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Behavioral/Cognitive

Hand-Selective Visual Regions Represent How to Grasp 3D
Tools: Brain Decoding during Real Actions
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Most neuroimaging experiments that investigate how tools and their actions are represented in the brain use visual para-
digms where tools or hands are displayed as 2D images and no real movements are performed. These studies discovered
selective visual responses in occipitotemporal and parietal cortices for viewing pictures of hands or tools, which are assumed
to reflect action processing, but this has rarely been directly investigated. Here, we examined the responses of independently
visually defined category-selective brain areas when participants grasped 3D tools (N=20; 9 females). Using real-action fMRI
and multivoxel pattern analysis, we found that grasp typicality representations (i.e., whether a tool is grasped appropriately
for use) were decodable from hand-selective areas in occipitotemporal and parietal cortices, but not from tool-, object-, or
body-selective areas, even if partially overlapping. Importantly, these effects were exclusive for actions with tools, but not for
biomechanically matched actions with control nontools. In addition, grasp typicality decoding was significantly higher in
hand than tool-selective parietal regions. Notably, grasp typicality representations were automatically evoked even when there
was no requirement for tool use and participants were naive to object category (tool vs nontools). Finding a specificity for
typical tool grasping in hand-selective, rather than tool-selective, regions challenges the long-standing assumption that activa-
tion for viewing tool images reflects sensorimotor processing linked to tool manipulation. Instead, our results show that typi-
cality representations for tool grasping are automatically evoked in visual regions specialized for representing the human
hand, the primary tool of the brain for interacting with the world.
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The unique ability of humans to manufacture and use tools is unsurpassed across the animal kingdom, with tool use consid-
ered a defining feature of our species. Most neuroscientific studies that investigate the brain mechanisms that support tool
use record brain activity while people simply view images of tools or hands and not when people perform actual hand move-
ments with tools. Here we show that specific areas of the human visual system that preferentially process hands automatically
encode how to appropriately grasp 3D tools, even when no actual tool use is required. These findings suggest that visual areas
optimized for processing hands represent fundamental aspects of tool grasping in humans, such as which side they should be
grasped for correct manipulation. /
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(SMG) or posterior middle temporal gyrus (pMTG) are often
interpreted as indirect evidence that these regions are involved in
real tool manipulation (Buxbaum et al., 2006; Bach et al., 2010).
Nevertheless, we would never grasp a picture of a tool, and, more
importantly, finding spatially overlapping activation between two
tasks does not directly imply that the same neural representations
are being triggered (Dinstein et al., 2008; Martin, 2016). In fact,
intraparietal activation for viewing tool pictures versus grasping
shows poor correspondence (Valyear et al., 2007; Gallivan et al.,
2013), questioning the long-standing assumption that visual tool
selectivity represents sensorimotor aspects of manipulation.

Curiously, the visual regions activated by viewing pictures of
hands in the left intraparietal sulcus (IPS-hand) and lateral occi-
pital temporal cortex (LOTC-hand) overlap with their respective
tool-selective areas (IPS-tool; LOTC-tool; Bracci et al,, 2012;
Bracci and Peelen, 2013; Bracci and Op de Beeck, 2016).
Stimulus features often described to drive the organization of
category-selective areas, like form (Coggan et al., 2016), animacy
(Konkle and Caramazza, 2013), or manipulability (Mahon et al.,
2007), poorly explain this shared topography because hands and
tools differ on these dimensions. Instead, their overlap is sug-
gested to result from a joint representation of high-level action
information related to skillful object manipulation (Bracci et al.,
2012; Bracci and Op de Beeck, 2016; Striem-Amit et al., 2017),
perhaps coding the function of hand configurations (Perini et al.,
2014; Bracci et al., 2018). Arguably, the only way to directly test
whether tool- or hand-selective visual areas carry information
about tool actions is to examine their responses during real 3D
tool manipulation. Yet, very few fMRI studies involve real tool
manipulation (Gallivan et al., 2009; Valyear et al., 2012; Brandi et
al.,, 2014; Styrkowiec et al,, 2019). To date, only Gallivan et al.
(2013) have investigated real tool manipulation in visually
defined tool-selective regions and showed that IPS-tool/LOTC-
tool are indeed sensitive to coarsely different biomechanical
actions (reaching vs grasping) with a pair of tongs. However, it
remains unknown whether hand-selective visual areas represent
properties of real hand movements with 3D tools, like the way
they are typically grasped for subsequent use.

Here, an fMRI experiment involving real hand actions (Fig.
1) tested whether visually defined hand- and tool-selective areas
represented how to typically grasp 3D tools. Specifically, partici-
pants grasped 3D-printed tools in ways either consistent with
their use (typical: by their handle) or not (atypical: by their func-
tional end; e.g., knife blade). As a control, nontool bars (matched
with the tools for elongation, width, and depth; Brandi et al.,
2014) were also grasped on their right or left sides to match as
much as possible any biomechanical differences between typical
and atypical actions. Multivoxel pattern analysis (MVPA) was
used to assess whether different tool grasps (typical vs atypical)
and nontool grasps (right vs left) could be decoded from fMRI
activity patterns within independent visually defined regions of
interest (ROIs). Greater-than-chance decoding accuracy of typi-
cal versus atypical actions for tools, but not control nontools,
was interpreted as evidence that an area contains high-level typi-
cality representations about how a tool should be grasped cor-
rectly for use (i.e., by its handle). This pattern of findings was
expected only for the tool- and hand-selective areas since these
are thought to support tool manipulation (Mahon and
Caramazza, 2009; Striem-Amit et al., 2017).

Materials and Methods

Participants

Twenty healthy participants (11 males) completed the real-action fMRI
experiment followed by a visual localizer experiment on a separate day.
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Data from one participant (male) were excluded from statistical analysis
because of excessive head movements during the real-action experiment
(i.e., translation and rotation exceeded 1.5 mm and 1.5° rotation), leav-
ing a total sample of 19 participants (mean age,23 = 4.2 years; age
range, 18-34 years). All participants had normal or corrected-to-normal
vision and no history of neurologic or psychiatric disorders, were right
handed (Oldfield, 1971), and gave written consent in line with proce-
dures approved by the School of Psychology Ethics Committee at the
University of East Anglia.

