Table 3.
Models | Classifier | Training cohort (n = 205) | Validation cohort (n = 106) | Cutoff | ||||
---|---|---|---|---|---|---|---|---|
Sen | Spe | AUC (95% CI) | Sen | Spe | AUC (95% CI) | |||
Clinical | RF | 0.72 | 0.83 | 0.798 (0.739–0.857) | 0.73 | 0.59 | 0.725 (0.647–0.803) | 0.25 |
LR | 0.73 | 0.72 | 0.779 (0.719–0.837) | 0.70 | 0.55 | 0.668 (0.570–0.766) | 0.17 | |
Imaging | RF | 0.83 | 0.88 | 0.919 (0.880–0.958) | 0.77 | 0.87 | 0.876 (0.816–0.934) | 0.31 |
LR | 0.82 | 0.84 | 0.894 (0.855–0.933) | 0.83 | 0.67 | 0.792 (0.713–0.869) | 0.13 | |
Radiomics a | RF | 1.00 | 0.97 | 0.999 (0.999–0.999) | 0.96 | 0.86 | 0.918 (0.859–0.977) | 0.26 |
LR | 0.70 | 0.69 | 0.773 (0.714–0.832) | 0.63 | 0.88 | 0.809 (0.731–0.887) | 0.27 | |
Nomogram | RF | 0.87 | 0.94 | 0.960 (0.940–0.980) | 0.93 | 0.85 | 0.920 (0.861–0.979) | 0.23 |
LR | 0.92 | 0.84 | 0.934 (0.895–0.973) | 0.93 | 0.75 | 0.879 (0.820–0.938) | 0.19 |
Abbreviations: RF, random forest; LR, logistic regression; Sen, sensitivity; Spe, specificity; AUC, area under the curve; CI, confidence interval
Radiomics a: the final radiomics model based on the multi-parametric (arterial phase, portal venous phase, hepatobiliary phase T1-weighted image, and diffusion-weighted imaging) fusion in VOItumor + 10mm + liver