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Abstract
Measured meteorological time series are frequently used to obtain information about climate dynamics. We use time series
analysis and nonlinear system identification methods in order to assess outdoor-environment bioclimatic conditions starting
from the analysis of long historical meteorological data records. We investigate and model the stochastic and deterministic
properties of 117 years (1891–2007) of monthly measurements of air temperature, precipitation and sunshine duration by
separating their slow and fast components of the dynamics. In particular, we reconstruct the trend behaviour at long terms by
modelling its dynamics via a phase space dynamical systems approach. The long-term reconstruction method reveals that an
underlying dynamical system would drive the trend behaviour of the meteorological variables and in turn of the calculated
Universal Thermal Climatic Index (UTCI), as representative of bioclimatic conditions. At longer terms, the system would
slowly be attracted to a limit cycle characterized by 50–60 years cycle fluctuations that is reminiscent of the Atlantic
Multidecadal Oscillation (AMO). Because of lack of information about long historical wind speed data we performed a
sensitivity analysis of the UTCI to three constant wind speed scenarios (i.e. 0.5, 1 and 5 m/s). This methodology may be
transferred to model bioclimatic conditions of nearby regions lacking of measured data but experiencing similar climatic
conditions.

Keywords UTCI · Outdoor environment · Time-series · Machine learning · AMO

Introduction

The study of bioclimatic conditions of the outdoor
environment is a very important subject, in the first
instance to understand how climate changes may affect
society’s well being (Stocker et al. 2013). Bioclimatic
assessment has found applications in a multitude of research
areas relating the effects of climate change (Wu et al.
2019) on health and well-being (Bröde et al. 2018),
epidemiology (Di Napoli et al. 2018), military (Galan
and Guedes 2019), urban planning, etc. Di Napoli et al.
(2018) correlated the Universal Thermal Climate Index
(henceforth referred to as UTCI) and mortality after intense
heat waves in Europe. Chinese tourism assessment was also
explained by means of UTCI dynamics (Ge et al. 2017).
In Australia, Coutts et al. (2016) quantified the variability
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of outdoor environment near central business centres in
Melbourne. Ndetto and Matzarakis (2015) also used UTCI
to asses bioclimatic conditions of the urban environment in
Tanzania. Eventually, Bröde et al. (2012) studied outdoor
thermal comfort in Brazil. These studies find practical
application for instance to determine the attractiveness of
tourist places like coastal and mountain towns or health
resorts in such areas (Ge et al. 2017; Błażejczyk and Kunert
2011), as well as in ergonomics to determine working
conditions in both indoor and outdoor environments (Bröde
et al. 2018; Sen and Nag 2019).

Over 200 bioclimatic indexes were proposed in the last
100 years and used to analyse human body’s response to
outdoor environmental conditions (de Freitas and Grig-
orieva 2017). Early methods to assess bioclimate conditions
involved simple indexes based on a single parameter, e.g.
like physical saturation deficit (Thilenius and Dorno 1925),
or Wet Bulb Temperature Twb (Haldane 1905). Notice how
such variables describe meteorological processes rather than
bioclimatic conditions. More advanced bioclimatic indexes
use human biological variables (e.g. body temperature or
energy (heat) exchange) in relation to actual meteorological
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conditions in order to derive the Physiological Equiva-
lent Temperature (PET) (Mayer and Höppe 1987), or the
UTCI (Błażejczyk et al. 2013; Jendritzky et al. 2012).
Many bioclimatic indexes are commonly build up using
heat exchange (led by sunshine duration), air tempera-
ture or air humidity (led by precipitation) in parallel with
atmospheric pressure and wind speed (Fiala et al. 2012;
Masterson and Richardson 1979; Bosford 1971). In April
of 2009 The World Meteorological Organization (WMO)
officially promoted the use of UTCI as the most suitable
tool for determining bioclimatic conditions at the inter-
national symposium (WMO 2009). Additionally, in last
decade many Polish scientists have used UTCI in differ-
ent parts of Poland and they confirmed that this index
is well suited for describing conditions of polish climate
(Błażejczyk et al. 2010, 2012, 2013; Chabior 2011; Kuchcik
et al. 2013; Okoniewska and Wieçław 2013; Nidzgorska-
Lencewicz 2015; Bryś and Ojrzyńska 2016; Rozbicka and
Rozbicki 2016, 2018). It is worth noticing that quantities
like sunshine duration, air temperature and precipitation are
among the basic meteorological variables used to charac-
terize local and global both weather and climate conditions
(Brönnimann 2015). Solar energy reaching Earth’s upper
atmosphere is the direct engine of the Earth’s climate and
its dynamics (Kondratyev 2013). Air circulation affects the
spatial and temporal distribution of the above mentioned
meteorological quantities and thus it contributes to sustain
Earth’s climate system. Globally, climate conditions depend
on mass and energy fluxes, which affect both nature biodi-
versity at meso and global scales, and outdoor bioclimatic
conditions for human body at the local scale (Bryś et al.
2020).

