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Objectives: With the goal of facilitating the use of HIV-TRePS to optimize therapy in settings with limited health-
care resources, we aimed to develop computational models to predict treatment responses accurately in the
absence of commonly used baseline data.

Methods: Twelve sets of random forest models were trained using very large, global datasets to predict either
the probability of virological response (classifier models) or the absolute change in viral load in response to a new
regimen (absolute models) following virological failure. Two ‘standard’ models were developed with all baseline
variables present and 10 others developed without HIV genotype, time on therapy, CD4 count or any combin-
ation of the above.

Results: The standard classifier models achieved an AUC of 0.89 in cross-validation and independent testing.
Models with missing variables achieved AUC values of 0.78–0.90. The standard absolute models made predictions
that correlated significantly with observed changes in viral load with a mean absolute error of 0.65 log10 copies HIV
RNA/mL in cross-validation and 0.69 log10 copies HIV RNA/mL in independent testing. Models with missing variables
achieved values of 0.65–0.75 log10 copies HIV RNA/mL. All models identified alternative regimens that were pre-
dicted to be effective for the vast majority of cases where the new regimen prescribed in the clinic failed. All models
were significantly better predictors of treatment response than genotyping with rules-based interpretation.

Conclusions: These latest models that predict treatment responses accurately, even when a number of baseline var-
iables are not available, are a major advance with greatly enhanced potential benefit, particularly in resource-limited
settings. The only obstacle to realizing this potential is the willingness of healthcare professions to use the system.

Introduction

While great progress had been made towards the UNAIDS targets
for 2020 of 90% of infected people to be diagnosed, 90% of these
to be on therapy and 90% of those treated having viral suppression
(‘90-90-90’), this progress faltered and was blown off course by
the COVID-19 pandemic.1 As of July 2020, it was estimated that
81% of the 38 million people living with HIV infection knew
their status, 67% were on therapy and 59% had an undetectable
viral load.

The target of 90% viral suppression is critical not only in order to
prevent disease progression, morbidity and mortality but to curtail
the spread of the virus.2 A continuing threat to this is the develop-
ment of HIV drug resistance, often linked to poor adherence and
interruptions to drug supplies in some settings.

A recent WHO report stated that 12 of 18 countries reporting
survey data to WHO between 2014 and 2018 had levels of pre-
treatment HIV drug resistance to efavirenz and/or nevirapine
exceeding 10%.3 Only one-third of countries showed levels of viral
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suppression exceeding 90%. Across all the surveys, the
prevalence of resistance among people receiving ART ranged from
3% to 29%. Among populations receiving NNRTI-based ART with
viral non-suppression, the levels of NNRTI and NRTI resistance
ranged from 50% to 97% and from 21% to 91%, respectively.
Estimates of dual-class resistance (NNRTI and NRTI) ranged be-
tween 21% and 91% of individuals for whom NNRTI-based first-
line ART failed.

When treatment fails, the combination of antiretroviral agents
should be changed to resuppress the virus. In well-resourced coun-
tries the selection of a new combination is individualized by expert
physicians using a comprehensive range of information, often
including the results of a genotypic resistance test.4–6 However, re-
sistance testing is relatively expensive and only moderately pre-
dictive of response to treatment.7

The challenge of individually optimized drug selection in low-
and middle-income countries (LMICs) is much greater as resist-
ance tests are typically unavailable or unaffordable, patient moni-
toring can be intermittent and drug options limited. In the absence
of frequent viral load monitoring, therapy failure is often detected
late and regimen switch decisions based on standard protocols ra-
ther than being individualized. The result can be suboptimal regi-
men selection, failure to achieve viral resuppression and further
resistance, which may limit future therapeutic options and result in
transmission to others.8

The HIV Resistance Response Database Initiative (RDI) has col-
lected biological, clinical and treatment outcome data for more
than 250 000 HIV-1 patients around the world. From these data,
we have used machine learning to develop models to predict HIV-
1 treatment outcomes and to identify optimal, individualized
therapies.9–13 Models estimating the probability of a new regimen
reducing plasma viral load to <50 copies HIV RNA/mL typically
achieve accuracy of 80% or above in independent testing, without
a genotype, or 85% if a genotype is available.14,15 Other models,
developed for settings using different, higher thresholds to define
virological response, predict the absolute change in viral load and
correlate highly significantly with actual changes in independent
testing.16

The models are used to power an online treatment decision
support tool, the HIV Treatment Response Prediction System
(HIV-TRePS). Clinicians in LMICs have commented that the
utility of HIV-TRePS is limited because of its requirement for
comprehensive baseline clinical and laboratory data. To make
this system as useful as possible in the widest range of health-
care settings, including those with suboptimal patient monitor-
ing and diagnostics, we therefore set out to develop models
that can make accurate predictions despite missing some base-
line information.

