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The need for precision dosing has been challenged on the basis of insufficient evidence. Herein, we argue that
adequate evidence exists to conduct therapeutic drug monitoring (TDM) and precisely target antibiotic expo-
sures. While achievement of any antibiotic concentration does not guarantee efficacy sans toxicity for any single
patient, stochastic control optimizes the probability of achieving favourable responses across patients. We argue
that variability in targets (such as the organism’s MIC) can be considered with models. That is, complexity alone
does not relegate the decision-making framework to ‘clinician intuition’. We acknowledge the exposure–re-
sponse relationships are modified by patient-specific factors (other drugs, baseline organ functional status etc.)
and describe how precision dosing can inform clinical decision making rather than protocolize it. Finally, we call
for randomized, controlled trials; however, we suggest that these trials are not necessary to make TDM standard
of care for multiple classes of antibiotics.

We read “The case for ‘conservative pharmacotherapy’”1 with
interest. While we agree with the authors that scarce healthcare
resources should be used in the most judicious manner, we find
that many of their statements are inaccurate and misrepresent
the goals of precision dosing and its supporting evidence. Although
the authors outline several points in their argument against thera-
peutic drug monitoring (TDM), they largely suggest that there is
too much variability in antimicrobial exposure–response relation-
ships across patients for TDM to be clinically useful. They support
their argument by stating, in a rather black and white fashion, that
“patients are frequently cured of their infection despite ‘subthera-
peutic’ antimicrobial exposures, while others unfortunately
succumb despite ‘therapeutic’ or ‘supratherapeutic’ exposures”.
Furthermore, they indicate that there is a lack of ‘compelling evi-
dence that implementing TDM to achieve exposure within the
therapeutic range leads to improved patient outcomes over sound
clinical judgement alone’. Based on their rationale, they argue that
TDM has minimal value and that ‘focusing on TDM may distract
from careful clinical monitoring of the patient for efficacy and
drug-related toxicities and shift finite resources from other
valuable interventions’.

The basis for their arguments against TDM fails to consider the
fundamental principles of causality2 and account for the critical

interplay between the host, drug and pathogen. It is well estab-
lished that all outcomes are multi-causal and no one exposure or
factor is responsible for a given outcome. Furthermore, a constella-
tion of exposures/factors mediates responses across patients. This
is precisely why there is variability of outcomes across patients,
even within groups of individuals with similar antimicrobial con-
centration–time profiles. As a case in point, most patients have a
functioning immune system. Suboptimal drug exposures may still
result in clinical cure in such patients, not because drug exposures
are meaningless, but instead because the therapeutic targets are
not absolute. Other factors, such as increased morbidity scores3 or
difficult-to-treat infections (e.g. endocarditis), lead to failures even
in patients with optimized exposures.

While inter-patient variability is known, and outcomes are not
guaranteed at any target concentration, it raises the question as
to what we can do, as clinicians, to optimize patient outcomes.
Precision dosing is one answer: to administer a dose and schedule
of an antimicrobial that confers the highest likelihood of success
with the lowest probability of a concentration-driven toxicity.
This rationale for performing TDM is the same as for other facets of
precision medicine, to maximize outcomes across the highest pro-
portion of patients possible. The authors’ conclusion that precision
dosing is the ‘latest and greatest’ fad created solely on hyperbole

VC The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
For permissions, please email: journals.permissions@oup.com.

1661

J Antimicrob Chemother 2021; 76: 1661–1665
doi:10.1093/jac/dkab086 Advance Access publication 12 April 2021

https://orcid.org/0000-0002-1091-6130
https://orcid.org/0000-0001-5015-8146
https://academic.oup.com/


requires further examination. Below, we have addressed the senti-
ments that we believe are oversimplified or are grossly incorrect.

(i) The imperfection of the MIC obviates its utility

The MIC is widely recognized as the gold, yet imperfect, standard
for defining drug susceptibility.4,5 Approval of new antibiotics
requires a comprehensive understanding of the MIC ranges for tar-
get pathogens,6 which are highly clinically useful for predicting
microbiological and clinical failure when they are high and when
inter-occasion variability is unlikely to affect the outcome. Low
MICs, in the ‘susceptible’ range, are not a guarantee of success, but
still serve as a surrogate that can be factored into the decision-
making process for the complex and ever-changing patient. In
fact, inclusion of the MIC in modern TDM targets, e.g. free time
above the MIC for b-lactams, is a step towards exactly the kind of
personalized target setting that the authors rightly promote. Just
as with all tests in medicine, clinicians should not simply ignore
MIC results when making dosing decisions because variability in
the precision and accuracy of the MIC’s measurement may exist.
Innovations, such as continuous MICs, which are not based on fi-
nite drug dilutions, but infinite gradients,7 may provide more pre-
cise estimates of potency in the future; however, perfect precision
is not a reasonable expectation and it is not necessary to improve
patient outcomes.

