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Genome-wide association study identifies five risk
loci for pernicious anemia
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Pernicious anemia is a rare condition characterized by vitamin B12 deficiency anemia due to

lack of intrinsic factor, often caused by autoimmune gastritis. Patients with pernicious anemia

have a higher incidence of other autoimmune disorders, such as type 1 diabetes, vitiligo, and

autoimmune thyroid issues. Therefore, the disease has a clear autoimmune basis, although

the genetic susceptibility factors have thus far remained poorly studied. We conduct a

genome-wide association study meta-analysis in 2166 cases and 659,516 European controls

from population-based biobanks and identify genome-wide significant signals in or near the

PTPN22 (rs6679677, p= 1.91 × 10−24, OR= 1.63), PNPT1 (rs12616502, p= 3.14 × 10−8,

OR= 1.70), HLA-DQB1 (rs28414666, p= 1.40 × 10−16, OR= 1.38), IL2RA (rs2476491,

p= 1.90 × 10−8, OR= 1.22) and AIRE (rs74203920, p= 2.33 × 10−9, OR= 1.83) genes, thus

providing robust associations between pernicious anemia and genetic risk factors.
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B12 deficiency anemia due to intrinsic factor deficiency, also
known as pernicious anemia, is characterized by impaired
B12 uptake caused by lack of intrinsic factor, a glycoprotein

produced by epithelial cells of the stomach lining. Intrinsic factor
normally binds B12 and facilitates absorption in the intestinal
tract. Pernicious anemia is often caused by autoimmune damage
to the stomach lining (autoimmune gastritis) in which case
the gastric epithelial lining is damaged or destroyed1. The pre-
valence of pernicious anemia is around 0.1% in populations of
European ancestry; however, it is more common in older peo-
ple (~2% in >60 year olds), and believed to be less prevalent in
Asian populations2. Symptoms of pernicious anemia range from
fatigue to megaloblastic anemia and neurological abnormalities
(peripheral numbness, paresthesia, and ataxia) in more serious
cases3.

Pernicious anemia is a complex disease with familial clustering,
with a clear autoimmune basis and higher incidence of other
autoimmune diseases, such as autoimmune thyroid conditions4,
vitiligo5, and type 1 diabetes6 in both patients with pernicious
anemia and their relatives7. Previous studies have identified
genetic variants affecting vitamin B12 levels in the general
population8 or associated with gastric parietal cell autoantibody
positivity in type 1 diabetes patients9, but it is not known whether
these associate with pernicious anemia as well. Although studies
focusing on HLA serotypes have been conducted for pernicious
anemia, the results have been conflicting7 and currently there is
no clear consensus on the HLA alleles or other genetic risk factors
predisposing to pernicious anemia.

Here, we conduct a genome-wide association study (GWAS) of
vitamin B12 deficiency due to lack of intrinsic factor to evaluate
the contribution of genetic variation to the etiology of this disease
in a combined dataset of 2166 cases and 659,516 controls from
three large population based biobanks—Estonian Biobank
(EstBB)10, UK Biobank (UKBB)11, and FinnGen study. Our
analyses identify five genome-wide significant signals, thus pro-
viding evidence for robust associations between pernicious ane-
mia and genetic risk factors.

Results
In the EstBB, individuals with pernicious anemia were identified
using the ICD-10 code D51.0, resulting in 378 cases and 138,207
controls for analysis (prevalence 0.3%). Association testing was
carried out with SAIGE 0.38 software which is suitable for phe-
notypes with a pronounced case-control imbalance12, adjusting
for sex, year of birth, and ten PCs. Individual level data analysis in
the EstBB was carried out under ethical approval 1.1-12/624 from
the Estonian Committee on Bioethics and Human Research
(Estonian Ministry of Social Affairs) and data release N05 from
the EstBB. GWAS summary statistics for the UKBB analysis
including White British participants were downloaded from the
UKBB PheWeb (http://pheweb.sph.umich.edu/SAIGE-UKB).
Similarly, cases in the UKBB had been identified using the ICD-
10 code D51.0 (754 cases, 390,026 controls; prevalence 0.2%) and
SAIGE had been used for association testing, adjusting for sex,

birth year, and the first four PCs. Summary statistics for FinnGen
study were obtained from the publicly available R3 release Phe-
Web (https://www.finngen.fi/en/access_results). In the FinnGen
study, we used the endpoint “Vitamin B12 deficiency anemia”,
which included all the subcodes in the ICD10 D51 diagnosis
group (1034 cases, 131,283 controls; prevalence 0.8%). Similarly
to other cohorts, SAIGE had been used for association testing,
adjusting for sex, age, ten PCs, and genotyping batch. For meta-
analysis, we used fixed-effects meta-analysis implemented in
GWAMA13. Additional details available in Methods section.