Real-action 3D stimuli

Tool and nontool object categories were designed (Autodesk) and 3D-
printed (Objet30 Desktop) in VeroWhite material (Statasys): three
common kitchen tools (knife, spoon, and pizzacutter) and three
nontool control bars (Fig. 1A). Objects were secured to slots placed
onto black pedestals used for stimulus presentation. Tools had iden-
tical handles (length x width x depth dimensions, 11.6 x 1.9 X
1.1 cm) with different functional ends attached (knife,10.1 x 1.9 x
0.2 cm; spoon, 10.1 x 4.1 x 0.7 cm; pizzacutter, 10.1 x 7.5 x 0.2 cm).
To avoid motor or visual confounds, tools and nontool pairs were care-
fully matched in terms of visual properties and kinematic requirements
as much as possible. Specifically, nontools were composed of three cy-
lindrical shapes (adapted from Brandi et al., 2014) with handle, neck,
and functional end dimensions matched to each tool they controlled
for, ensuring that grip size was matched between tool and nontool
pairs. In addition, all objects had small black stickers placed at prespe-
cified locations to indicate grasp points, ensuring that grasp position/
reach distance were identical between tool and nontool pairs regardless
of the side to be grasped. To avoid familiarity confounds between tools
and nontool control stimuli, we chose to use bars instead of scrambled
tools, and, thus, our control nontools were familiar, but had no specific
associated function. Furthermore, each tool and nontool pair were
carefully matched for elongation so that any differences between condi-
tions could not be explained by low-level shape preferences (Sakuraba
et al., 2012; Brandi et al., 2014).

Real-action setup and apparatus

Participants were scanned in complete darkness using a head-tilted
configuration that allowed direct viewing of the workspace and 3D
stimuli without the use of mirrors (Fig. 1B) by tilting the head coil
~20° and padding the underside of each participants heads with
foam cushions (NoMoCo Pillow). Objects were placed by an experi-
menter on a turntable above the participant’s pelvis and were visible
only when illuminated (Fernandez-Espejo et al., 2015; Fig. 1B). All
stimuli were mounted such that they were aligned with participants’
midlines, never changed position while visible and were tilted away
from the horizontal at an angle (~15°) to maximize visibility and
grasp comfort. For stimulus presentation, the workspace and object
were illuminated from the front using a bright white light-emitting
diode (LED) attached to a flexible plastic stalk (Loc-line, Lockwood
Products; Fig. 1B). To control for eye movements, participants were
instructed to fixate a small red LED positioned above and behind
objects such that they appeared in the lower visual field (Rossit et
al., 2013). Throughout the experiment, a participant’s right eye and
arm movements were monitored online and recorded using two
MR-compatible infrared-sensitive cameras (MRC Systems) to verify
that participants performed the correct grasping movement (hand
camera positioned over the left shoulder; Fig. 1B) and maintained
fixation (eye camera beside the right eye; Fig. 1B). The likelihood of
motion artifacts related to grasping was reduced by restraining the
upper right arm and providing support with additional cushions so
that movements were performed by flexion around the elbow only
(Culham, 2006). Auditory instructions were delivered to the partici-
pants through earphones (MRI-Compatible Insert Earphones,
Model S14, SENSIMETRICS). At the beginning of the real-action
session, participant setup involved adjusting the exact position of
the following: (1) stimuli and the hand to ensure reachability (aver-
age grasping distance between the “home” position and object, 43
cm); (2) the illuminator to equally light all objects; (3) the fixation
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Figure 1.

Experimental setup and design. A, 3D-printed tool and nontool control object pairs (black markers on objects indicate grasp points), which were matched for elongation, width,

and depth such that tool and nontool actions were biomechanically similar. B, Side view of real-action participant setup used to present 3D objects at grasping distance (without the use of mir-
rors). Red star indicates fixation LED. The hand is shown at its starting position. C, Timing and grasping tasks from the subject’s point of view for the real-action experiment. During the 10 s
ON-block, the object was illuminated five times cueing the participant to grasp the object each time by its left or right side (as per preceding auditory cue) with the right hand. Exemplar videos
of trial types can be accessed here: https://osf.io/gsmyw/. This was followed by a 10 s OFF-block involving no stimulation where the workspace remained dark. For MVPA, we treated tool and
nontool trials independently, where for the tools only, right- and left-sided grasps were typical and atypical grasps, respectively (based on handle orientation). D, Timing of visual localizer
experiment. In the visual localizer, blocks of tools, hands, chairs, bodies, and scrambled 2D image stimuli were presented in between fixation-only screens. E, For each individual participant, in-
dependent ROIs were defined for MVPA using functional activity from the visual localizer (Table 1). The representative ROI locations are displayed on a group activation contrast map from the
visual localizer [all conditions > (Baseline*5)] projected onto a left hemisphere cortical surface reconstruction of a reference brain (COLIN27 Talairach) available from the neuroElf package

(http://neuroelf.net).

LED to meet the natural line of gaze (average distance from fixation
to bridge nose, 91 cm; visual angle, ~20°); and (4) the infrared-sen-
sitive eye and hand cameras to monitor eye and hand movement
errors. The experiment was controlled by a MATLAB script (version
R2010a; MathWorks) using the Psychophysics Toolbox (Brainard, 1997).