Air temperature is widely recognised to be a fundamental
proxy variable for the assessment of climate conditions and
related changes (Stocker et al. 2013). It is linked to sunshine
(e.g. number of sunny days) and to air mass conditions
(i.e. humidity), and so indirectly to rainfalls and evaporation
processes. There is also increasing evidence about the
forcing role played by intensive human activity, whose
effects are considered to be responsible for accelerating the
rate of climatic changes (Stocker et al. 2013; Brönnimann
2015). Studying long-term air temperature evolution in
relation to sunshine duration and precipitation is thus
meaningful from a climatological viewpoint (Flohn 1957;
Girs 1971; Bryson 1974; Groveman and Landsberg 1979).
For example, Wrocław’s climate at specific locations results
from the interaction between oceanic and continental
air masses. Measurements at these locations provide an
opportunity to better assess bioclimatic variability from
observations (Kosiba 1948; Dubicka 1994). At sufficient
large time scales, one would expect the link between
sunshine duration, precipitation and air temperature to
emerge as a slow component of the climate dynamics to

which high frequency (correlated) stochastic fluctuations
are superimposed as fast components. Reconstructing both
components dynamics is the first step for advancing
bioclimatological insights.

In this work we first extract the deterministic slow
component linking precipitation, sunshine duration and
temperature dynamics in a mechanistic way and then
separate it from the fast component that has a high
dimensional origin (i.e. eventually stochastic). Notice, that
for these steps wind data records are only of minor
importance as the above variables already contain the effect
of air circulation. In this sense, wind speed would be a
redundant variable. However, wind speed is of importance
for the calculation of the UTCI where wind velocity has
a clear effect on body-felt bioclimatic conditions. Analysis
of the slow component shows that the dynamic is linked
to Oceanic Oscillations such the North Atlantic Oscillation
(NAO) or Atlantic Multidecadal Oscillation (AMO) (Marsz
et al. 2019; Niedźwiedź et al. 2009; Malik et al. 2018;
Knudsen et al. 2011). Malik et al. (2018) stress that oceanic
oscillations like AMO, Pacific decadal oscillation (PDO)
or El-Niño southern oscillation (ENSO) are mostly driven
by sun activity and influence Sea Surface Temperature
(SST) (Otterå et al. 2010; Peng et al. 2013; Niedzielski
2011, 2014). Using the UTCI as reference index, we show
that successful signal decomposition may not only provide
insights about the dynamics of the climate system at large
time scale but also offer a new methodology to calculate
bioclimatic indexes at long terms.

Materials andmethods

Geographical location and data

Wrocław (SW Poland) has one of the longest measured time
series of air temperature and precipitation in the World,
its origins began in 1791. These series were reconstructed
and homogenized from data measured over 10 different
locations in Wrocław. The basis of this homogenization is
from Wrocław university meteorological tower (known as
Breslau Sternwarte), where measurements were taken in
the period 1791–1920. Successive almost 100 years were
homogenized from other 9 stations due to the numerous
administrative decisions and technological improvements
determining location changes. A comprehensive explana-
tion of this homogenization may be found in the works by
Bryś and Bryś (2005, 2010a). Here it suffices to say that
homogenization and reconstructions techniques enabled to
obtain an information about other meteorological variables
like sunshine duration and water vapour pressure. Closer
details of how sunshine duration time series (since 1891)
were obtained may also be found in Bryś and Bryś (2003),
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whereas about water vapour pressure (since 1883) we refer
to the work of Bryś and Bryś (2001).

Data used in the following work accounts for monthly
sums of hours of sunshine duration (s) and precipitation
(p), as well as monthly averages for air temperature (t) in
Wrocław for period 1891–2007 (Fig. 1). The above said
variables are typically used as a proxy for computing other
quantities such, solar radiation (R), cloudiness (N), water
vapour pressure (e), whence the importance of modelling
them for forecasting purposes. As far as wind is concerned,
this variable was extracted from the repository of the Polish
Institute of Meteorology and Water Management National
Research Institute (IMGW) using the ‘climate’ package
in R (Czernecki et al. 2020) and was only available for
the 1966–2019. In general, monthly mean values for wind
speed fluctuate between 0 and 4.9 m/s, being this the
highest mean monthly wind speed observed in Wrocław
(1966–2019). In Wrocław (1966–2019) mean monthly sum
insolation oscillate between 40.7 h in December and 206 h
in August with annual mean 1490.62 h. Mean monthly sum
of precipitation change between 25.2 mm in February to
89.9 mm in July with annual sum 565.6 mm, Mean monthly
temperature is equal − 0.1 ◦C in January and reach 19.7 ◦C
in July, the mean annual value of air temperature is equal
9.6 ◦C