Here we report 12 new sets of random forest (RF) models
that accurately predict response to a change in ART without a
baseline (at switch) genotype, CD4 count, time on therapy or,
for the first time, none of the above. Classifier (C) models, which
estimate the probability of a viral load of <50 copies/mL, and
absolute (A) models, which predict the change in viral load, are
reported.

The models were evaluated as potential additions to the RDI’s
HIV-TRePS system. This paper represents the latest update alluded
to in our previous published update.15

Methods

Clinical data

Treatment change episodes (TCEs), where ART was changed following viro-
logical failure (viral load >50 copies/mL) were collected from the RDI data-
base.9 The change in therapy could have been for any reason, not
necessarily the virological failure, although patients assessed by the clinics
to have been non-adherent were excluded from the analysis. The gold-
standard, complete set of data for a TCE was: on-treatment baseline
plasma viral load (�16 weeks prior to treatment change); CD4 cell count
(�24 weeks prior to treatment change); viral genotype (protease and re-
verse transcriptase sequence �16 weeks prior to treatment change); time
on therapy (days since ART first introduced); the drugs in use prior to the
change; the drugs used in the treatment history; the drugs in the new regi-
men; and follow-up plasma viral load obtained 4–52 weeks following intro-
duction of the new regimen and time to that follow-up, as illustrated in
Figure 1.

For each round of model development, TCEs were extracted from the
RDI dataset that included all the variables required for that particular set of
models. Consequently, the pools of qualifying data were different on each
occasion and larger for those models requiring fewer baseline variables.
Data were censored using rules, developed over the past 18 years and pre-
viously published, e.g. to exclude those rare TCEs from patients whose
treatment involved the use of a single inhibitor (as opposed to combination
therapy, typically approximately 1% of the available TCEs), were likely to
have been non-adherent or whose data were likely to have been mis-
coded.9–15 The principle rules are summarized in Table 1. The remaining
TCEs were partitioned at random, with 5% of patients extracted at random
to provide an independent test set.

The development of computational models
Each set of RF models was developed using methodology described in de-
tail elsewhere.10,12 The following comprises the full set of the latest 115 in-
put variables used for modelling (new variables underlined):

1: Baseline CD4 count value (cells/mm3);

2: Time on therapy (days since first ART was introduced);

3–64: 62 mutations, detected in the baseline genotype: HIV re-

verse transcriptase mutations (n = 33): M41L, E44D, A62V,

K65R, D67N, 69 insert, T69D/N, K70R, L74V, V75I, F77L,

V90I, A98G, L100I, L101I/E/P, K103N, V106A/M, V106I,

V108I, Y115F, F116Y, V118I, 138A/G/K, Q151M, V179D/F/T,

Y181C/I/V, M184V/I, Y188C/L/H, G190S/A, L210W, T215F/Y,

K219Q/E, P236L; protease mutations (n = 29): L10F/I/R/V,

V11I, K20M/R, L24I, D30N, V32I, L33F, M36I, M36L/V, M46I/

L, I47V, G48V, I50V, I50L, F53L, I54 (any change), Q58E,

L63P, A71 (any change), G73 (any change), T74P, L76V,

V77I, V82A/F/S, V82T, I84V/A/C, N88D/S, L89V, L90M). The

mutations were selected on the basis of the IAS–USA mu-

tation list as well as previous modelling studies;16

65–89: Drugs in the new regimen (25 binary variables; present = 1,

not present = 0):

zidovudine, didanosine, stavudine, abacavir, lamivudine,

emtricitabine, tenofovir disoproxil fumarate, efavirenz,

nevirapine, etravirine, indinavir, nelfinavir, saquinavir,

amprenavir, fosamprenavir, lopinavir, atazanavir, daruna-

vir, enfuvirtide, raltegravir, tipranavir, maraviroc, elvitegra-

vir, rilpivirine and dolutegravir;

90–114: Treatment history variables (as above);

115: Time to follow-up viral load (days).
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The output of each classifier model was the estimated probability of the
follow-up plasma viral load being less than 50 copies HIV RNA/mL. The out-
put for each absolute model was the estimated change in follow-up viral
load from baseline.

