstructed left ventricular 

pressure waveforms
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FIGURE 7. 
Model response and sampling distributions in forward uncertainty propagation. A, The 

response surface of u(ξ1, ξ2) = sin (πξ1)sin(πξ2). B–F, Sampling points (white dots) are 

overlaid on the response surface (colormap). B, Monte-Carlo, C, Quasi Monte-Carlo, D, 

Clenshaw-Curtis sparse grid with level 6, E, Multiresolution framework using grid points. 

The hypercube binary partitions are plotted as red boxes, at refinement iteration 7. F, 

Multiresolution framework using random points, at refinement iteration 12. G, Absolute 

errors in the mean, ϵμ, H, absolute errors in the SD
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FIGURE 8. 
Sampling methods and convergence rates for the discontinuous sine response surface from 

Equation (9). Sampling points (white dots) are overlaid on the response surface (colormap). 

A, Sparse Clenshaw-Curtis grid with the Smolyak, level 8, B, Multiresolution framework 

using grid points. The hypercube binary partitions are plotted as red boxes, at refinement 

iteration 7. C, Multiresolution framework using random points, at refinement iteration 13. 

Forty initial samples were placed. D, Absolute errors of the mean, ϵμ, E, absolute errors of 

the SD, ϵσ
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FIGURE 9. 
Convergence rates for the 10 dimensional sine response surface from Equation (10). A, 

Absolute errors of the mean, ϵμ[s1], B, absolute errors of the SD, ϵσ[s1], C, absolute errors 

of the mean, ϵμ[s2], D, absolute errors of the SD, ϵσ[s2]
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FIGURE 10. 
Uncertainty propagation through the Kraichnan-Orzag problem. A, the response surface of 

u1 at t = 10 subject to uncertain parameters in the initial condition ξ1 and ξ2. B, the error of 

the mean of u1 at t = 10, ϵμ, against the number of samples. C, the error of the SD of u1 at t = 

10, ϵσ, against the number of samples. The reference mean and SD are obtained from MC 

with 2 × 106 samples
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FIGURE 11. 
Two hundred realizations of QoI for six branches of LCA model with the perturbed pulsatile 

inlet pressure. Realizations are computed from the QMC sampling. The cross-sectional area 

of vessel branch is plotted on top of TAWSS with a dashed dot gray line. The ensemble 

averaged quantities of the LCx-OM3 branch are plotted with red lines, and 95% confidence 

intervals are plotted in gray. x is the axial location along the centerline of the vessel, and 

Lbranch is the length of each branch
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FIGURE 12. 
(Top) CDF estimates of QoIs in LAD obtained from QMC and MW approach. (bottom) 

Mean and SD of QoIs resulting from uncertainty in the inlet pressure time history. The error 

bars represent two SD. The coefficients of variation are reported at the top of each bar. Over 

bar notation on QoIs means time-average and underline notation means the spatial average
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FIGURE 13. 
Six realizations of the wall shear stress contours on the LCA model resulting from 

uncertainty in the intramyocardial pressure time history. The wall mesh is colored with 

transparent gray
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FIGURE 14. 
Realizations and statistics of the QoIs in two branches resulting from the perturbed time 

derivative of intramyocardial pressure. In LAD, ensemble averaged quantities are plotted 

with red lines, and 95% confidence intervals are plotted in gray. In the LAD-D1 branch, 200 

realizations of QoI are plotted. (Histograms) CDF estimates of QoIs in the LAD branch. 

(Bar plots) Mean and SD of LCA QoIs resulting from uncertainty in the intramyocardial 

pressure time history. The coefficients of variation are reported at the top of each bar
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FIGURE 15. 
Mean and SDs of LCA QoIs resulting from uncertainty in the morphometry law. The error 

bars represent two standard deviations. The coefficients of variation are reported at the top of 

each bar. Ai is the cross-sectional area and Ri is the resistance imposed at each outlet
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FIGURE 16. 
Mean and standard deviations of LCA QoI resulting from uncertainty in the Young’s 

modulus. The error bars represent two SD. The coefficients of variation are reported at the 

top of each bar
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FIGURE 17. 
Statistics of the QoIs in six branches resulting from all perturbed inputs. Ensemble averaged 

quantities are plotted with red lines, and 95% confidence intervals are plotted in gray. (Bar 

plots) Mean and SD of LCA QoI resulting from uncertainty in all inputs. The error bars 

represent two SD. The coefficients of variation are reported at the top of each bar
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FIGURE 18. 
Convergence of mean quantities of interest, A–D, and SD, E–H, resulting from perturbing 

the inlet pressure and the intramyocardial pressure
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FIGURE 19. 
Convergence of mean quantities of interest, A–D, and SD, E–H resulting from perturbing the 

Young’s modulus, and all input parameters simultaneously
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TABLE 1

Characterization of the patient cohort included in the present study

Patient Sex Age Weight(kg) Height(cm) BMI Location Lesion

1 Male 74 127 170 45.3 LAD Proximal 50% stenosis

2 Male 68 88 188 24.9 LAD None

3 Male 77 91 170 31.5 LAD,LCx None

4 Male 70 47 155 19.7 LAD,LAD,RCA None

5 Female 52 98 185 28.5 RCA Ostial 50% stenosis

6 Male 49 67 170 23.2 RCA Mid 50%stenosis

Abbreviations: LAD, left anterior descending artery; LCx, left circumflex artery; RCA, right coronary artery.
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TABLE 2

Intra-coronary pressure data measured from a cardiac catetherization on six patients

Patient No.
Pressure (mm Hg) Heart cycle (second)

Max. Min. Mean SD cv Mean

1 202 74 122 7.8 6.4 0.95

2 109 63 82 4.4 5.3 0.70

3 131 41 83 6.2 7.4 0.91

4 134 42 76 4.4 5.8 0.83

5 148 41 98 6.0 6.1 0.79

6 139 52 92 6.8 7.4 0.94

Note: Pressures are in mm Hg, heart cycles are in second, and cv is reported as a percentage.
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