Separation of the slow and fast signal components

All time series are clearly non-stationary because of the
presence of a long-term trend affecting the data (Fig. 1).
This phenomenon is typical of climatic data at all scales,
and over the period of available measurements is considered
an evidence of changes occurring in the Anthropocene
(Brönnimann et al. 2019). Each data series was further
decomposed by separating the slow component, xs(t)

representing the non-linear, long-term trend from the fast
component, xf (t), which represents the seasonal and

the stochastic components affecting each meteorological
variable (Brockwell and Davis 2016)

x(t) = xs(t) + xf (t). (1)

The long-term trend xs(t) was obtained by first
performing a ten-years moving average with symmetric
window, and then a frequency (i.e. Fourier) analysis of the
resulting signals, which enhanced the dominant frequency
still affecting all data series. The moving averaged data was
then filtered at that identified frequency by using a low-pass
Butterworth algorithm. This produced the data series xs(t)

with which the original data were eventually detrended from
the slow component.

The fast component, xf (t), thus resulted from removing
the slow component from the original data. However, xf (t)

still accounts for yearly seasonal (i.e. periodic) variability
xfp(t) affecting both the mean and the variance, and
monthly correlated fluctuations xfc (t), so that the original
data was further decomposed as

x(t) = xs(t) + xf (t) = xs(t) + xfp(t) + xfc (t), (2)

as described in the next paragraph.

Modeling the fast component xf (t )

Seasonal fluctuations xfs (t) were very well described
by the monthly mean of the long-term detrended data,
and so additionally removed from the detrended data
in order to obtain xfc (t). Notice, that this data series,
although stationary, potentially still contains some temporal
correlation emerging from both spatial and temporal
meteorological circulation dynamics in the atmosphere.
Therefore, xfc (t) was still further decomposed into a
deterministic and a stochastic fluctuation representing the
intrinsic noise resulting from such complex dynamics. The
time series xfc (t) was then standardized, i.e. by subtracting
the mean and by dividing by its standard deviation, to

Fig. 1 Localization of analysed
area in Poland (left), with
raw-data in years 1891–2007
(right)
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obtain a series x′
fc

(t) having zero mean and unit variance.
As the temporal correlation affecting the standardized data
had almost an exponential decreasing structure, we opted
to remove it by means of linear stochastic models, e.g. like
the AutoRegressive AR(p) model of pth order (Eq. (3))
(Maidment and et al. 1993; Salas et al. 1985; Haltiner and
Salas 1988)

x ′
fc

(t) =
p∑

j=1

φj (x
′
fc

(t − j) − μ) + εt , (3)

with p autoregressive parameters φ(1), ..., φ(p). The noise
εt in Eq. (3) is an uncorrelated gaussian process with zero
mean and unit variance (Maidment and et al. 1993). The
data was checked for the most suitable AR model order by
computing the sample autocorrelation (ACF) and the partial
autocorrelation functions (PACF) (Brockwell and Davis
2016), whose expressions are well known and will here be
omitted. The most suitable AR model for each time series
was then tested to remove any correlation in the residuals,
and later used for generating statistically equivalent time
series as well for forecasting purposes (Brockwell and Davis
2016).

Modeling the slow component xs (t )

The long-term trend, xs(t) affecting each data series led us
hypothesize the presence of a low-dimensional dynamics
linking the three variables, sunshine duration, precipitation
and air temperature at such time scales. This is motivated by
the fact that sunshine duration governs soil-atmosphere heat
exchange processes, evapotranspiration among which drives
precipitation depending on air temperature conditions,
which all feedback on sunshine duration. At large time
scales, one would therefore expect that such three variables
may well represent the average status of the climate of
the region and can therefore be adopted as state variables
of the dynamical system. In turn, this motivates the
seek of a dynamical model mimicking the data that may
help understanding towards which long-term dynamics the
system is pointing. We therefore adopted a dynamical
systems type of approach and hypothesized that such
a (climate) system is currently being evolving along a
non-stationary trajectory as a result of the 3-dimensional
autonomous system of Ordinary Differential Equation
(ODEs)
⎧
⎨

⎩

ẋ = fs(x, y, z)

ẏ = fp(x, y, z)

ż = fT (x, y, z)

, (4)

where x(t), y(t) and z(t) are sunshine duration, precipi-
tation, and air temperature, respectively and t is time. In
particular, the three scalar functions were chosen in the form

of a simple complete 3-order polynomial
⎧
⎨

⎩

ẋ = c1,1 + c1,2x + c1,3y + c1,4z + ... + c1,20z
3

ẏ = c2,1 + c2,2x + c2,3y + c2,4z + ... + c2,20z
3

ż = c3,1 + c3,2x + c3,3y + c3,4z + ... + c3,20z
3

, (5)

where ci,k are the coefficients to be optimized. For the opti-
mization process of such a strongly nonlinear system we
appealed to a system identification techniques working in
the phase space and named ‘Trajectory Method’ (Eisen-
hammer et al. 1991; Perona et al. 2000). This methodology
compares the model performance against the observed sys-
tem trajectory in the phase space x(t), y(t), z(t) and for
each component builds the quality function