Real-action experimental paradigm

We used a powerful block design fMRI paradigm, which maximized the
contrast-to-noise ratio to generate a reliable estimate of the average
response pattern (Mur et al., 2009) and improved detection of blood ox-
ygenation level-dependent (BOLD) signal changes without significant
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interference from artifacts during overt movement (Birn et al., 2004). A
block began with an auditory instruction (“left” or “right”; 0.5 s) specify-
ing which side of the upcoming object to grasp (Fig. 1C). During the
ON-block (10 s), the object was briefly illuminated for 0.25 s five consec-
utive times (within 2 s intervals) cueing the participant to grasp with a
right-handed precision grip (i.e., index finger and thumb) along the ver-
tical axis. Between actions, participants returned their hand to a “home”
position with their right hand closed in a fist on their chest (Fig. 1B).
This brief object flashing presentation cycle during ON-blocks has been
shown to maximize the signal-to-noise ratio in previous perceptual decod-
ing experiments (Kay et al., 2008; Smith and Muckli, 2010) and eliminates
the sensory confound from viewing hand movements (Rossit et al., 2013;
Monaco et al., 2015). An OFF-block (10 s) followed the stimulation block
where the workspace remained dark and the experimenter placed the next
stimulus. A single fMRI run included 16 blocks involving the four grasp-
ing conditions (i.e., typical tool, atypical tool, right nontool, and left non-
tool) each with three repetitions (one per exemplar; every object was
presented twice and grasped on each side once). An additional tool
(whisk) and a nontool object were presented on the remaining four blocks
per run, but not analyzed as they were not matched in dimensions because
of a technical problem (the original control nontool for the whisk was too
large to allow rotation of the turntable within the scanner bore). On aver-
age, participants completed six runs (minimum, five runs; maximum,
seven runs) for a total of 18 repetitions per grasping condition. Block
orders were pseudorandomized such that conditions were never repeated
(two-back) and were preceded an equal number of times by other condi-
tions. Each functional scan lasted 356 s, inclusive of start/end baseline fixa-
tion periods (14 s). Each experimental session lasted ~2.25 h (including
setup, task practice, and anatomic scan). Before the fMRI experiment, par-
ticipants were familiarized with the setup and practiced the grasping tasks
in a separate laboratory session (30 min) outside of the scanner. The hand
and eye movement videos were monitored online and offline to identify
error trials. Two runs (of two separate participants) from the entire dataset
were excluded from further analysis. In one of these blocks, the participant
failed to follow the grasping task instructions correctly (ie., performing
alternated left and right grasps) and for the remaining block another par-
ticipant did not maintain fixation (i.e., made downward saccades toward
objects). In the remaining runs that were analyzed, participants made per-
formance errors in <1% of experimental trials. The types of errors
included the following: not reaching (three trials, two participants), reach-
ing in the wrong direction (one trial, one participant), and downward eye
saccades (five trials, three participants). A one-way repeated-measures
ANOVA with 12 levels (i.e., the six exemplars across both left vs right
grasping conditions) showed that the percentage of errors was equally dis-
tributed among trial types regardless of whether the percentage of hand
and eye errors were combined or treated separately (all p values > 0.28).
Crucially, since the tool handles were always oriented rightward, the
right and left tool trials involved grasping tools either by their handle (typ-
ical) or functional end (atypical), respectively. On the other hand, grasping
nontools did not involve a typical manipulation but only differed in grasp
direction with right versus left grasps (Fig. 1C). We chose to present right-
ward-oriented tool handles only, rather than alternate object orientation
randomly between trials, to reduce total trial numbers (scanning times
were already quite extensive with setup) and because of technical limita-
tions (i.e., the rotation direction of the turntable was fixed, and it was diffi-
cult for the experimenter to manipulate tool orientation in the dark).
Nevertheless, by comparing the decoding accuracies for each region
between tool and nontool grasps (which were matched for biomechanics),
we ruled out the possibility that our typical manipulation simply reflected
grasp direction. Specifically, we took the conservative approach that for an
area to be sensitive to tool grasping typicality, it should not only show
greater-than-chance decoding for typical versus atypical actions with tools
(i.e., typicality), but also that the typicality decoding accuracy should be
significantly greater than the accuracy for biomechanically matched
actions with our control nontools (i.e., right vs left actions with nontools).

Visual localizer
On a separate day from the real-action experiment, participants com-
pleted a bodies, chairs, tools and hands (BOTH) visual localizer (adapted
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from Bracci et al., 2012; Bracci and Peelen, 2013; Bracci and Op de
Beeck, 2016) using a standard coil configuration (for details, see MRI ac-
quisition). Two sets of exemplar images were selected from previous
stimuli databases (Bracci et al., 2012; Bracci and Peelen, 2013; Bracci and
Op de Beeck, 2016) that were chosen to match, as much as possible, the
characteristics within the tool (i.e., identity and orientation), body (i.e.,
gender, body position, and amount of skin shown), hand (i.e., position
and orientation), and chair (i.e., materials, type, and style) categories.
Using a mirror attached to the head coil, participants viewed separate
blocks (14 s) of 14 different grayscale 2D pictures from a given category
(400 x 400 pixels; 0.5 s). Blank intervals separated individual stimuli
(0.5 s), and scrambled image blocks separated cycles of the four random-
ized category blocks (Fig. 1D). Throughout, participants fixated on a
superimposed bullseye in the center of each image and, to encourage
attention, performed a one-back repetition detection task where they
made a right-handed button press whenever two successive photographs
were identical. The 2D image stimuli were presented with an LCD pro-
jector (SilentVision SV-6011 LCD, Avotech). A single fMRI run
included 24 category blocks (six repetitions per condition) with blank
fixation baseline periods (14 s) at the beginning and the end of the
experiment. Each localizer scan lasted 448 s, and, on average, partici-
pants completed four runs (minimum, three runs; maximum, four runs)
for a total of 24 repetitions/condition. The entire localizer session lasted
~50 min after including the time taken to acquire a high-resolution ana-
tomic scan and to set up participants.

MRI acquisition

The BOLD fMRI measurements were acquired using a 3 T wide-bore
MR scanner (Discovery MR750, GE Healthcare) at the Norfolk and
Norwich University Hospital (Norwich, UK). To achieve a good signal-
to-noise ratio during the real-action fMRI experiment, the posterior half
of a 21-channel receive-only coil was tilted and a 16-channel receive-
only flex coil was suspended over the anterosuperior part of the skull
(Fig. 1B). A T2*-weighted single-shot gradient echoplanar imaging
sequence was used throughout the real-action experiment to acquire 178
functional MRI volumes [repetition time (TR)=2000 ms; voxel resolu-
tion (VR)=3.3x3.3x3.3 mm; echo time (TE)=30 ms; flip angle
(FA)=78°% field of view (FOV)=211x211 mm; matrix size
(MS) = 64 x 64], which comprised 35 oblique slices (no gap) acquired at
30° with respect to anterior commissure-posterior commissure (AC-
PC), to provide near whole-brain coverage. A T1-weighted anatomic
image with 196 slices was acquired at the beginning of the session using
BRAVO sequences (TR =2000 ms; TE =30 ms; FOV =230 x 230 x 230
mm; FA =9°% MS =256 x 256; voxel size=0.9 x 0.9 X 0.9 mm).