Validation and independent testing
Each of the committees of five RF models was developed using a 5%
cross-validation scheme. For each partition, the model’s output for the
validation cases was compared with the actual response observed in
the clinic and the best-performing model selected for the final commit-
tee. For each of the five final classifier models, the optimum operating
point (OOP) was identified (the cut-off for the probability of response

being classed as response versus failure that gave the best performance
overall).

The performance of the models as predictors of response was
then evaluated using the independent test cases. The average of the
classifier models’ estimates of probability of response and the
responses observed in the clinics for these cases were used to plot re-
ceiver operating characteristic (ROC) curves and assess the AUC. In
addition, the average OOP was used to obtain the overall accuracy,
sensitivity and specificity of the models. The absolute models’ esti-
mates of the change in viral load from baseline and the responses
observed in the clinics were correlated using Pearson’s product mo-
ment method, a scatterplot produced and the correlation of determin-
ation (r2) and mean absolute difference between predicted and
observed changes in viral load compared.

Figure 1. The standard TCE. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.

Table 1. Main criteria for data censoring

Objective Exclusion definition

Remove non-adherent patients All TCEs with a measure of adherence associated with the TCE or the patient indicating non-adherence

(based on site-specific cut-offs).

TCEs with baseline genotypes available that were predicted by the current RDI models and the Stanford

HIVdb genotype interpretation system to respond to their new regimen but failed in the clinic.

Removal of TCEs involving single drugs Any TCEs with a single drug at baseline or as the new regimen.

Removal of TCEs with drugs for which

we had inadequate data

This varies from model to model according to the data available, but any TCEs including drugs that

appear in fewer than 250 cases in a training set.

Removal or conversion of indeterminate

or unrealistic viral load values

Viral load values of 0 or 50 are assumed to be <50 copies/mL but the precise value is unknown and they

are coded as 50 copies/mL.

Viral load data of the form ‘<X’ where X is >50 or 1.7 log10 copies/mL or ‘>X’ because the true value is

unknown.

Any TCEs with a viral load that is exactly 2.60 log10 or 400 copies/mL on the assumption that the values

were from an assay with this as the lower limit of detection and that the true value is unknown.

Removal of unrealistic viral load values

or CD4 counts

Plasma follow-up viral load values >9 log10 copies HIV RNA/mL.

CD4 counts >2000 copies/mm3.

Revell et al.
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Comparison of the accuracy of the classifier models
versus rules-based interpretation of the genotype
Genotypic sensitivity scores (GSSs) were obtained for test cases with base-
line genotypes available using three interpretation systems in common
use: ANRS (v30), REGA (v10.0) and Stanford HIVdb (v8.9-1). The GSS was
calculated by adding the score for each drug in the regimen (full susceptibil-
ity = 1, partial susceptibility = 0.5 and no response = 0). These scores were
then used as predictors of response and the performance compared with
that of the models.

In silico analysis to evaluate the potential of the models
to help avoid treatment failure
In order to evaluate further the potential clinical utility of the models, we
assessed their ability to identify alternative, practical regimens that were
predicted to be effective (probability of virological response above the OOP
for classifier models or the follow-up viral load below the threshold for re-
sponse for the absolute models). Lists of regimens in regular clinical use
were identified from the RDI database. The baseline data for test TCEs were
entered into the models and predictions obtained for the regimens on the
drug lists that had no more drugs than the regimen used in the clinic.

HIV-TRePS is potentially of most utility in LMICs where genotyping, mon-
itoring and some drugs may be scarce or unavailable. It was important
therefore to assess the ability of the models to identify effective alternative
regimens using combinations of drugs that are commonly available in
LMICs. In silico analyses were therefore performed, modelling alternative
regimens comprising only those relatively inexpensive drugs that have
been widely used in LMICs over the past 10 years, namely zidovudine, aba-
cavir, lamivudine, emtricitabine, tenofovir disoproxil fumarate, efavirenz,
nevirapine, lopinavir, etravirine, atazanavir and darunavir.