Qi =
jmax∑

j=1

lmax∑

l=1

||xi
m(tj + �tl) − xi

r (tj + �tl))||, (6)

for jmax initial conditions taken on the observed variable
xr(t) and let the model variable xm(t) to evolve for a time
tl = �t2l−1, (l, 1..lmax) (e.g. see Perona et al. (2000) for
details). Optimum values of the coefficients ci,k are then
obtained through a minimization process of quality function
(Eq. (6)) using the least-squares method (Eisenhammer
et al. 1991; Perona et al. 2000). When the level of noise
in the observed data is not too high, then the model
would converge ideally by switching off those coefficients
corresponding to the monomial terms that do not contribute
to the dynamics (Perona et al. 2000). This methodology is
very robust against model instabilities and has successfully
been applied to model several processes in nature (Perona
et al. 1998; Perona et al. 2001; Perona and Burlando 2008).
We study the model dynamics from a more analytical point
of view by restricting our analysis to the equilibrium points
and their linear stability. By definition, equilibrium points
correspond to the points in the state space where temporal
derivatives of the flow nullify. Therefore, equilibrium points
can be found by solving the algebraic system
⎧
⎨

⎩

fs(x, y, z) = 0
fp(x, y, z) = 0
fT (x, y, z) = 0.

(7)

From a geometrical point of view, such points are found at
the intersection of the curves where each flow component
has null time derivative (isoclines). In order to inquire
the stability of equilibrium points we performed a linear
stability analysis, whose details can be found in any
analytical mechanics books, e.g. see Strogatz (2018) Here
it suffices to recall that the main steps of the linear stability
analysis are to first linearize the model (Eq. (5)) and then
to calculate the corresponding eigenvalues of the matrix of
the first order partial derivatives (Jacobian matrix) at each
equilibrium point. The sign (i.e. positive or negative) and
the domain (i.e. real or imaginary) of the eigenvalues define
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the stability properties of the equilibrium point along the
principal axes of the phase space.

Universal Thermal Climate Index

Universal Thermal Climate Index (UTCI) is the common
index used to assess bioclimatic conditions because of its
general applicability across the year (Havenith et al. 2012).
The variability of UTCI describes hot and cold human
comfort responses on outdoor environment. Because of
its definition, the UTCI is the most comprehensive index
involving parameters such as air temperature (T), wind
speed (v), water vapour pressure (e) and mean radiant
temperature (Tmrt ) (Fiala et al. 2012),

UT CI = f (T , v, e, Tmrt ). (8)

Water vapour pressure and mean radiant temperature
can be calculated from sunshine duration, precipitation and
mean air temperature, whereas wind speed is generically
assumed constant and used as a sensitivity parameter. In
particular, mean radiant temperature, Tmrt , was calculated
from sunshine duration by using the SolAlt formula from
MENEX 2005 (Błażejczyk 2005) and implemented in the
Bioklima software (Błażejczyk 1996):

Tmrt =
(

R
Irc

+ 0.5Lg + 0.5La

sh · σ

)0.25

− 273. (9)

In Eq. (9), R is absorbed solar radiation (W m−2), Irc is the
coefficient reducing convective and radiative heat transfer
through clothing, Lg is ground radiation (W m−2), La is
atmosphere back radiation (W m−2), sh is the emissivity
coefficient for humans (0.95) and σ is the Stefan-Boltzmann
constant (5.667 · 10−8 W m−2 K−4). Absorbed solar
radiation (R) was calculated using the SolAlt model based
on cloudiness (N [%]) and position of the Sun (hSl [◦])
and detailed formulas are published Błażejczyk (2005). For
monthly data the position of the Sun was taken from the
middle position in each month. The water vapour pressure
for the data was reconstructed and homogenized following
Bryś and Bryś (2010b) and modelled using Tetens’ formula
(Tetens 1930).

Eventually, mean monthly values of the independent
variables defining the UTCI, were all inside the range of the
limiting conditions of applicability so that the UTCI could
easily be computed using the Bioklima software (Havenith
et al. 2012).

Our data analysis and modelling of sunshine duration,
precipitation and temperature was then useful to obtain
projections of such variables at long term, and then the
UTCI of the region. In particular, this was done by

generating synthetic data from re-aggregation of the slow
and the fast components, i.e. as per Eq. (2).

In order to analyse the sensitivity of the UTCI model to
wind speed conditions, we used 0.5, 1, and 5 m/s. For this
wind speed scenarios we both reconstructed UTCI values
for the 117 years of available data and performed long-term
calculations in order to explore UTCI variability at long
term.