For visual localizer sessions, a full 21-channel head coil was used to
obtain 224 functional MRI volumes (TR = 2000 ms; VR=3.3 x 3.3 x 3.3
mm; TE=30 ms; FA=78% FOV =211 x 211 mm; MS=64 x 64). A
high-resolution T1-weighted anatomic image with 196 slices was
acquired before the localizer runs (TR=2000 ms; TE=30 ms;
FOV =230 x 230 x 230 mm; FA =9° MS =256 x 256; voxel size =0.9 x
0.9 x 0.9 mm). Localizer datasets for two participants were retrieved
from another study from our group (Rossit et al., 2018), where the iden-
tical paradigm was performed when acquiring volumes using a whole-
body 3 T scanner (MAGNETOM Prisma Fit, Siemens) with a 64-chan-
nel head coil and integrated parallel imaging techniques at the
Scannexus imaging center (Maastricht, The Netherlands) and compara-
ble acquisition parameters (functional scans: TR =2000 ms; TE =30 ms;
FA =77° FOV =216 mm; MS =72 x 72; anatomical scan, T1-weighted
anatomic image: TR =2250 ms; TE=2.21 ms; FA =9°% FOV =256 mm;
MS =256 x 256).

Data preprocessing

Preprocessing and ROI definitions were performed using BrainVoyager
QX (version 2.8.2; Brain Innovation). The BrainVoyager 3D motion cor-
rection (sinc interpolation) aligned each functional volume within a run
to the functional volume acquired closest in time to the anatomic scan
(Rossit et al., 2013). Slice scan time correction (ascending and inter-
leaved) and high-pass temporal filtering (two cycles per run) was also
performed. Functional data were superimposed on to the anatomic brain
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Table 1. Visual localizer ROI descriptives

Mean peak coordinates (SD)

Mean size

ROI Subjects with ROI (N) ~ (SD) X y z

EVC 19 114 (35) —14(6) —89(4) —9(9)
LOTC-object 19 148 (34) —0@) =774 -7
LOTC-body 18 55300 —45(3) —76(5 2(6)
LOTC-hand 17 81 (44) —47 (4) =71 (4) —1(5)
LOTC-tool 17 77 (45) —47(5) =71 (5) —2(6)
pMTG 17 96(48)  —45(4) —57(3) 3(4)
pFs 19 105 (41) —40(4) —54(4) 144
SMG 17 69 (43)  —53(6) —28(4) 27 (6)
IPS-hand 19 110 (57) —38(4) —46(7) 4 (3)
IPS-tool 19 81 (55) =37(5) —-4(7) 42 (5)
PMv 14 61(42) —45(7) —1(6) 31(5)
PMd 14 47 (28) -29(5) —-134) 51(4)

ROI subject counts with their mean sizes (voxels) and peak coordinates (Talairach).

images acquired during the localizer paradigm that were previously
aligned to the plane of the AC-PC and transformed into standard ste-
reotaxic space (Talairach and Tournoux, 1988). Excessive motion was
screened by examining the time-course movies and motion plots created
with the motion-correction algorithms for each run. No spatial smooth-
ing was applied.

To estimate activity in the localizer experiment, a predictor was used
per image condition (i.e., bodies, objects, tools, hands, and scrambled) in
a single-subject general linear model. Predictors were created from box-
car functions that were convolved with a standard 2y model of the he-
modynamic response function (Boynton et al., 1996) and aligned to the
onset of the stimulus with durations matching block length. The baseline
epochs were excluded from the model, and therefore, all regression coef-
ficients were defined relative to this baseline activity. This process was
repeated for the real-action experiment, using 16 separate predictors for
each block of stimulation independently per run (12 exemplars, e.g.,
knife typical, knife atypical, spoon typical, plus four foil trials) and 6
motion regressors (confound predictors). These estimates (8 weights)
from the real-action experiment were used as the input to the pattern
classifier.

Visual localizer regions of interest
Twelve visual ROIs were defined at the individual participant level from
the independent BOTH localizer data by drawing a cube (15 voxels®)
around the peak of activity from previously reported volumetric con-
trasts (see below; Fig. 1E, Table 1) set at a threshold of p < 0.005
(Gallivan et al., 2013) or, if no activity was identified, of p < 0.01 (Bracci
and Op de Beeck, 2016). In cases where no activity was observed, the
ROI was omitted for that participant (Table 1). Given the predominantly
left lateralized nature of tool processing (Lewis, 2006); all individual par-
ticipant ROIs were defined in the left hemisphere (Bracci et al., 2012;
Bracci and Peelen, 2013; Peelen et al., 2013; Bracci and Op de Beeck,
2016). Six tool-selective ROIs commonly described in left frontoparietal
and occipitotemporal cortices were identified by contrasting activation
for tool pictures versus other object pictures [IPS-tool; SMG; dorsal pre-
motor cortex (PMd); ventral premotor cortex (PMv), LOTC-tool;
pPMTG; Martin et al., 1996; Grafton et al., 1997]. Moreover, two hand-
selective ROIs were identified in LOTC (LOTC-hand) and IPS (IPS-
hand) by contrasting activation for hand pictures versus pictures of other
body parts (Bracci et al., 2012, 2018; Peelen et al., 2013; Bracci and Op
de Beeck, 2016; Palser and Cavina-Pratesi, 2018). Additionally, we
defined a body-selective ROI (LOTC-body; bodies > chairs; Bracci and
Op de Beeck, 2016), two object-selective ROIs [LOTC-object selective
(LOTC-object); posterior fusiform (pFs); chairs > scrambled; Bracci and
Op de Beeck, 2016; Hutchison et al., 2014], and an early visual cortex
ROI (EVG; all categories > baseline; Bracci and Op de Beeck, 2016). The
ROI locations were verified by a senior author (S.R.) with respect to the
following anatomic guidelines and contrasts.