Results

Characteristics of the datasets

Each set of models used a different dataset according to the speci-
fication of the models. As an example, the baseline, treatment and
response characteristics of the datasets used in the most recent
modelling without a genotype are summarized in Tables 2 and 3.
As a result of random partitioning the training and test sets in each
case were well matched.

Results of the classifier modelling

The performance characteristics of the models during cross-
validation and independent testing are summarized in Table 4.
During cross-validation the AUC values ranged from 0.79 for the
models developed without information on baseline genotype, CD4
count or time on therapy, up to 0.90 for models developed with in-
formation on baseline genotype and CD4 count but without time
on therapy, the most accurate models for the prediction of viro-
logical response to date. Overall accuracy (the percentage of cases
correctly predicted as responders or failures) ranged from 72% to
82%. Sensitivity (the proportion of responses correctly predicted)
ranged from 71% up to 80%, while specificity (the proportion of
the predictions of response that were correct) ranged from 73% to
84%.

Independent testing

Independent testing resulted in AUC values ranging from 0.78 for
the models developed without information on baseline genotype,

CD4 count or time on therapy, up to 0.90 for models developed
with information on baseline genotype and CD4 count but without
time on therapy. Overall accuracy ranged from 72% to 82%.
Sensitivity ranged from 71% up to 80%, while specificity ranged
from 70% to 85%.

Results of the absolute modelling

The results of the models developed to predict the absolute
change in viral load from baseline are presented in Table 5.

During cross-validation the models achieved highly statistically
significant correlations between actual and predicted change in
viral loads from baseline, with r values ranging from 0.68 for the
models without genotype, CD4 count or time on therapy, to 0.75
for those models with all baseline variables present. This equates
to r2 values ranging from 0.46 to 0.56. The mean absolute error
ranged from 0.74 log10 HIV RNA/mL for the models without geno-
type, CD4 count or time on therapy to 0.65 log10 HIV RNA/mL for
those with all variables.

In independent testing, the models again achieved highly sig-
nificant correlations between actual and predicted change in viral
loads from baseline with r values ranging from 0.66 for the models
without genotype, CD4 count or time on therapy, to 0.74 for those
models with all baseline variables present (r2 = 0.44 to 0.55). The

Table 2. Demographic characteristics of the TCEs with no genotype (NG)

Characteristic Training set Test set

TCEs, n 62 940 3260

Patients, n 20 513 1080

Gender, n (%)

Male 40 019 (64) 2102 (64)

Female 13 121 (21) 632 (19)

Unknown 9800 (15) 526 (16)

Median age (years) 42 43

Geographical sources of TCEs

Argentina 199 12

Australia 233 16

Brazil 57 9

Canada 3460 193

Germany 6546 364

India 645 42

Italy 2535 94

Japan 117 1

Mexico 509 19

Netherlands 9539 553

Romania 772 64

Serbia 35 0

South Africa 5209 274

Spain 13 283 647

Other sub-Saharan Africa 70 4

UK 9318 440

USA 4263 261

Unknown 6150 267

Total 62 940 3260
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mean absolute error ranged from 0.75 to 0.69 log10 HIV RNA/mL
for models with all variables.

Scatterplots of the performance of the models with all variables
and those missing baseline genotypes, CD4 counts and time on
therapy are presented in Figure 2.

Comparing the predictive accuracy of the classifier
models versus genotyping

In every case the performance of the models, including those
models that do not use a genotype in their predictions, was highly
significantly superior to that of genotyping with rules-based inter-
pretation. For example, the classifier models that do not require a
genotype achieved an AUC of 0.84 in independent testing. Of the
test cases, 652 had baseline genotypes and the models achieved
an AUC of 0.84 for this subset. The genotype systems achieved
AUC values of 0.53–0.54 (Table 6). All three genotype

interpretation systems were significantly poorer at predicting
responses than the models (P < 0.00001).