GWAS and candidate gene mapping. In our GWAS meta-
analysis we identified five genome-wide significant (p < 5 × 10−8)
associations (Table 1, Fig. 1, and Supplementary Fig. 1) on 1p13.2
(lead signal rs6679677, p= 1.91 × 10−24), 2p16.1 (rs12616502,
p= 3.14 × 10−8), 6p21.32 (rs28414666, p= 1.40 × 10−16),
10p15.1 (rs2476491, p= 1.90 × 10−8), and 21q22.3 (rs74203920,
p= 2.33 × 10−9), with similar effect estimates (effect hetero-
geneity was measured using Cochran’s test, p values ranging from
0.05 to 0.83) in all analysed cohorts (Fig. 1c and Supplementary
Table 1), except for the lead variant on chromosome 2, which is
absent in the Finnish data.

The credible sets of most likely causal SNPs at each associated
locus were determined using the standard approximate Bayesian
finemapping approach14,15. When selecting the most likely
candidate gene in each associated region, we considered the
following criteria—(a) whether the credible set includes a coding
variant in any of the nearby genes, (b) whether the signal
colocalises with a variant that affects gene expression in
COLOC16 analysis (Supplementary Data 1), and (c) relevant
biological functions of the neighboring genes and the mouse
phenotypes of corresponding gene knock-outs.

The lead SNP on chr1, rs6679677, is in high LD (r2= 0.96)
with a non-synonymous variant in exon 12 of the PTPN22 gene, a
well-described genetic risk variant for autoimmune diseases
(rs2476601, p= 2.82 × 10−24) (these are also the only two
variants in the credible set; Supplementary Fig. 2). PTPN22 is a
known immune regulator gene and this particular variant
(rs2476601 A allele) has been associated with an increased risk
of several autoimmune diseases, including rheumatoid arthritis,
systemic lupus erythematosus, vitiligo, autoimmune thyroid
conditions, type 1 diabetes, and others (Supplementary Data 2,
3 and Supplementary Fig. 3). The A allele also increases the risk
of pernicious anemia (OR 1.62; 95%CI 1.48–1.78).

On chromosome 2, the credible set included 17 variants.
Colocalization analysis showed pernicious anemia GWAS associa-
tion colocalises with PNPT1 eQTL signal in thyroid tissue in GTEx
v8 dataset (posterior probability for shared causal variant
PP4= 0.87; Fig. 2 and Supplementary Data 1), PNPT1 exon
expression QTL in monocytes (PP4= 0.93–0.96), RP11-554J4.1
eQTL in multiple tissues (PP4= 0.84–0.92), and CCDC104 exon
expression QTL in fat and blood (PP4= 0.81–0.91). Credible set
analysis showed that two variants (rs7586115 and rs13420929,
r2= 0.7 with lead signal rs12616502) overlap with PNPT1

Table 1 Summary of GWAS meta-analysis results for pernicious anemia.

Lead variant chr:posa EA/ NEA EAF p value OR (95% CI) Cochran’s test p values

rs6679677 1:114303808 A/C EstBB= 0.140 UKBB= 0.1 FinnGen= 0.147 1.91 × 10−24 1.63 (1.48–1.79) 0.71
rs12616502 2:55809015 A/G EstBB= 0.055 UKBB= 0.051 FinnGen=NA 3.14 × 10−8 1.70 (1.41–2.05) 0.84
rs28414666 6:32626451 G/A EstBB= 0.767 UKBB= 0.790 FinnGen= 0.684 1.40 × 10−16 1.38 (1.28–1.49) 0.83
rs2476491 10:6095410 A/T EstBB= 0.688 UKBB= 0.700 FinnGen= 0.755 1.90 × 10−8 1.22 (1.14–1.30) 0.21
rs74203920 21:45714294 T/C EstBB= 0.018 UKBB= 0.015 FinnGen= 0.038 2.33 × 10−9 1.83 (1.5–2.29) 0.05