(ii) Pharmacokinetic and pharmacodynamic (PK/PD)
relationships are not useful because they cannot
represent the dynamic and complex relationship
between the drug, host and pathogen

PK/PD and exposure–response relationships for many antibiotics
are solidly founded on biological principles5 with direct application
to human outcomes.4 Because of high biological relevance, regula-
tory bodies, such as the FDA6,8,9 and the EMA,10 have drug develop-
ment requirements for understanding PK/PD before drugs are
approved.11 In fact, the largest reason that anti-infectives fail to
obtain drug approval is because of unfavourable pharmacokinet-
ics.12,13 Solid data exist for PK/PD relationships for fluoroquinolones
(efficacy)14 and aminoglycosides (efficacy and toxicity),15 as well
as b-lactams (efficacy) and vancomycin (toxicity), as described
below. The authors are incorrect when they indicate that pharma-
codynamic relationships are always developed post hoc. We are
aware of at least three publications whose analysis plans were
prospectively filed with the FDA or EMA.14,16,17 These studies
identified significant PK/PD relationships and utilized other factors
besides drug exposure to explain a substantial portion of the
observed variance in outcome.

Nevertheless, it is true that many relationships for antibiotic ex-
posure response (i.e. efficacy and toxicity) have been identified
from retrospective analyses.4 Exposure–effect and exposure–tox-
icity relationships are quantifiable probability density functions
with effect modifiers and they should be should not be confused
with interpatient variability in responses. Probability density func-
tions allow for the rational choice of dose and schedule to optimize
outcomes. For example, an exposure toxicity profile can be under-
stood to shift with an effect modifier (e.g. a second toxic drug).
While models never explain 100% of variability (i.e. outcomes), the

understood relationship is often useful to guide clinicians when
dealing with any number of challenging patients who do not fall
into a neat category with fixed dosing recommendations, for
example an obese child in renal failure with drug-resistant
Gram-negative sepsis.

(iii) Medical evidence must be in the form of randomized
clinical trials

While the randomized, double-blind, placebo controlled clinical
trial is generally considered to be the top of the evidence pyramid,
most medicine is practiced on the basis of ‘lesser’ evidence.
The randomized, double-blind, placebo controlled clinical trial is
simply not always practical or ethical. There is no randomized evi-
dence that parachutes prevent death or major trauma related to
gravitational challenge.18 Furthermore, the analysis of such trials
depends on demonstrating that the probability of the observed in-
ter-group difference in effect size is too low to believe if there really
was no difference. Effect size is the ratio of mean difference and
standard deviation, a grouping of patients that is the very antith-
esis of individualized therapy. A ‘successful’ randomized, double-
blind, placebo controlled clinical trial with a low P value is neither a
guarantee of reproducible results19 nor success for the individual
patient who needs therapy. One should not conflate a lack of
evidence of benefit with evidence for a lack of benefit. As veterans
of prospective TDM studies, we can attest to the varied reasons
patients require TDM and the even more varied adjustments
to therapy that are difficult to protocolize in a prospective,
randomized, placebo-controlled study that is impossible to blind.
The absence of clinical trial data should encourage funding bodies
to study interventions that have become standard of care (such as
with vancomycin20 or aminoglycoside monitoring).21,22 Despite
the challenges of gold-standard trial design for TDM, we applaud
that investigators are rising to the challenge of conducting such tri-
als and establishing high levels of evidence, and more high-level
evidence will be available soon.23 Until that time, the best available
evidence from b-lactam pre-clinical studies, retrospective reviews
and clinical trials24–28 suggests that precision dosing and optimiz-
ing PK/PD benefits some patients.29–31 For vancomycin, clear rela-
tionships have been found between exposure, toxicity17,32 and
optimal monitoring strategies33 in prospective studies. The authors
cite the latter,33 among others, as ‘quasi-experimental’ because of
confounding changes in ‘disease management, referral patterns
and pathogen virulence’ over time. We can assure the authors and
readers that the management of Gram-positive infections did not
change at Children’s Hospital Los Angeles in the 3 years we con-
ducted our prospective study and there was no evidence that the
types of organisms or infections changed over time. In summary,
it is our assessment that the level of evidence available for preci-
sion dosing with b-lactams and vancomycin at least meets if not
exceeds evidence for other standards of care of widely accepted
interventions, such as antibiotic stewardship.

Further, the authors propose reliance on close clinical
observation. Where are the randomized, placebo-controlled, non-
‘quasi-experimental’ clinical trial data that support this approach?
What observations will drive decisions, especially those focused on
dosing? It would seem difficult to make informed dosing decisions
based on clinical observations, such as pulse, respiration or
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temperature. What are the positive and negative predictive values
for these observations for success versus failure and over what
time frame? We contend that if the authors wish to hold precision
dosing to a certain standard that they adopt the same standard
for their ‘close clinical observation’ recommendations. We also
argue that TDM is also extremely useful in situations when there is
interest in minimizing the occurrence of exposure-related down-
stream outcomes like adverse events that cannot be detected by
close clinical monitoring alone. A perfect example of the value of
TDM is use of vancomycin-guided AUC dosing and monitoring to
minimize the vancomycin-associated acute kidney injury. It is well
established that serum creatinine is an insensitive and delayed
indicator of renal injury and serum creatinine only increases
after a substantial amount of damage has occurred to the
nephrons. Because of renal reserve, it is estimated that up to
50% of the kidney function is lost before there is any detectable
increase in serum creatinine.34,35 As such, the serum creatinine
may take 24–36 h to rise after a definite renal insult, a point too
late in the cascade to minimize the short- and long-term conse-
quences of acute kidney injury.36 Studies indicate that even
modest cases of acute kidney injury, regardless of cause, lead
to substantial increases in morbidity, mortality and healthcare
resource utilization.37–43