In silico analysis

For the classifier models, the percentage of all test cases for which
the models were able to find effective alternatives from the stand-
ard list of regimens in common use ranged from 91% to 98%
(Table 7). They identified alternative regimens with a higher prob-
ability of response than the regimen used in the clinic (but not ne-
cessarily above the OOP) for 98%–100%. For the subset of test
cases that failed their new regimen in the clinic, the models identi-
fied effective alternatives for 86%–97% of cases and alternatives
with a higher probability of response in 100%.

When the analyses were repeated using the highly restricted
list of drugs widely available in LMICs the models identified alter-
natives that were predicted to be effective in 76%–86% of all cases
and for 65%–79% of cases that failed their new regimen in the
clinic.

In terms of the absolute models, the percentage of all test
cases for which the models found effective alternatives (pre-
dicted follow-up viral load <400 copies/mL) from the standard
list of regimens in common use ranged from 92% to 100%. They
identified alternative regimens with a higher probability of re-
sponse than the regimen used in the clinic for 96%–99%. For
cases that failed in the clinic, the models identified effective
alternatives for 85%–99% and alternatives with a higher prob-
ability of response in 100%.

When the analyses were repeated using the highly restricted
drug list the models identified alternatives that were predicted to
be effective in 82%–96% of cases and for 67%–92% for those that
failed in the clinic.

Discussion

These latest models, developed using our largest databases to
date, produced the most accurate predictions of response to com-
bination ART ever reported. For the first time, to the best of our
knowledge, they can factor in total time on therapy, make accur-
ate predictions of response to rilpivirine and dolutegravir, and do
so even if substantial baseline data are missing.

Classifier models developed with all baseline variables except
time on therapy achieved marginally superior performance to
those with all variables, producing an AUC value of 0.90 versus
0.89. This is probably due to them being trained with a larger data-
set, the additional 5144 training TCEs more than compensating for
the loss of the time-on-therapy information. Both models per-
formed better than any previously published.

All the remaining classifier models achieved AUC values over
0.80 in cross-validation and independent testing other than those
missing three baseline variables (genotype, CD4 count and time
on therapy), which achieved 0.78 in independent testing.
Nevertheless, it is encouraging that this performance remains
highly statistically superior to the use of genotyping with
rules-based interpretation, reinforcing previous findings that our
models consistently outperform genotyping as a predictor of
response.12,14,15

The absolute models produced highly significant correlations
between predicted and observed changes in plasma viral load. The

Table 3. Clinical and laboratory data

Parameter Training set Test set

Baseline data

Median (IQR) baseline VL

(log10 copies/mL)

3.93 (2.73–4.76) 3.96 (2.8–4.79)

Median (IQR) days since

first treatment

1669 (709–3010) 1700 (741–3036)

Median (IQR) number of

previous regimens

4 (1–8) 4 (1–8)

Treatment history

Median (IQR) number of

previous drugs

5 (3–8) 5 (3–8)

NRTI experience, n (%) 62 780 (99.7) 3257 (99.9)

NNRTI experience, n (%) 41 957 (66.7) 2228 (68.3)

PI experience, n (%) 43 227 (68.7) 2203 (67.6)

Integrase inhibitor

experience, n (%)

2850 (5) 142 (4)

CCR5 inhibitor

experience, n (%)

731 (1) 30 (1)

New regimens

2 NRTI!1 PI, n (%) 22 598 (35.9) 1089 (33.4)

2 NRTI!1 NNRTI, n (%) 11 658 (18.5) 584 (17.9)

3 NRTIs!1 PI, n (%) 4063 (6.5) 253 (7.8)

3 NRTIs, n (%) 2511 (4.0) 113 (3.5)

3 NRTIs!1 NNRTI, n (%) 1609 (2.6) 71 (2.2)

2 NRTIs, n (%) 2154 (3.4) 109 (3.3)

2 NRTIs!1 NNRTI

!1 PI, n (%)

1833 (2.9) 111 (3.4)

1 PI!1 integrase

inhibitor, n (%)

0 (0) 0 (0)

4 NRTIs, n (%) 899 (1.4) 50 (1.5)

1 NRTI!1 NNRTI

!1 PI, n (%)

1355 (2.2) 61 (1.9)

1 NRTI!1 PI, n (%) 1037 (1.6) 74 (2.3)

Other, n (%) 13 226 (21.0) 745 (22.9)

VL, viral load.
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mean absolute difference between predicted and observed
change ranged from 0.65 to 0.75 log10 copies HIV RNA/mL, which
is similar to the typical test-retest error of most commercially avail-
able assays. The scatterplots in Figure 2 suggest that the absence
of baseline information leads to an increase in incorrect predictions
of response, with a cluster of cases with little change in viral load
observed in the clinic that were predicted to have decreases of up
to 3 log10 copies/mL. The cases in the cluster tended to be older
cases with greater use of older drugs.