Results

Signal decomposition: the slow and the fast
components

Figure 2 shows the long-term trends (red curves) that
emerged for each time series as a result of the moving
average and the Butterworth low-pass filter with a cutting
frequency of 0.0038 month−1. After removing the small
artificial delay introduced by the moving average and
the filter, the trend was adopted as slow component and
removed from the original data in order to make them
stationary. Whilst the trend behaviour for sunshine duration
and precipitation appear fluctuating almost with zero mean,
the one for temperature clearly shows a positive drift
affecting the last years of the series in agreement with
climate observations of ongoing changes. The relatively
clear behaviour of the three series leaves also to suppose
the presence of a low-dimensional dynamics underneath
the data and linking such three climatic variables in a
deterministic fashion. This aspect will be further addressed
in ‘The slow-component as dynamical system’ ahead.

After removing the trend, the resulting time series
xf (t) was de-seasonalized and then standardized to obtain
x′
f (t) (Fig. 3, mid panels). Both sunshine duration and

precipitation show the presence of a weak but statistically
significant temporal autocorrelation, which indicates that
fluctuations in the series do not have a completely random
(i.e. white noise) origin, but still present a deterministic
dependency on previous data back to some time lag and only
statistically non-significant residual oscillations (Fig. 3 top
panels). In particular, sunshine duration shows a significant
correlation with previous data up to lag 1, precipitation up
to lag 2 and temperature none.

The Autoregresive models (Eq. (3)) described in ‘Mate-
rials and methods’ were then used (AR(1) for sunshine
duration and AR(2) for precipitation) to remove the residual
correlation, thus leaving completely uncorrelated residuals
(Fig. 3 lower panels). We concluded that the fast component
of such climatic time series is composed of deterministic
seasonal fluctuations, plus coloured noise that can easily
be replicated or synthesized by means of simple linear
autoregressive models.
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Fig. 2 Ten years moving
average (blue line) and
non-linear trend (dashed red
line) obtained from filtering the
moving averaged data with a
Butterworth low-pass filter

The slow-component as dynamical system

The three time series forming the slow component were
analysed with the Trajectory Method (‘Modeling the slow
component xs(t)’) in order to seek for a low-dimensional
dynamical system explaining the mechanistic structure
underlying the data. When using a number of initial states,
jmax = 48, with an inter-distance between them d = 7
and sequential model evolutions up to 25 data (lmax = 4)
per each initial condition, the Trajectory Method returned a
set of coefficients describing a stable 3D dynamical system
that mimicked both the single time series and their trajectory
in the phase space (Fig 4). It has to be stressed that the
reconstruction technique was unsuccessful in the majority
of the trials run by changing reconstruction parameters
(3600 total trials). Only in about 17 cases the method

returned a stable system and only in about 5 cases the
system reproduced to some similarity the system trajectory,
in some cases diverging on the long term. The parameter
set presented here was the only one that represented a
stable dynamical system with the minimum error function.
The scarcity of meaningful models found by the method
is surprising given the elevated number of coefficient
involved. Despite having low physical meaning, polynomial
models with such a high number of coefficients usually
guarantee a high flexibility in reproducing the observed
data (Perona et al. 2000). To some extent this evidences
the uniqueness of the model that is able to reproduce such
a complex dynamic behaviour, as shown in Fig. 4. Panels
a–d show the projection of the phase space along all 2-D
variable pairs as well as the 3-D phase space trajectory. The
measured data are qualitatively well represented, although

Fig. 3 Autocorrelation function (ACF) of sunshine duration, precipitation and air temperature(upper) with residuals of Autoregresive models
(AR) (middle) and test of autocorrelation by ACF of residual (bottom) for each meteorological parameter
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Fig. 4 Phase space data
compared to model results of
precipitation and sunshine
duration (a), air temperature
precipitation (b), temperature
and sunshine duration (c) and
3-dimensional phase space (d)

quantitatively some differences are clearly evident. The
cumulative density functions (Fig. 5 middle) shows a very
good estimation of precipitation but an overestimation of the
air temperature values in the range between 8.9 and 9.1 ◦C
(Fig. 5 right). Sunshine duration is instead underestimated
in the range between 110 and 135 h

month (Fig. 5 left).
The underestimated values of the hours of sunshine

duration are strongly related with the overestimated values
of air temperature in the last 20 years. This relationship has
thus low physical sense, because air temperature would rise
despite the less energy income from the Sun. Mutual strong
relationship between all measured variables in the model
will be further explained in the next section.

Despite the lack of information of pollutant, ozone’s and
other parameters that are considered direct responsible of
global warming (Stocker et al. 2013), the model shows
a very similar behaviour to the analysed time-series in

Wrocław for the last 20 years. It is therefore instructive to
study its dynamical properties in order to inquire the system
behaviour at long term.