aPositions according to GRCh37.
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transcription start site/flanking region or enhancer marks in
several cell types and tissues, including T-cells subtypes (Fig. 2).
Unlike the lead signal, these two variants are also present in the
FinnGen dataset, although statistically not significant (in FinnGen
data, rs7586115 p= 0.51, OR 1.07 (0.87–1.33); meta-analysis
heterogeneity p value 0.01). Data from mouse knockouts shows
that Pnpt1tm1a(KOMP)Wtsi/Pnpt1+male mice exhibit higher
mean corpuscular volume (MCV)17 (Supplementary Data 4 and
Supplementary Fig. 4) compared to females, unlike their back-
ground strain C57BL/6 in which MCV is similar in males and

females18. Increased red blood cell MCV is a common feature in
macrocytic anemias, both megaloblastic (caused by B12 deficiency
and pernicious anemia) and nonmegaloblastic (caused by diseases
such as myelodysplastic syndrome and hypothyroidism)19. When
we stratified our analysis according to sex (in EstBB and UKBB
where we had access to individual level data), we saw a significant
difference in effect sizes for the lead signal rs12616502 (OR 2.22
(1.63–3.00) in men, OR 1.39(1.15–1.67) in women, GWAMA
gender heterogeneity p value 0.01; Supplementary Table 1). No
other lead signal exhibited sexual dimorphism (Supplementary

Fig. 1 Results of the pernicious anemia GWAS meta-analysis. a Manhattan and b QQ plot. P values from inverse variance fixed effect meta-analysis, gray
dashed line represents the genome-wide significance threshold to account for multiple testing (p < 5 × 10−8); c Forest plot of effect estimates for lead variants
associated with pernicious anemia. Data were presented as odds ratios and 95% confidence intervals (error bars) for all included cohorts and meta-analysis
(Nmeta= 661,682, NEstBB= 138,585, NUKBB= 390,780, and NFinnGen= 132,317). The size of the dot is proportional to the effective sample size, (calculated as 4/
((1/N_cases)+(1/N_controls)). Pernicious anemia is defined as ICD10 code D51.0 in EstBB and UKBB and as D51 (vitamin B12 deficiency anemia) in FinnGen.
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Table 1). This region has been previously associated with both
vitiligo, hypothyroidism, and myelodysplastic syndrome (Supple-
mentary Data 2, 3, and Supplementary Fig. 3).

The third signal, on chromosome 6, is located in the HLA region, a
common hub for autoimmune condition associations, downstream
HLA-DQB1. To further clarify the association signal in the HLA
region, we used data on a total of 249 imputed HLA alleles at four-
digit level available for 378 cases and 138,189 controls in the EstBB.
Three tested alleles passed the Bonferroni corrected threshold of
association (0.05/249= 2 × 10−4), including HLA-DQB1*06:02
(p= 1.0 × 10−5, OR 1.62 (1.31-2.00)), HLA-DQA1*01:02 (p= 3.6 ×
10−5, OR 1.50 (1.24-1.81), and HLA-DRB1*15:01 (p= 3.6 × 10−5,

OR 1.57 (1.27-1.94)). After conditioning on these three alleles, we still
observed some residual signal in the locus (rs4148874, p= 3.4 × 10
−5); however, when we conditioned on the HLA region lead signal
(rs4148874) in the EstBB, the association with the aforementioned
HLA alleles lost its significance. The DRB1*15:01-DQB1*06:02-
DQA1*01:02 combination forms the HLA-DR15 haplotype, which is
a reported risk factor for multiple sclerosis20. HLA-DR15 belongs
under the HLA-DR2 group, which has been associated with
pernicious anemia in a 1981 study21. Unfortunately, imputed HLA
allele data were not available for other included studies.

On chromosome 10, the sentinel variant rs2476491 is intronic to
IL2RA. The credible set included an additional four SNPs (Fig. 2).
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Fig. 2 Colocalisation analyses and annotation of credible set variants. Colocalisation of GWAS signals and functional annotation of the credible set
variants on chromosomes 2 (a) and 10 (b). For both panels, the left side depicts colocalisation results (top—GWAS-meta-analysis; bottom—QTL analysis).
For all plots, LD is colored with respect to the GWAS lead signal (labeled). The right side shows functional annotation of the credible set variants (top—
regional association statistics from meta-analysis. Credible set variants are marked with triangles and the color coding of each variant corresponds to the
LD pattern in the region (see legend in the figure); bottom—15-state chromatin marks for 127 samples from Roadmap Epigenomics project; color coding
explained in the legend on the figure). a GWAS signature for pernicious anemia signal on chromosome 2 co-localizes with the eQTL signal for PNPT1
(posterior probability for shared causal variant PP4= 0.87 in thyroid tissue in GTEx v8 dataset). b GWAS signature for pernicious anemia signal on
chromosome 10 co-localizes with the transcript QTL signal for IL2RA (left; posterior probability for shared causal variant PP4= 0.85 in monocytes).
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We found the GWAS signal colocalises with transcription event
QTL signal in monocytes (PP4= 0.84), corresponding to IL2RA-
205 processed transcript (transcript ID ENST00000644262.1). Of
the credible set variants, rs2476491 and rs7090530 overlap with
enhancer marks and active TSS flanking region in several cell types,
including T-cell subtypes. IL2RA encodes the interleukin-2 receptor
alpha chain, thus being involved in regulating regulatory T-cells and
immune tolerance, as regulatory T cells suppress autoreactive T-
cells. Accordingly, this locus has previously been associated with
multiple sclerosis, juvenile idiopathic arthritis, vitiligo, and
hypothyroidism (Supplementary Data 2).