LOTC-object. LOTC-object (chairs > scrambled; Hutchison et al.,
2014; Bracci and Op de Beeck, 2016) is defined by selecting the peak of
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activation near the lateral occipital sulcus (LOS; Hutchison et al., 2014;
Bracci and Op de Beeck, 2016; Malach et al., 1995; Grill-Spector et al.,
1999, 2001).

LOTC-body. LOTC-body (bodies > chairs; Bracci and Op de Beeck,
2016) is defined by selecting the peak of activation near the LOS and in-
ferior to the left extrastriate body area (EBA; Valyear and Culham,
2010), which was identified by the contrast [(bodies + hands) > chairs;
adapted from Bracci et al., 2010; (whole bodies + body parts) > (hands
+ chairs)]. EBA was not included in the analysis.

LOTC-hand. LOTC-hand [(hands > Chairs) and (hands > bodies);
Bracci and Op de Beeck, 2016] is defined by selecting the peak of activa-
tion near the LOS. These were often anterior to LOTC-body (Bracci et
al., 2010; Bracci and Op de Beeck, 2016).

LOTC-tool. LOTC-tool (tools > chairs; Bracci et al, 2012;
Hutchison et al., 2014) is defined by selecting the peak of activation near
the LOS. These often closely overlapped LOTC-hand (Bracci et al.,
2012).

PMTG. pMTG (tools > chairs; Hutchison et al., 2014; Valyear and
Culham, 2010) is defined by selecting the peak of activation on the
PMTG, more lateral, ventral, and anterior to EBA (Hutchison et al.,
2014). We selected the peak anterior to the anterior occipital sulcus
(AOS), as the MTG is in the temporal lobe and the AOS separates the
temporal lobe from the occipital lobe (Damasio, 1995).

pFs. pFs (chairs > scrambled; Hutchison et al., 2014) is defined by
selecting the peak of activation in the posterior aspect of the fusiform
gyrus, extending into the occipitotemporal sulcus (Hutchison et al.,
2014).

IPS-hand. TPS-hand (hands > chairs; Bracci and Op de Beeck, 2016)
is defined by selecting the peak of activation on the IPS (Bracci and Op
de Beeck, 2016).

IPS-tool. IPS-tool (tools > scrambled; Bracci and Op de Beeck, 2016)
is defined by selecting the peak of activation on the IPS (Bracci and Op
de Beeck, 2016).

SMG. SMG (tools > scrambled; Creem-Regehr et al., 2007) is
defined by selecting the peak of activation located most anterior along
the SMG (Peeters et al., 2013), lateral to the anterior segment of the IPS
(Gallivan et al., 2013), posterior to the precentral sulcus (PreCS), and
superior to the lateral sulcus (Ariani et al., 2015).

PMd. PMd (tools > scrambled) is defined by selecting the peak of
activation at the junction of the PreCS and the superior frontal sulcus
(Gallivan et al., 2013; Ariani et al., 2015).

PMv. PMv (tools > scrambled; Creem-Regehr et al., 2007) is defined
by selecting the voxels inferior and posterior to the junction between the
inferior frontal sulcus and the PreCS (Gallivan et al., 2013).

EVC. EVC (all conditions > baseline; Bracci and Op de Beeck, 2016)
is defined by selecting the voxels in the occipital cortex near the calcarine
sulcus (Singhal et al., 2013).

Pattern classification

We performed MVPA independently for tool and nontool trial types.
Independent linear pattern classifiers [linear support vector machine
(SVM)] were trained to learn the mapping between a set of brain-activity
patterns (3 values computed from single blocks of activity) from the vis-
ual ROIs and the type of grasp being performed with the tools (typical vs
atypical) or nontools (right vs left). To test the performance of our classi-
fiers, decoding accuracy was assessed using an n-fold leave-one-run-out
cross-validation procedure; thus, our models were built from n - 1 runs
and were tested on the independent nth run (repeated for the » different
possible partitions of runs in this scheme; Duda et al., 2001; Smith and
Muckli, 2010; Smith and Goodale, 2015; Gallivan et al., 2016) before
averaging across # iterations to produce a representative decoding accu-
racy measure per participant and per ROL Beta estimates for each voxel
were normalized (separately for training and test data) within a range of
—1 to +1 before input to the SVM (Chang and Lin, 2011), and the linear
SVM algorithm was implemented using the default parameters provided
in the LibSVM toolbox (C=1). Pattern classification was performed
with a combination of in-house scripts (Smith and Muckli, 2010; Smith
and Goodale, 2015) using MATLAB with the Neuroelf toolbox (version
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0.9¢; http://neuroelf.net) and a linear SVM classifier (libSVM 2.12 tool-
box; https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Statistical analysis

One-tailed one-sample ¢ tests were used to test for above-chance decod-
ing for tool and nontool action classifications in every ROI independ-
ently. If the pattern of results was consistent with our hypothesis (i.e.,
decoding accuracy was significantly above chance for tools, but not for
nontools), we further ran a one-tailed pairwise ¢ test to compare whether
decoding accuracy was significantly higher for tools than for nontools.
Additionally, to test for differences in decoding accuracy between ROIs,
we used repeated-measures 2 X 2 ANOVAs with ROI (tool vs hand
selective) and region (IPS vs. LOTC) as within-subject factors. Then, to
test whether univariate differences would differ between grasp types for
the tools, but not for the nontools, we ran 2 x 2 ANOVAs with grasp
type (typical/right vs atypical/left) and object category (tools vs nontools)
by entering mean S weights for each ROIL Separately for each set of
analyses, we corrected for multiple comparisons with false discovery rate
(FDR) correction of g<0.05 (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001) across the number of tests. Only signifi-
cant results are reported (Fig. 2). Our sample size was based on similar
motor studies using MVPA (Gallivan et al., 2009, 2013, 2014; Ariani et
al,, 2015, 2018), though no power analysis was performed before data
collection.

To test for evidence for the null hypothesis over an alternative
hypothesis, we supplemented null-hypothesis significance tests with
Bayes factors (BFs; Wagenmakers, 2007; Rouder et al., 2009). Bayes
factors were estimated using the bayesFactor toolbox in MATLAB
(version 1.1; https://klabhub.github.io/bayesFactor). The Jeffreys-
Zellner-Siow default prior on effect sizes was used (Rouder et al.,
2012), and BFs were interpreted according to the criteria set out by
Jeffreys (1961; Jarosz and Wiley, 2014), where a BF(; between 1 to 3
and >3 indicate “anecdotal” and “substantial” evidence in favor of
the null, respectively.