Slow component dynamical properties: long-term
attractor, equilibrium points and related stability

The model of the slow component represents the dynamic
behaviour of an autonomous, nonlinear and strongly
dissipative system. Assuming that the real system is
currently experiencing a transient dynamics undergoing
climate changes, the model might provide some insights
about the asymptotic behaviour of the real system under
present environmental constraints. In other words, the
model evolution at long term will occur towards an attractor,
that is the geometrical object in the phase space representing
the topological manifold of the dynamics.

Fig. 5 Cumulative density function (CDF) for the measured and modelled time-series of sunshine duration, precipitation and air temperature in
Wrocław
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From a purely numerical point of view, the model shows
to converge onto a periodic behaviour for all variables as
shown from the projection of the phase space (Fig. 6a-
c). In the phase space, this results into a 3D closed
trajectory that attracts the ODEs’ system when started from
any initial conditions taken within the ‘so-called’ basin of
attraction (Fig. 6d). To this regard, Fig. 6 show the outcome
of the model after 7000 iterations, which correspond to
about 583 years (117 reconstructed and 466 forecast). The
length of available observations clearly belong to the initial
transient phase of the model, which appears then to stabilize
onto a periodic pattern after some periods (Fig. 6e). The
periodicity of the oscillations is about 642 months (i.e.
53.5 years). This oscillation may be related to the Atlantic
Multidecadal Oscillation (AMO), which has an approximate
periodicity ranging between 55 and 80 years (see also
‘Discussion’ ahead). The stability analysis of the model
shows that the model has only four real equilibrium points
(‘Modeling the slow component xs(t)’ Eq. (7)), which
are, for the sake of our discussion, the interesting ones
(Table 1). Equilibrium points are shown in the phase
space (Fig. 6d). Equilibrium points can be either stable
or unstable in the sense that they either attract or repel
model trajectories in the phase space, respectively. Table 1
shows that all equilibrium points have no eigenvalues
with zero real part. Mathematically, this ensures that all
equilibrium points are ‘hyperbolic’, that is the stability

properties of the linear system are representative of those
of the nonlinear one in the vicinity of the equilibrium
points. Moreover, all equilibrium points have at least
one eigenvalue with real positive part, which means that
all equilibrium points are unstable at least along one
direction.

In our model P1 and P4 behave as unstable focus in
the (X,Y) plane, and as stable nodes along the Z direction.
Thus, trajectories spiral away from the equilibrium point
in the X,Y plane, whereas are straightly attracted towards
the point along Z. Equilibrium point P2 is instead unstable
in all directions. Next to point P3 trajectories will spiral
towards the point in the X,Y plane and be straightly repelled
along Z. Overall, we can therefore conclude that the system
is locally unstable in the vicinity of the equilibrium points
where trajectory would sooner or later drift away from the
points. However, as we verified numerically, the system is
globally stable because of the presence of the limit cycle,
which is an actual invariant manifold of the system and
result from the interplay between attraction and repellion
of the equilibrium point along the three coordinate axes
X,Y,Z. The stability properies of the limit cycle could
be well investigated by mean of Floquet theory (Strogatz
2018), which is however not object of the present work.
The significance and implications for the slow component
of the system dynamical properties presented above will be
discussed in the next section.

Fig. 6 Long-term prediction for model in phase space of sunshine duration, precipitation and air temperature (a–c), 3-dimensional space with
equilibrium points (d) and long-term courses of analyse all components with original trend (e)
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Table 1 Equilibrium points and related eigenvalues defining their characteristics

Points Equilibrium points Eigenvalues

Sunshine duration [X1] 110.481 0.0164 + 0.0133i

Precipitation [Y1] 51.145 0.0164 − 0.0133i

Temperature [Z1] 8.798 − 0.0163

Sunshine duration [X2] 125.214 0.00044 + 0.0133i

Precipitation [Y2] 47.316 0.00044 − 0.0133i

Temperature [Z2] 8.890 0.0069

Sunshine duration [X3] 130.006 − 0.0115 + 0.0206i

Precipitation [Y3] 51.314 − 0.0115 − 0.0206i

Temperature [Z3] 8.378 0.0224

Sunshine Duration [X4] 138.049 0.001821 + 0.00776i

Precipitation [Y4] 47.908 0.00182 − 0.00776i

Temperature [Z4] 8.923 − 0.00541

Points Characteristic

P1(X1, Y1, Z1) unstable focus in (X,Y), stable node along Z

P2(X2, Y2, Z2) unstable focus in (X,Y), unstable node along Z

P3(X3, Y3, Z3) stable focus in (X,Y), unstable node along Z

P4(X4, Y4, Z4) unstable focus in (X,Y), stable node along Z

Reconstruction and prediction of bioclimatic
conditions of the outdoor environment

