Skip to main content
. 2021 Jan 14;31(7):4824–4838. doi: 10.1007/s00330-020-07601-2

Table 3.

The performance of the clinical, imaging, radiomics model and the nomogram for predicting MVI

Models Classifier Training cohort (n = 205) Validation cohort (n = 106) Cutoff
Sen Spe AUC (95% CI) Sen Spe AUC (95% CI)
Clinical RF 0.72 0.83 0.798 (0.739–0.857) 0.73 0.59 0.725 (0.647–0.803) 0.25
LR 0.73 0.72 0.779 (0.719–0.837) 0.70 0.55 0.668 (0.570–0.766) 0.17
Imaging RF 0.83 0.88 0.919 (0.880–0.958) 0.77 0.87 0.876 (0.816–0.934) 0.31
LR 0.82 0.84 0.894 (0.855–0.933) 0.83 0.67 0.792 (0.713–0.869) 0.13
Radiomics a RF 1.00 0.97 0.999 (0.999–0.999) 0.96 0.86 0.918 (0.859–0.977) 0.26
LR 0.70 0.69 0.773 (0.714–0.832) 0.63 0.88 0.809 (0.731–0.887) 0.27
Nomogram RF 0.87 0.94 0.960 (0.940–0.980) 0.93 0.85 0.920 (0.861–0.979) 0.23
LR 0.92 0.84 0.934 (0.895–0.973) 0.93 0.75 0.879 (0.820–0.938) 0.19

Abbreviations: RF, random forest; LR, logistic regression; Sen, sensitivity; Spe, specificity; AUC, area under the curve; CI, confidence interval

Radiomics a: the final radiomics model based on the multi-parametric (arterial phase, portal venous phase, hepatobiliary phase T1-weighted image, and diffusion-weighted imaging) fusion in VOItumor + 10mm + liver