Finally, the association on chromosome 21, rs74203920, is a
missense variant in the AIRE gene, a known autoimmune
regulator. Mutations in AIRE are a known cause of autoimmune
polyendocrinopathy syndrome type 1 (APS-1), which is a rare
autosomal recessive syndrome, that sometimes includes perni-
cious anemia among other components22. It has also been shown
that some AIRE mutations located in the SAND and PHD1
domains have a dominant negative effect on wild type AIRE,
leading to common forms of autoimmune diseases (incl.
pernicious anemia)22. rs74203920 leads to Arg471Cys substitu-
tion in the PHD2 domain, which is needed for AIRE interaction
with proteins involved in chromatin structure/binding or
transcription23. On a molecular level, the amino acid change
could lead to a change in binding partners or affects binding of
the stabilizing Zn2+ molecule23. Further studies are needed to
explore the molecular effects of this amino acid alteration.

To clarify the overlap between genetic regulation of pernicious
anemia and natural B12 levels, we did a look-up of eleven variants
associated with vitamin B12 levels in a large Icelandic whole
genome sequence dataset combined with Danish exome sequencing
data (Supplementary Data 5). None of these variants were genome-
wide significant in our data, but 8/11 showed nominally significant
association p values, with the allele decreasing serum B12 levels
consistently also increasing the risk of pernicious anemia
(Supplementary Data 5). Finally, parietal cell antibody positivity
(a biomarker for autoimmune gastritis and pernicious anemia) has
been associated with the ABO locus at 9q3424 and T1D risk loci9.
The lowest p value (p= 0.005) for the ABO region in our meta-
analysis was for rs8176760. Six of the nine T1D risk loci showing
significant PCA associations were at least nominally significant in
our meta-analysis (Supplementary Data 5), including rs2476601
(PTPN22), which is one of our top associated variants.

Associated phenotypes. We used the individual level data in
EstBB to evaluate the association between pernicious anemia and
other diseases (defined by ICD-10 codes). According to our
analysis, individuals with pernicious anemia have more diagnoses
of other anemias and vitamin deficiencies (Fig. 3 and Supple-
mentary Data 6), thyroid problems (thyroiditis and hypothyr-
oidism), gastrointestinal tract diagnoses (gastritis, malignant
neoplasm of stomach, intestinal malabsorption, irritable bowel
syndrome), but also of vitiligo, dermatitis, osteoporosis, and
spontaneous abortion. Majority of these diagnoses reflect the
etiology of pernicious anemia (gastritis) or symptoms (skin pro-
blems, syncope and collapse, depression, and stomatitis), known
comorbidities (vitiligo and thyroid issues4,5), or diseases where
pernicious anemia is a known risk factor (such as osteoporosis25

and stomach cancer26). The association with spontaneous abor-
tion is interesting, as although there is some evidence B12 defi-
ciency and pernicious anemia could cause recurrent
miscarriage27–29, the data is scarce and the link with spontaneous
miscarriage has not been explored in depth.

We also tested the prevalence of other autoimmune diseases
among the cases compared to controls. In EstBB, 55.8% of all

pernicious cases have at least one other autoimmune diagnosis
(23.9% in controls). For comparison, we did a similar look-up for
other common autoimmune diseases as well— type 1 diabetes
(35.9% vs 22.8%), vitiligo (37.9% vs 23.5%), rheumatoid arthritis
(39.3% vs 19.2%), and Hashimoto’s thyroiditis (33.7% vs 18.6%).
This confirmed the higher incidence of autoimmune diseases in
pernicious anemia as well as other autoimmune diseases. A
similar look-up in the UKBB data showed that 35% of pernicious
anemia cases and 9% of controls had at least one other
autoimmune disease from our tested list (Methods).