Both classifier and absolute models identified alternative regi-
mens that were predicted to be effective for the great majority of
cases (91%–100%) and, most crucially, for 85%–99% of those
cases where the patient failed the new regimen introduced in the
clinic. Moreover, this remained the case when the models were
restricted to using a highly limited list of 11 relatively old and inex-
pensive drugs that have been widely used in LMICs, with effective
alternatives predicted for 76%–96% of cases and 65%–92% of
failures.

The models were able to identify alternative regimens that
were predicted to be more effective, i.e. a higher probability of re-
sponse or a lower predicted follow-up viral load, than the new regi-
men introduced in the clinic for almost all the cases. These results
are a compelling indication of the potential utility of the models to
reduce virological failure if used to support treatment decision-
making.

It should be noted that while the TCEs used in the modelling all
involved virological failure (a baseline viral load >50 copies/mL)
they may have been triggered for a variety of reasons including, for
example, tolerability. The HIV-TRePS system is designed to provide
predictions of response, whatever the reason for switching, and
the richness of the real-life data used to train the models under-
pins this utility.

The study has some limitations. Firstly, a key input variable for
these models was the plasma viral load.17 Although viral load
monitoring is still not universally available in many LMICs, it is rec-
ommended in WHO guidelines for monitoring therapy response.18

Table 5. Summary of the results of absolute (A) models

Missing baseline data Model name Training data (n) CV/test r r2 P value MAE

None AG 13 936 CV 0.75 0.56 0.0001 0.65

test 0.74 0.55 0.0001 0.69

Genotype ANG 56 717 CV 0.70 0.49 0.0001 0.71

test 0.68 0.46 0.0001 0.73

Time on therapy AG(#ToT) 19 080 CV 0.74 0.55 0.0001 0.65

test 0.72 0.52 0.0001 0.70

Genotype/time on therapy ANG(#ToT) 50 270 CV 0.69 0.48 0.0001 0.72

test 0.67 0.45 0.0001 0.74

Genotype/CD4 count ANG(#CD4) 62 940 CV 0.70 0.49 0.0001 0.71

test 0.69 0.48 0.0001 0.75

Genotype/time on therapy/CD4 count ANG(#ToT#CD4) 56 717 CV 0.68 0.46 0.0001 0.74

test 0.66 0.44 0.0001 0.75

CV, cross-validation; test, independent testing; MAE, mean absolute error - the difference between predicted and actual change in plasma viral load
(log10 copies HIV RNA/mL).

Table 4. Summary of the results of classifier (C) models

Missing baseline data Model name Training data (n) CV/test AUC
Overall

accuracy (%)
Sens
(%)

Spec
(%) OOP

None CG 13 936 CV 0.89 81 77 83 0.42

test 0.89 81 75 85 0.42

Genotype CNG 56 717 CV 0.84 77 71 80 0.43

test 0.84 76 71 79 0.43

Time on therapy CG(#ToT) 19 080 CV 0.90 82 80 84 0.42

test 0.90 82 80 83 0.42

Genotype/time on therapy CNG(#ToT) 56 717 CV 0.83 76 71 80 0.44

test 0.82 76 71 79 0.44

Genotype/CD4 count CNG(#CD4) 62 940 CV 0.83 76 72 79 0.44

test 0.82 75 73 77 0.44

Genotype/time on therapy/

CD4 count

CNG(#ToT#CD4) 50 270 CV 0.79 72 71 73 0.38

test 0.78 72 74 70 0.38

CV, cross-validation; test, independent testing; sens, sensitivity; spec, specificity.
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A recent study of its scale-up in sub-Saharan Africa showed the
percentage of patients with viral loads ranged from 3% in
Tanzania to 96% in Namibia. Of 11 million patients on ART in the
region, 5 million were estimated to have some access to viral
load monitoring.19 As technological advances enable lower costs
and point-of-care testing, the use of viral load testing is likely to in-
crease.20–22 Nevertheless, the RDI is currently experimenting
with models that do not require a baseline viral load for their
predictions.