Data availability

Stimuli, code for running the experiment and for MVPA analyses,
and ROI data are accessible from Open Science Framework at
https://osf.io/zxnpv. Full raw MRI dataset (real action and visual lo-
calizer) is accessible from OpenNEURO at https://openneuro.org/
datasets/ds003342/versions/1.0.0.

Results

In line with our predictions, as can be seen in Figure 2, a one-sam-
ple ¢ test against chance (50%) showed that SVM decoding accu-
racy (FDR corrected) from hand-selective ROIs in LOTC and IPS
were significantly greater-than-chance when discriminating typical
versus atypical actions with tools (mean * SD; LOTC-hand
accuracy=56 = 0.9%, t;6=2.73, p=0.007, d=0.66; IPS-hand
accuracy =57 * 0.11%, tqg =272, p=0.007, d=0.62), but not
biomechanically matched actions with nontools (right vs left;
LOTC-hand: p=0.252, IPS-hand: p=0.844). In fact, there was
substantial evidence in favor of null decoding of nontool actions
for the IPS ROI (LOTC-hand, BF,; = 2.29; IPS-hand, BF,; = 8.4).
Importantly, results from a stringent between-classification
paired-samples t test also further supported this: typicality decod-
ing accuracy from both LOTC-hand and IPS-hand was signifi-
cantly higher for tools than for biomechanically matched actions
with nontools (LOTC-hand: f6)=2.11, p=0.026, d=0.51; IPS-
hand: f,g = 3.26, p = 0.002, d = 0.75; Fig. 2A,B).

No other visual ROI, including tool-selective areas, displayed
the same significant effects as hand-selective areas (Fig. 2A,B).
For tool-selective ROIs, decoding accuracy was not significantly
greater than chance for classifying actions with tools or nontools
(all p values > 0.024), with the Bayesian approach demonstrating
strong evidence in favor of the null for PMv tool decoding (tool,
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BFp; = 3.23; nontool, BFy; = 6.85) and SMG tool decoding
(tool, BFy; = 8.85; other BF; values < 1.08). The exception to
this was tool-selective PMd, which was found to decode signif-
icantly above-chance actions with nontools (accuracy =59 *
0.08%, t(13=4.11, p=0.001, d=1.1; Fig. 2A), but not tools
(BFg; = 4.42). As for object- and body-selective areas, LOTC-
object decoding accuracy did not differ from chance for tools
or nontools (p >0.026), though evidence in favor of the null
was anecdotal (BFy; values < 1.33), whereas pFs and LOTC-
body decoded actions above chance with both tools (pFs:
accuracy =58 £ 0.14%, t(15=2.57, p=0.01, d=0.59; LOTC-
body: accuracy =59 * 0.08%, t7 =4.75, p<0.001, d=1.12)
and nontools (pFs: accuracy=57 * 0.12%, tg =2.59,
p=0.009, d=0.59; LOTC-body: accuracy =56 * 0.10%, f(;7) =
2.46, p=0.012, d=0.58; Fig. 2A). Like many of the tool-selec-
tive ROIs, the control EVC ROI was not found to decode
actions with either type of object (p values < 0.026), albeit evi-
dence in favor of the null was anecdotal (BF,; values < 0.43).

Since we obtained a different pattern of results for LOTC and
IPS ROIs that were hand versus tool selective, we compared the
decoding accuracies between these regions with a repeated-meas-
ures ANOVA with ROI (hands vs tool selective) and object
category (tool vs nontools) as within factors. As shown in
Figure 2B, there was a significant interaction between ROI
and object category in IPS (F(, 15 =5.94, p=0.025, 1> =
0.25). Post hoc t tests showed that for IPS-hand, grasp-type
decoding was significantly higher for tools than nontools
(mean difference =0.1%, SE =0.03%; p =0.004), but not for
IPS-tool (mean difference =0.02%, SE=0.03%). However,
for LOTC this interaction was not significant (p=0.379;
Fig. 2B), nor were the remaining main effects (all p
values > 0.367).

Next, we examined whether significant decoding in hand-
selective cortex could be accounted for by low-level sensory dif-
ferences between the handles and functional ends of the
tools. First, to test the possibility that tool-specific decoding
in hand-selective cortex could be driven by simple textural
differences (e.g., a smooth handle vs a serrated knife blade),
we repeated the analysis using a left somatosensory cortex
(SC) ROI defined by selecting the peak voxel in the postcen-
tral gyrus in the same subjects with an independent univari-
ate contrast of all grasps > baseline (Fabbri et al., 2014,
2016). However, unlike the higher accuracies for grasping
tools than nontools in the hand-selective ROIs, grasp-type
decoding in SC was significantly greater than chance for
both tool (accuracy=57 = 0.11%, ts)=3.04, p=0.004,
d=0.7) and nontools (accuracy=57 * 0.09%, t(s)=3.45,
p=0.001, d=0.79; Fig. 2C). This indicates that tool-specific
decoding in hand-selective cortex cannot be solely explained
by somatosensory differences in the stimuli. Second, we
tested whether size differences between our objects, and thus
grip size, could drive tool-specific decoding in hand-selective
cortex (i.e., the functional end of the tool being wider than
its handle for the spoon and pizza cutter). As shown in
Figure 3A, we decoded smaller versus larger objects in three
separate decoding analyses, regardless of whether the objects
were tools or nontools. Each separate grip size pair decoding
analysis is shown in each row of images of Figure 3A (from
top to bottom: small vs medium; small vs large; medium vs
large). Decoding accuracies for each grip size pair were then
averaged and tested against chance using a one-tailed one-
sample t test. Decoding of grip size was not significant for
any visual ROI (all p values > 0.1; Fig. 3B) and evidence in
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Figure 2.