To check whether the pernicious anemia associations were
driven by concomitant autoimmune diseases (mostly vitiligo and
thyroid problems, which were also highlighted as significant in
the associated diagnoses analysis), we did a look-up for vitiligo,
hypothyroidism, and autoimmune thyroid disease associations in
our meta-analysis summary statistics (Supplementary Data 5).
Since autoimmune diseases can share pathogenic mechanisms, we
focused on loci that according to current knowledge do not
regulate autoimmune response. For vitiligo, we chose variants
annotated to genes associated with melanocyte biology and for
thyroid issues we chose the TSHR (thyroid stimulating hormone
receptor) and TPO (thyroid peroxidase) loci and others
(Supplementary Table 5)30. None of these variants reached a
nominal significance in our pernicious anemia GWAS meta-
analysis, confirming that the observed associations are not mainly
driven by concomitant autoimmune disease.

Phenotypic effects of rs74203920 (AIRE). To evaluate the phe-
notypic effect of the AIRE missense variant rs74203920, we con-
ducted a pheWAS analysis for the alternative allele carrier status. In
the EstBB dataset, 4882 individuals were either heterozygous or
homozygous for the alternative allele. The only diagnosis group
showing significantly increased prevalence in the alternative allele
carriers was D51 for vitamin B12 deficiency anemias (including
D51.0 for pernicious anemia) (p= 8.6 × 10−6, OR= 1.5(1.3–1.7)).

Discussion
In the current study we identify five susceptibility loci for pernicious
anemia. Candidate gene mapping involving variant annotation,
finemapping, and colocalisation analyses, and data from mouse
models highlights the involvement of genes with a known role in
autoimmune disease (PTPN22, HLA, IL2RA, and AIRE).

While for some of the associated regions, the signal could be
mapped to missense coding variants with a functional impact on
genes with a known role in autoimmune regulation (such as the
PTPN22 and AIRE loci), for others we used a combination of fine-
mapping, colocalisation analysis and comparison with data from
mouse knockouts to propose the most likely causal variants and
genes. This led to the conclusion than PNPT1 and IL2RA are the
most likely candidate genes on chromosome 2 and 10, respectively.
While IL2RA has an established role in immune regulation (it
encodes the interleukin-2 receptor alpha chain and regulates Treg
cells and immune tolerance), less is known about PNPT1. It encodes
a polyribonucleotide nucleotidyltransferase that predominately loca-
lizes in the mitochondrial intermembrane space and participates in
importing RNA to mitochondria. Disrupted PNPT1 function causes
accumulation of mitochondrial RNA in the cytoplasm, which leads to
immune activation31. In most severe forms, this presents as a group
of disorders known as type I interferonopathies, which are commonly
characterized by autoinflammation and autoimmunity32. Addition-
ally, PNPT1 is part of a cascade regulating TET233, an important
factor related to hematopoiesis and innate immunity34. Dysregulation
of TET2 can lead to both hematological malignancies as well as
autoimmune conditions33,34. The effect of nonpathogenic variants
that are common in the population and may affect PNPT1 expression
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levels has not been studied in detail. Our study provides evidence for
a sexually dimorphic effect of this locus on risk of pernicious anemia,
as we observed significantly larger effect sizes in men. In a recent
GWAS of blood cell traits, our lead signal for this locus (rs12616502)
was nominally associated with MCV (p= 7.8 × 10−3) in European
ancestry analysis35. We believe the association at this locus together
with the association we saw with the AIRE missense variant
rs74203920 provide new leads for functional studies, as the pheno-
typic effect of rs74203920 both on molecular and organism level has
also not been described before extensively, apart from a recent study
which confirms its link with autoimmune disease36.

In our analysis, cases were identified from population-based bio-
bank data using the ICD-10 code for pernicious anemia (D51.0 or
D51 in the FinnGen data). This approach was selected to simplify
data analysis, but we acknowledge this approach may have some
shortcomings. First, the used summary statistics for FinnGen cohort
are for a broader vitamin B12 deficiency phenotype definition
compared to other two cohorts (so it likely includes other cases of
B12 deficiency). Second, the use of the code may vary in different
healthcare systems, increasing heterogeneity of the phenotype.
However, we see no significant differences in effect estimates for the
reported lead variants, and the identified loci and candidate genes
have a clear role in autoimmune regulation, suggesting the vast
majority of cases in this study have autoimmune B12 deficiency
(pernicious anemia). The potential misclassification of our control
subjects as not having pernicious anemia can increase the hetero-
geneity in the analysed data and attenuate the results towards the
null, meaning that either larger datasets with the current phenotype
definition or further refinement of the phenotype definition is needed
to increase the number of identified loci. At the same time, the
prevalence of pernicious anemia in our studied datasets ranged from
0.2–0.8%, which is roughly in line with the expected prevalence of
pernicious anemia (0.1% in the general population and >2% in over
60 year olds)2.