Secondly, LMICs are somewhat under-represented in the data
used in these studies, at 10%. Nevertheless, it could be argued that
data from treatment decisions made in well-resourced countries,
with the benefit of diagnostics and a wide range of available drugs,
are the best data to use in supporting treatment decisions made
with less information available and with a limited choice of drugs.

The data used in this study have been collected over many
years, including from combinations of drugs no longer in common

use. One of the advantages of the modelling methods employed,
however, is that these data add useful information on the contri-
bution of the individual drugs within each combination, which
improves the accuracy of modelling for different contemporary
combinations. This is born out by the high accuracy of the models’
predictions for the most recent regimens and in substudies per-
formed excluding all but the most recent data (data on file). This
should not, therefore, be considered a limitation.

There is inevitably a time lag between changes in treatment
practice, the monitoring of patients treated according to the new
practice, collection of resulting outcome data, their provision to the
RDI and the development, testing and release of new models. The
relative lack of data involving the very latest drugs and clinical
practice will always be a challenge. For example, these studies
only involved around 3000 (5%) cases of integrase strand transfer
inhibitor (INSTI) use. The RDI is heavily dependent on and grateful
to its data contributors for the timely provision of new data to limit
this issue as far as possible.

There are significant procedural, cultural, psychological and other
‘soft’ barriers to the use of HIV-TRePS that limit the extent to which it
is being used and its potential benefit being realized. For example,
most, if not all, countries have set treatment protocols, at least for
second-line therapy, and many physicians are reluctant or may not
have the agency to depart from these and individualize treatment.
At third-line or beyond, protocols generally become less prescriptive,
if guidance exists at all, but there can be reluctance to make
any further changes, with some patients being left on only partially
effective regimens. HIV-TRePS could potentially be of considerable
value in such cases and substantially reduce virological failure

Table 6. Comparison of predictive accuracy for genotyping versus the
models

Model AUROC Comparison P value

ANG models 0.84

ANRS 0.54 ANG models versus ANRS <0.00001

HIVDB 0.54 ANG models versus HIVDB <0.00001

REGA 0.53 ANG models versus REGA <0.00001
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Figure 2. Predicted versus observed change in log10-transformed viral load for absolute (A) models with (a) all variables (AG) and (b) without geno-
type, CD4 count or time on therapy [ANG(#ToT#CD4)]. This figure appears in colour in the online version of JAC and in black and white in the print ver-
sion of JAC.
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and clinical progression if these barriers were overcome and the
tool was more widely used to individualize salvage therapy.

Conclusions

RF models developed using very large, global datasets are highly
accurate predictors of virological response to combination ART,
even if a number of baseline input variables are missing. Such
models are of greatly enhanced utility in LMICs and any settings
with limited and/or infrequent laboratory monitoring.

The gold-standard models reported here are the most accurate
developed to date. As more drugs become available in more set-
tings, so many more combinations become possible, only relatively
few of which have been subject to clinical trials. Computational
modelling using large clinical datasets can enable physicians to ex-
pand the options available to them with a level of confidence pro-
vided by predictions based on real-life experiences.

Once again, these latest models are better predictors of re-
sponse to therapy than genotyping with rules-based interpret-
ation, even when these models are missing up to three baseline
variables. Since use of these models is free of charge, this again
suggests that scarce funds in LMICs would be better spent on
antiretroviral drugs and viral load testing than on genotyping.
This would enable a greater range of treatments to be offered, fail-
ure to be detected earlier and optimal, individualized treatment-
change decisions made using the models.

The models described are now available for use through the
on-line HIV-TRePS system at http://www.hivrdi.org/treps. The sys-
tem has the potential to reduce virological failure and improve
patient outcomes in all parts of the world, but particularly in LMICs.

The use by clinicians of this tool to support optimized treatment
decision-making in the absence of resistance tests could also
combat the development of drug resistance and its contribution to
treatment failure, disease progression and onward viral transmis-
sion. The keys to unlocking the potential of this tool lie in the hands
of healthcare professionals around the world.
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