Assessment of outdoor environment for both the actual and
modelled case was made by means of the UTCI, which was
calculated as explained in ‘Materials and methods’. UTCI
was calculated from non-linear slow component obtained
from the data or from the modelled slow component. Values
of UTCI monthly data oscillate in a range from −15 to
30 ◦C and both UTCI (i.e. from data or from modelled data)
agree very well in average, which reaches about 15.2 ◦C
UTCI (Fig. 7 upper left). Changes of UTCI calculated from
slow components are in the range between 10.5 and 15 ◦C
UTCI. The mean square error (MSE) between modelled
and obtained slow component from data is equal 0.076
what was also identified on a comparison of those time
series at probability density function (Fig. 7, upper right).
Comparison of 1 m/s and 5 m/s approaches was presented
on the bottom panels of Fig. 7. By increasing the wind speed
the difference in compatibility between reconstructed and
real data increases. MSE on 5 m/s scenario increase to 0.15.

The differences between the subtracted and modelled
slow component in assessment of the UTCI significantly
change. The most impacted element in shaping UTCI values
is air temperature. The worst predicted temperature, with
maximum error about 0.2 ◦C (Fig. 6), caused big changes in
sunshine duration and precipitation mostly because scale of
units. This change is less relevant in the bioclimatic outdoor
environmental assessment then in global climate changes,

where air temperature is also the most responsive parameter.
This small variance of air temperature in the model may
have application in reconstructing and forecasting the
bioclimatic outdoor environmental conditions. Despite the
annual average the long-term oscillation is still visible. In
the analysed period 1891–2007 one sees that two minimum
values occur in a range of 60–80 years. In order to better
enhance the periodicity only one wind scenario was used for
the forecast of the UTCI (0.5 m/s).

Figure 8 shows the comparison of the UTCI computed
from the modelled slow component and the observed one
for lowest wind-speed scenario. Both UTCI show similar
behaviour and the modelled one allow for a long-term
forecast of the underlying trend. According to the dynamics
of the slow component an oscillating trend will establish
under the assumption that present boundary (atmospheric
and environmental) conditions do not change.

Discussion

Stochastic and deterministic approaches have been used
to model environmental processes (Perona and Burlando
2008; Chalfen et al. 2014; Czernecki et al. 2018; Malik
et al. 2018), financing (Campbell et al. 1997), city transport
(Kazak et al. 2017), quality assessment (DeLone and
McLean 1992) and many others processes. Time series
analysis of measured data may reveal the presence of low-
dimensional deterministic behaviour in the slow component
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Fig. 7 Monthly UTCI values for 0.5 m/s scenario with comparison of probability density functions (upper panels) with UTCI in two other
scenarios (1, 5 m/s) for data and modelled slow component time series

Fig. 8 Long-term prediction of
decal variability of UTCI trend
compared to data obtained from
slow component time series for
the 0.5 m/s wind speed scenario

1198 Int J Biometeorol (2021) 65:1189–1203



(e.g. the long-term trend). The corresponding dynamical
system can sometimes be reconstructed starting from
observations (Baake et al. 1992; Eisenhammer et al. 1991;
Judd and Mees 1995; Irving and Dewson 1997; Perona et al.
2000; Perona et al. 2001). Most of such techniques are today
included in machine learning approaches (Czernecki et al.
2018; Pilguj et al. 2019; Szymanowski et al. 2019).

The effort performed here to separate all components
and reconstruct their physical nature has shown that
the fast component has the properties of a coloured
noise possibly overlapped to a seasonal behaviour. The
slow component may often hinder a dynamics with a
more deterministic structure. Indeed, the three variables
analysed here are representative of the average state of
the climatic system, and can therefore be treated as actual
state variables responsible for the slow component. In
other words, the state variables could be linked in a
mechanistic fashion. In this study, the slow component
shows a long-term oscillation that made appealing the use of
reconstruction techniques. Notably, the periodic oscillation
that characterizes the dynamic of the reconstructed slow
component would be consistent with well known patterns
induced by the Atlantic Multidecadal Oscillation (AMO)
of 55–80 years (Knudsen et al. 2011; Brönnimann 2015;
Malik et al. 2018). Also, Malik et al. (2018) found statistical
evidence that Atlantic Multidecadal Oscillation (AMO)
has intrinsic positive correlation with solar activity. Thus,
after a transitory time that started in the antrhopocene,
the model of the slow dynamics suggests that the system
will set on to a periodic oscillation yet driven by AMO,
but characterized by an offset average with respect to
pre-anthropic conditions. The effect of anthropic actions
are indeed implicitly appearing in the behaviour of the
observed variables, which is why we adopt a dynamical
system approach that objectively aims at reconstructing the
dynamics. Our model for the long-term trend component
describes an autonomous dynamical system (i.e. a surrogate
climatic system) out of equilibrium that shows a transient
behaviour leading it to future periodic oscillations different
from the past ones. Hence, the model does not show who is
responsible for causing such a new trajectory, only it models
that there is one and that this will lead to a new periodic
equilibrium.