Pernicious anemia is often accompanied by other auto-
immune diseases, such as autoimmune thyroid conditions4,
vitiligo5, and type 1 diabetes6. We see similar results in the
EstBB dataset, as individuals with pernicious anemia had viti-
ligo and hypothyroidism significantly more often, and overall,

pernicious anemia cases had other autoimmune diagnoses more
often than controls both in EstBB and UKBB. To rule out the
confounding effect of concomitant diagnoses (especially vitiligo
and hypothyroidism which were significantly more common in
cases), we did a look-up for vitiligo, hypothyroidism, and
autoimmune thyroid disease associated variants in our meta-
analysis summary statistics and saw that loci specific to vitiligo
and thyroid issues (melanocyte biology and thyroid function,
respectively) were statistically not significant in our analyses,
indicating that these diagnoses did not confound our results. In
parallel, it is known that autoimmune diseases share genetic
risk loci37, therefore it is not surprising the loci associated with
pernicious anemia are pleiotropic and also affect the risk of
other autoimmune diseases.

Look-up of genetic variants associated with vitamin B12 levels in
our data showed that in general, the allele which decreases serum
B12 levels increases the risk of pernicious anemia, although none of
these variants was genome-wide significant in our analysis. It can-
not be ruled out that, in addition to the autoimmune component,
pernicious anemia has some of its origins in the biological regula-
tion of vitamin B12 levels, or alternatively—people with naturally
lower B12 levels are diagnosed earlier. This could also mean our
dataset of supposedly pernicious anemia cases also includes indi-
viduals with other causes of B12 deficiency, or alternatively—the
datasets used in the Grarup et al. study8 of B12 levels in the general
population included cases of pernicious anemia. However, as
pointed out before, the loci identified in this study and mapped
candidate genes have a clear role in autoimmune regulation, sug-
gesting most our analysed cases have autoimmune B12 deficiency
(pernicious anemia).

A similar look-up of variants associated with parietal cell
autoantibodies (a biomarker of autoimmune gastritis and perni-
cious anemia) in T1D patients showed that many of these loci are
nominally associated with our analysed phenotype as well. The
associated loci have a central role in immune regulation (incl
PTPN22, CTLA4, IFIH1, HLA region, and SH2B3). Notably, we
did not see an association with the parietal cell autoantibody-
associated INS locus9, which again suggests that the genome-wide
significant loci we report are not confounded by accompanying

Fig. 3 Association plot for ICD10 codes associated with pernicious anemia diagnosis in Estonian Biobank. Each triangle in the plot represents one ICD10
main code and the direction of the triangle represents direction of effect—upward-pointing triangles show increased prevalence of diagnosis code in
pernicious anemia cases. Red line— Bonferroni-corrected significance level (2.5 × 10−5).
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autoimmune disease (such as T1D where INS plays a central role
in the etiopathogenesis).

This GWAS meta-analysis focused on individuals with perni-
cious anemia identified from population-based biobanks, thus more
detailed analysis on the effect these genetic risk factors have on
disease severity or subphenotypes is unfortunately not possible. The
analyses included participants of European ancestry, however,
analyses in other populations are warranted, since the prevalence of
pernicious anemia differs depending on racial background, being
more common in people with African or European ancestry,
especially from Scandinavia and UK2. The analysis of associated
phenotypes could potentially provide clinically useful insights into
pernicious anemia disease trajectories and offer information for
patient management; however, at the moment it only includes
participants of the EstBB, with limited follow-up time, therefore
further studies are needed.

In summary, our analysis of 2166 cases and 659,516 controls
identifies robust risk loci for pernicious anemia in or near candidate
genes with a known role in autoimmune conditions (PTPN22, HLA,
IL2RA, and AIRE) and suggests PNPT1 as a potential causal gene
with possible sexually dimorphic effects in the 2p16.1 locus that
needs further validation. The associations between the identified
loci and other autoimmune conditions, such as type 1 diabetes,
vitiligo, and autoimmune thyroid conditions help to clarify the link
between pernicious anemia and its common comorbidities. Analysis
of associated diagnoses confirm the association between pernicious
anemia and thyroid issues, vitiligo, gastritis, stomach cancer,
osteoporosis, and other diagnoses, but also between pernicious
anemia and spontaneous abortion.