Grasp type decoding results in left hemisphere ROIs. 4, Violin plots of MVPA data from visual localizer ROIs for the typical versus atypical classification of grasping tools (white vio-

lins) and nontool control grasping (right vs left decoding; gray violins). Box plot center lines are the mean decoding accuracy, while their edges and whiskers show 1 SD and =2 SEMs,
respectively. Decoding accuracies of typical versus atypical grasping in IPS and LOTC hand-selective cortex (pink) are significantly greater than chance for tools, but not for nontools. B, ANOVA
results comparing the difference of decoding accuracy between tools (typical vs atypical) and nontools (right vs left) for the partially overlapping hand- and tool-selective ROIs within the IPS
and LOTC. €, Violin plot of MVPA data for control ROl in SC based on an independent contrast (all actions > baseline) from real-action experiment showing significant decoding of grasp type
for both tools and nontools. Red asterisks show FDR-corrected results, while black asterisks show uncorrected results.

favor of the null was strong for most ROIs, including IPS-
hand (BF, = 8), EVC (BF,, = 3.22), LOTC-object (BF,, =
4.93), pFs (BFy; = 5.97), SMG (BFy; = 3.33), PMv (BF(; =
3.91), and PMd (BF,; = 3.56; all other BF,; values > 1.84).
Together, these findings suggest that hand-selective regions,
particularly in the IPS, are sensitive to whether a tool is
grasped correctly by its handle or not, and that these effects

are not simply because of textural or size differences between
the stimuli used or actions performed.

In addition, we found that the significant decoding accuracies
reported here do not simply reflect the overall response ampli-
tudes within each ROL. When we analyzed the mean 8 weights
in ANOVAs with grasp type and object category as within-sub-
ject factors for each ROI (i.e., as done in conventional univariate
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analysis; Fig. 4), the only significant effect
observed was a main effect of object category
(unrelated to typicality), where greater acti-
vation was found for tools relative to non-
tools in LOTC-tool (F(;,16= 9.25, p=0.008,
1% = 0.37; mean difference = 0.1, SE = 0.03),
pFs (F(1.18) = 8.68, p=0.009, > = 0.33; mean
difference= 0.07, SE= 0.02), and SMG
(Fa16=10.5, p=0.005, 7> = 0.4; mean
difference = 0.089, SE =0.03).
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Discussion 70

Our understanding of how the human brain
represents object properties (Kanwisher,
2010) and simple hand movements
(Gallivan and Culham, 2015) has signifi-
cantly advanced in the last few decades;
however, far less is known about the neural
representations that underpin real actions
involving 3D tools (Valyear et al, 2017).
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tigate how tools and their associated actions
are represented in the brain have used visual
paradigms where objects and body parts are
displayed as 2D images (Ishibashi et al,
2016). These studies have discovered a tight
anatomic and functional relationship
between hand- and tool-selective areas in
LOTC and IPS, thought to reflect action-
related processing; however, this was yet to
be directly tested (Bracci et al., 2012; Bracci
and Peelen, 2013; Peelen et al., 2013; Bracci
and Op de Beeck, 2016; Striem-Amit et al.,
2017; Maimon-Mor and Makin, 2020). Here
we defined visually category-selective areas
and investigated whether they were sensitive
to real-action affordances involving 3D tools. We found the first
evidence that hand-selective cortex (left IPS-hand and LOTC-
hand) represents whether a 3D tool is being grasped appropriately
by its handle. Remarkably, the same effects were not observed in
tool-, object-, or body-selective areas, even when these areas over-
lapped with hand-selective voxels in IPS and LOTC.

Our results indicate that visual hand-selective areas in parietal
and occipital cortices process sensorimotor affordances of typi-
cality for hand movements with 3D tools. Importantly, these
action-related representations were detected exclusively for
actions with tools, but not for biomechanically matched actions
with nontools. This tool specificity was particularly evident in
IPS-hand because Bayesian evidence demonstrated that the
decoding of grasp type with nontools was not possible. In a similar
vein, while the IPS ANOVA demonstrated boosted tool-specific
decoding specifically for the hand-selective ROI, this effect was
not significant in LOTC. This suggests that typicality effects may
be less robust for LOTC-hand. Our findings shed light into the
features of sensorimotor processing in hand-selective areas. First,
their representations are sensitive to concepts acquired through
experience (i.e., knowing how to grasp tools appropriately is a
learned skill; Martin, 2007), fitting with evidence showing that
learning about how to manipulate tools (Weisberg et al., 2007) or
even performing such actions (Valyear et al., 2012; Brandi et al,,
2014; Styrkowiec et al.,, 2019) affects LOTC and IPS activity. For
example, our results are compatible with those from Brandi et al.
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Grip size decoding. A, We decoded smaller versus larger objects in three separate decoding analyses, regard-
less of whether the objects were tools or nontools. Each separate grip size pair decoding analysis is shown in each row of
images in A (from top to bottom: small vs medium; small vs large; medium vs large). The heads of the knife, spoon, and
pizzacutter tools and their paired nontools had matched small, medium, and large widths, respectively. Decoding accura-
cies for each grip size pair were then averaged and tested against chance using a one-tailed one-sample ¢ test. In all cases,
object category was collapsed to maximize power and generalizability (i.e., grasping tools and nontools), and reach direc-
tion was matched to minimize kinematic variance (i.e., all actions were leftward). B, Mean decoding accuracy in visual lo-
calizer ROIs for the small versus large classification collapsed across object category. Error bars represent =1 SEM.