(iv) A therapeutic range is an absolute that compels the
clinician to act when concentrations are below or above
the range for any patient

It is a common misconception that antimicrobial therapeutic
ranges are absolute goals. Rather, the therapeutic range is a
means to an intended goal rather than the goal itself. The authors
state that the appeal of TDM is the unambiguous nature of the
measurement. We suggest that TDM and precision dosing strat-
egies should inform clinical decision making rather than be blindly
applied as an unadjusted therapeutic range. Precision dosing aims
for a target and uses drug concentration measurement to under-
stand the necessary trajectory to reach the desired goal. A range
can be useful, but we carry on Dr Jelliffe’s long-standing argument
that measured drug concentrations at the extremes of the range
or even beyond the range carry distinct probabilities of either
treatment failure or adverse effect, i.e. a concentration anywhere
within a range does not carry the same probability of success. This
approach yet again amplifies individualized therapy by forcing the
clinician to think, ‘What does my patient really need?’.44 Such
thoughtful TDM activities do not cause clinicians to be blinded from
performing other patient monitoring. Thoughtless care in any
domain compromises outcomes. The ‘appeal’ of carefully applied
TDM in our opinion is that it is possible to use antecedent
laboratory values to inform decision making specifically tailored
to the patient rather than to only rely upon clinician intuition as a
means of guiding care.

(v) Variability is either not quantifiable or too complex
to be factored into patient decisions

We agree with the authors that simply choosing a target without
the understanding of potential variability can lead to poor out-
comes. It is well known that other covariates, such as severity of

illness, drive patient outcomes.3 However, precision dosing
(e.g. optimizing the antibiotic therapy) is a significant tool within
the clinician’s control to mediate the highest probability of
an optimal outcome for the patient,45 especially the patient who is
unexpectedly different from the majority. TDM allows the clinician
to understand where the patient’s drug concentrations are in
relation to those patients that have good and poor outcomes.
As we have stated previously, TDM targets do not guarantee a
good or poor outcome. The discerning clinician can use this infor-
mation to devise patient-specific goals and apply precision dosing
strategies to further improve the likelihood of positive outcomes.
Just because a patient’s condition is complex does not mean that
we should ignore information known to affect patient outcomes.
Perfect prediction is an unrealistic goal.

Variability and the ability to control systems are part of
everyday life. A great example of a highly complex stochastic
control is that airplanes arrive at the target destination as a
function of incorporating system variability (such as change in
wind direction and velocity) into the navigation process
(stochastic control). We contend that applying these same
principles in medicine gives patients the highest likelihood of
successful therapy posterior to other patient factors that are
not amenable to rapid change.

We do agree with the authors’ sentiments that the discerning clin-
ician should ‘remain skeptical of guideline recommendations
when they are based on methodologically weak evidence’ and
that patients display unique diseases and covariates that
require individualized therapeutic approaches that cannot sim-
ply be distilled into a series of algorithms. We also agree that
over-reliance on targets for antibiotics has the potential to re-
sult in poorly tailored therapy for the individual. Precision dosing
is broadly defined as improving treatment outcomes by achiev-
ing the optimal dose for an individual patient.46 We challenge
clinicians to use the best available data, not be fixed by blind de-
cision rules or lab-reported therapeutic ranges and understand
the relationships between concentrations and outcomes where
they have been demonstrated to exist. We understand that
change in medicine is often met with staunch opposition where
nostalgic persuasions are made to clinicians based on simpler
times and pure clinician intuition. However, medical conserva-
tism should not mean medical nihilism. As pharmacokinetic
studies and methods have become more rigorous and wide-
spread, the burden of proving clinical superiority should rest
squarely with those who prefer to ignore the tremendous vari-
ability in drug exposures between patients with fixed dosing.
We believe that TDM will eventually become akin to computer
flight programs that aid a pilot during the flight of aircraft.
Continuously updated predictions will be offered based on indi-
vidual and time-specific external factors. This information will
augment the clinician’s decision process (rather than replace
it). Just as in aviation, pilot intuition will be supplemented with
decision support from computer models, whether a trial of sev-
eral hundred flights demonstrates a difference between the
strategies or not. It is our opinion that it is not defensible to
favour a strategy of inaction until the evidence demonstrates
clear harm from such inaction. Precision dosing has been a valu-
able intervention for far too many patients for us to follow the
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advice to return to fixed dosing in the hopes that ‘average care’ is
good enough for everyone.
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