Methods
Cohorts
Estonian Biobank. The EstBB is a population-based biobank with over 200,000
participants. The 150 K data freeze was used for the analyses described in this
paper. All biobank participants have signed a broad informed consent form.
Individuals with pernicious anemia were identified using the ICD-10 code D51.0,
and all biobank participants who did not have this diagnosis were considered as
controls. Information on ICD codes is obtained via regular linking with the
national Health Insurance Fund and other relevant databases10. Individuals with
pernicious anemia were identified using the ICD-10 code D51.0, resulting in 378
cases (22% males (age at baseline 63.5 ± 15.7 years) and 78% females (54.9 ± 15.9
years)) and 138,207 controls (34% males (43.1 ± 16.2 years), and 66 % females
(44.0 ± 16.0 years)) for analysis.

All EstBB participants have been genotyped at the Core Genotyping Lab of the
Institute of Genomics, University of Tartu, using Illumina Global Screening Array
v1.0 and v2.0. Samples were genotyped and PLINK format files were created using
Illumina GenomeStudio v2.0.4. Individuals were excluded from the analysis if their
call-rate was <95% or if sex defined based on heterozygosity of X chromosome did not
match sex in phenotype data. Before imputation, variants were filtered by call-rate
<95%, HWE p value < 1e-4 (autosomal variants only), and minor allele frequency
<1%. Variant positions were updated to b37 and all variants were changed to be from
TOP strand using GSAMD-24v1-0_20011747_A1-b37.strand.RefAlt.zip files from
https://www.well.ox.ac.uk/~wrayner/strand/ webpage. Prephasing was done using
Eagle v2.3 software38 (number of conditioning haplotypes Eagle2 uses when phasing
each sample was set to:–Kpbwt=20000) and imputation was done using Beagle
v.28Sep18.79339 with effective population size ne= 20,000. Population specific
imputation reference of 2297 WGS samples was used40.

Association analysis was carried out using SAIGE (v0.38)12 software
implementing mixed logistic regression model with LOCO option, using sex, year
of birth, and ten PCs as covariates in step I.

UK Biobank. The UKBB is a prospective cohort of 502,637 individuals aged 37–73
recruited in 2006–2010 from across the UK, who completed detailed questionnaires
regarding sociodemographic and lifestyle characteristics and their medical history
and had a clinical assessment. Additional information about medical conditions
(both existing at baseline and occurring during follow-up) has been obtained
through linking with hospital admission and mortality data. Full details of the
study have been reported in Sudlow et al.11. Publicly available GWAS summary
statistics downloaded from the UKBB PheWeb [http://pheweb.sph.umich.edu/
SAIGE-UKB] were used for the analysis. Briefly, the PheWeb includes GWAS
summary statistics for ICD code-based traits extracted from electronic health
records. Phenotypes have been classified into 1,403 broad PheWAS codes,
including pernicious anemia (PheCode 281.11), defined using the ICD-10 code

D51.0 and excluding other anemias under the PheCodes 280–285.99. Genetic
analyses have been carried out using SAIGE12. All variants in the UKBB summary
statistics file had an imputation INFO score ≥0.3.

For additional analyses requiring individual-level data (cohort descriptive
statistics, sex-stratified analysis of lead signals, and look-up of additional
autoimmune diseases in pernicious anemia cases, we used data under the
application 17085. No additional ethics approval were needed for this dataset and
UKBB’s Ethics and Governance Council provides guidelines for conducting studies
with this dataset. We focused on samples of genetically confirmed British European
ancestry. We excluded individuals who had withdrawn their consent, were labeled
with poor heterozygosity or missingness as defined by UKBB, had excess (>10)
relatives, were not included in autosome phasing, had putative sex chromosome
aneuploidy, or had sex mismatch between self-reported and genotype data.
Pernicious anemia cases were extracted using the ICD10 D51.0 code in HES
(Hospital Episodes and Spells) data (downloaded on July 11, 2020). Since the
phenotype data was extracted at different timepoints and using slightly different
(exclusion) criteria, the follow-up analyses included a larger number of pernicious
anemia cases (n= 1192) compared to the original GWAS analysis (n= 754). The
descriptive characteristics of the follow-up dataset in the UKBB were: cases—384
men (age 61.9 ± 15.7 years) and 808 women (age 59.1 ± 7.7 years), controls 187,056
men (age 57.1 ± 8.1 years) and 219,756 women (age 56.7 ± 7.9 years).