The variability of the UTCI describing outdoor envi-
ronment shows a systematic change in the duration of the
oscillation over the period where observations are available.
Similarly, difference from minimum and maximum values
drastically increased as well as the time of these extreme
periods (Fig. 8). Colder periods with average UTCI temper-
ature lower than 15 ◦C lasted for about 40 years and after
which UTCI values drastically grew at the beginnings of
80s. This is an effect of increased air temperature and sun-
shine duration which resulted in less frequent cloud cover

(‘Slow component dynamical properties: long-term attrac-
tor, equilibrium points and related stability’). Decreasing of
UTCI in present years is mainly caused by less frequent pre-
cipitation periods that determine air water content. In terms
of bioclimatic outdoor environment, the Wroclaw case (cen-
tral Europe climate) shows increasing air temperature and
hours of sunshine duration, decrease a heat sensations of
human body because of less humidity in the air. This situa-
tion might of course be different in other parts of the words
where air humidity is already low, and air temperature is at
different level then in Wrocław (central Europe).

At longer term, the model suggests that the oscillating
trend will set to a constant periodicity, and generically
lower mean. This is an effect of air temperature and
sunshine duration form the model. According to Fig. 6
reconstructed air temperature change in bigger oscillation
(having also lower values about 0.1 ◦C) than data.
Reconstructed precipitation data oscillate in bigger range
then raw data. In the other hand sunshine duration
is overestimated. These small differences indicate those
changes in UTCI. This was also visible in Głogowski
et al. (2020) about the bioclimatic conditions of the
Lower Silesia where UTCI was almost constant despite
increasing air temperature. Bioclimatic conditions are ‘sum’
of all outdoor environmental conditions. The changes
in air temperature may be overtaken by other factors
like humidity, solar radiation or wind speed. In this
case, the model overestimates sunshine duration and
underestimates air temperature. The amount of precipitation
was reconstructed with the best correspondence to raw data.

As stated in the introduction, UTCI found broad
application to describe outdoor environmental conditions
in many parts of the worlds, and may help sustaining the
econmic growth of low-income countries (Sen and Nag
2019). The technique developed in this work may be useful
either for reconstructing past and future UTCI dynamics
or to simply generate synthetic data for filling data gaps
or for statistical analyses. Another potential application
could be downscaling data to regions that do not possess
meteorological observations.

Perhaps in a speculative way, we attempt an inter-
pretation of our model results keeping in mind that our
model is only indirectly physically based because it entirely
builds on the (nonlinear) information contained in observed
data. As such the autonomous dynamical system that was
reconstructed for the slow component does not include
the effect of further forcing on the state variables. Under
these premises, the data trend dynamics would suggest that
present conditions would actually sit on a transient cli-
matic trajectory, which will lead outdoor environmental
conditions for the region to settle on a periodic long-term
behaviour for the trend. The persistent increase of sunshine
duration and temperature averages will eventually feedback
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on precipitation. Future years may then experience a pre-
cipitation increase and consequent decrease of sunshine
duration and temperature with some phase delay (already
present in the observations) probably due to thermal inertia
of air and water masses. Hence, current transient conditions
clearly emerging from observations were likely triggered by
past stress on the global climate caused by severe anthropic
activities. This seems however to not have altered the future
footprint of multidecadal oscillations (e.g. AMO in particu-
lar) on the proxy climatic variables investigated here.

Conclusions

A non-linear approach (trajectory method) for reconstruct-
ing ordinary differential equations from data was used in
this paper in order to model the slow component affecting
monthly sunshine duration, precipitation and temperature
data. The reconstructed dynamical system was then used to
build the aggregated UTCI representing bioclimatic condi-
tions of the outdoor environment for the region of interest.
Past and present evolution of UTCI seems to settle on long-
term 50–60 years’ fluctuations where an as small as 0.1 ◦C
change of monthly air temperature may induce changes of
monthly sum of precipitation of about 5 mm, in turn causing
20 hours monthly difference in sunshine duration. Globally,
this behaviour was investigated in terms of UTCI, which
is however strongly dependent on wind speed as a param-
eter. The mean square error for low wind speed (0.5 m/s
monthly value) values was very low and equal to 0.07 and
for high wind speed (5 m/s monthly value) increase to 0.15.
Our modelling approach is general and can be applied to
any environment provided that long enough time series of
measured data are available.
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(2017) Geo-dynamic decision support system for urban traffic
management. In: Proceedings of GIS Ostrava. Springer, pp 195–
207, https://doi.org/10.1007/978-3-319-61297-3 14

Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A
(2011) Tracking the atlantic multidecadal oscillation
through the last 8,000 years. Nature Commun 2(1):1–8.
https://doi.org/10.1038/ncomms1186

Kondratyev KY (2013) Radiative heat exchange in the atmosphere.
Elsevier

Kosiba A (1948) The climate of the Silesian Lands (in Polish).
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