(2014), who showed coactivation of these regions during “use”
actions of tools/nontools. Our results, however, additionally sug-
gest that this learned information, at least for grasping, is coded in
specific category-selective parts of LOTC and IPS. Second, infor-
mation processed by hand-selective cortex is represented in an
abstract format beyond low-level properties (e.g., basic kinemat-
ics), since Bayesian evidence strongly suggested that decoding grip
size was not possible. This fits well with reports that hand-/tool-
selective overlap exists in people born without vision (Peelen et al.,
2013) or without hands (Striem-Amit et al., 2017), suggesting that
their development is driven by similarities in how they process
nonsensory tool information. In addition, our data also resonate
with previous studies showing that tool-selective areas in pMTG/
LOTC and IPS represent abstract action goals (reach vs grasp)
regardless of biomechanics (Jacobs et al., 2010; Gallivan et al,
2013), abeit our findings were observed for hand-selective areas
only. Third, our study shows that these high-level representations
are automatically evoked (Valyear et al., 2012) as throughout the
real-action fMRI task there was no explicit requirement to use the
tools and participants were never told that we were investigating
“tools.” Here we demonstrate that these principles, frequently
described to support tool use (Gibson, 1979; Imamizu et al., 2003;
Maravita and Iriki, 2004; Umilta et al, 2008; Lingnau and
Downing, 2015), apply to brain areas specialized for representing
the human hand, our primary tool for interacting with the world.
An intriguing aspect of our results is that typicality decoding
was successful using activity patterns from hand-selective cortex,
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Figure 4. Mean activation (3) per ROl and condition used as input for pattern classification and univariate analyses. Error bars represent =1 SEM.

but not overlapping parts of tool-selective cortex, in the LOTC
and IPS. Bayesian evidence only anecdotally supported the possi-
bility that decoding was null from tool-selective areas, but signifi-
cantly stronger typicality decoding was observed for IPS-hand
than IPS-tool during tool, but not nontool grasps. In contrast to
previous picture-viewing fMRI studies showing that overlapping
hand- and tool-selective regions exhibit similar responses (Bracci
et al., 2012; Bracci and Peelen, 2013; Bracci and Op de Beeck,
2016), our findings uniquely support previous speculations that
hand-selective IPS, and possibly LOTC, could be functionally
distinct from tool-selective regions, despite their anatomic over-
lap (Striem-Amit et al., 2017). This pattern of results is unlikely
to be driven by differences in ROI radius (Etzel et al., 2013) since
voxel size differences were negligible between hand- and tool-
selective ROIs (mean difference: IPS, 29; LOTGC, 4). In fact, if
category-related results were merely caused by ROI size, then sig-
nificant decoding should have also been observed in the much
larger LOTC-object ROI (Table 1). Alternatively, successful
higher decoding in hand than in tool-selective areas might reflect
that our task simply required grasping to touch the tools, rather
than their utilization. That is, coding in category-selective areas
might operate in an effector-dependent manner, akin to how
tool-selective pMTG/LOTC codes the type of action being per-
formed when holding a pair of tongs, but not if being performed
by the hand alone (Gallivan et al., 2013). In line with this inter-
pretation, neural representations in LOTC-hand of one-handed
amputees are also known to become richer as prosthetic usage
increases (Van den Heiligenberg et al., 2018), which, again, indi-
cates that the representations in hand-selective cortex depend on
effector use. An alternative, but not mutually exclusive, possibil-
ity is that only tool-use actions elicit tool-selective representa-
tions (Randerath et al,, 2010) because of the cognitively taxing
demands these complex actions rely on, such as retrieving
knowledge about manipulation hierarchies (Buxbaum, 2017) or
the laws that constrain object movement (Fischer et al., 2016). In
either case, the specificity of decoding typical tool grasps in
hand-selective, rather than tool- and hand-selective. cortex

challenges the popular interpretation that brain activation for
viewing tool images is a reflection of sensorimotor processing
linked to tool manipulation (Martin et al., 1996; Grafton et al,,
1997; Martin and Chao, 2001; Fang and He, 2005; Mahon et al.,
2007; see also Mahon and Caramazza, 2009).

There are several differences between our study and previ-
ous research. First our univariate analysis revealed no rela-
tionship between mean activity and typicality. Previous
studies have found greater univariate activation in occipito-
temporal and/or frontoparietal cortex for typical relative to
atypical actions when participants viewed pictures and mov-
ies or pantomimed (Johnson-Frey et al., 2003; Valyear and
Culham, 2010; Yoon et al, 2012; Mizelle et al., 2013;
Przybylski and Kroliczak, 2017). Our results fit the claim
that MVPA can reveal fine-grained effects (Kriegeskorte et
al., 2006); as recently argued by Buchwald et al. (2018) when
showing that pantomimed typical tool versus nontool grasps
could be decoded from a range of regions including premo-
tor and intraparietal areas. We suspect that task differences
are also an important contributing factor to the general lack
of univariate effects. For example, our experiment involved
fewer, less varied, exemplars than in these previous picture
studies. Likewise, our grasp-to-touch paradigm is simpler
than studies showing greater univariate activations in the left
SMG, premotor cortex, LOTC, and IPS when performing
real tool-use actions (Valyear et al., 2012; Brandi et al., 2014)
or haptically guided typical tool grasps (Styrkowiec et al.,
2019) relative to tool/nontool control actions. Finally, in our
study, grasping always involved a precision grip, whereas
previous studies used power grasps, which are better suited
for certain actions with some specific tools. This factor may
have led to the lack of typicality decoding effects in tool-
selective cortex as these areas could be sensitive to both the
side of the object being grasped and the function of particu-
lar grips (Buxbaum et al., 2006). We designed our precision
grasping task to investigate tool affordances while carefully
equating biomechanics between actions, such that decoding
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typicality was unlikely to be attributed to motor-related differen-
ces. Future real-action studies manipulating the type of grasp (e.g.,
grasp vs use) are needed to further identify the content of informa-
tion coded by visual hand-/tool-selective areas.

It is worth noting that we were unable to match the vis-
ual symmetry between object categories (our tools were
asymmetric while the nontools were symmetric) because
asymmetric nontool bars were perceived as tools by partic-
ipants (i.e., the wider side perceived as a functional end).
Nonetheless, tool-specific decoding in hand-selective
cortex is unlikely to be explained by simple effects of sym-
metry: if effects were related to symmetry, comparable
decoding effects should have been observed in symmetry-
responsive regions (e.g., LOTC-object, EVC; Beck et al,,
2005), particularly since they are also known to code
motor-related information (Gallivan and Culham, 2015;
Monaco et al., 2020).

In conclusion, parietal and occipital visual regions specialized
for representing hands were found to encode information about
the functional relationship between the grasping hand and a tool,
implicating hand-selective cortex in motor control. These find-
ings raise novel questions about the possibility that overlapping
hand- and tool-selective regions are functionally distinct and
begin to uncover which brain regions evolved to support tool
use, a defining feature of our species.
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