FinnGen. FinnGen is a public–private partnership project combining data from
Finnish biobanks and electronic health records from different registries. After a 1-year
embargo, the FinnGen summary stats are available for download. In this study, we
used the results from the FinnGen release R3, which includes data from 135,638
individuals and more than 1800 disease endpoints. FinnGen individuals have been
genotyped with Illumina and Affymetrix arrays and imputed to the population-
specific SISu v3 importation reference panel. Genetic association testing has been
carried out with SAIGE12. The FinnGen disease endpoint “Vitamin B12 deficiency
anemia” included all individuals with the ICD10 D51 diagnosis as cases. FinnGen
summary statistics included prefiltered variants (minimum allele count >5 and
imputation INFO score >0.6). For more information on genotype data, disease
endpoints and GWAS analyses, please see https://finngen.gitbook.io/documentation/.

GWAS meta-analysis. We extracted all genetic variants with a rs-number from the
summary statistics of the three participating cohorts and conducted an inverse
variance weighted fixed-effects meta-analysis without genomic control using
GWAMA (v2.2.2)13. The genomic inflation factors (lambda) of the individual
study summary statistics were 0.69 (UKBB), 0.92 (EstBB), and 1.05 (FinnGen). The
low lambda value in the UKBB dataset can be attributed to low allele counts for
relatively rare variants in this sample with an unbalanced case:control ratio, which
leads to deflation in the bottom left corner in the QQ plot12. A total of 30,907,385
variants were included in the meta-analysis (meta-analysis lambda calculated for
variants present in all three cohorts—1.02). Genome-wide significance was set to p
< 5 × 10−8. All the reported lead signals had imputation INFO scores between
0.96–1 in EstBB and UKBB and >0.6 in FinnGen (Supplementary Data 1).

We also performed sex-stratified meta-analysis for the five lead signals, using
data from EstBB and UKBB. Effect heterogeneity between sexes was evaluated
using GWAMA gender heterogeneity p value13.

Finemapping. For finemapping, the 1MB locus around the GWAS lead SNP was
analysed by standard approximate Bayesian finemapping approach as implemented
into CRAN R package, corrcoverage v1.2.1 (https://annahutch.github.io/corrcoverage/
index.html)14,15. The ppfunc function was used to convert the marginal Z-scores to
posterior probabilities of causality, using default prior for the standard deviation of the
effect size parameter (W= 0.2). The Z-scores were previously calculated by dividing
association ln(OR) with standard error of ln(OR) and SNPs with MAF >0.001 were
included to the analysis. Received 95% credible set SNPs were plotted against 15-state
chromatin segmentations for 127 samples from the Roadmap Epigenomics project
(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/) and figure fine-tuning was done using
Inkscape 1.1.0-dev (0486c1a, 2020-10-10) (https://inkscape.org/).

HLA allele imputation in the EstBB. Imputation of HLA alleles from SNP data was
carried out using the SNP2HLA tool41. As an imputation reference we used a
merged reference of EstBB WGS samples40 and Type 1 Diabetes Genetics Con-
sortium reference41. The reported associated alleles (HLA-DQB1*06:02, HLA-
DQA1*01:02, and HLA-DRB1*15:01) all had imputation INFO scores >0.98.
Conditional analysis for the reported HLA alleles and the HLA region lead variant
(rs4148874) in the EstBB data was done using SAIGE12.

Colocalization. We conducted colocalization analyses to detect shared causal
variants between pernicious anemia and gene expression using COLOC (v.3.2.1) R
package16 and GWAS meta-analysis summary statistics. We set the prior probabilities
to p1= 1 × 10−4, p2= 1 × 10−4, p12= 5 × 10−6 as suggested by Wallace (2020)42 and
used the COLOC version which takes regression coefficients and their variance into
account.

In the analysis we compared our significant GWAS loci to all eQTL Catalog43

(https://www.ebi.ac.uk/eqtl/) RNA-seq datasets (excluding Lepik et al. 201744 due to
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sample overlap) containing QTLs for gene expression, exon expression, transcript
usage, and txrevise event usage; eQTL Catalog microarray datasets containing QTLs
for gene expression (excluding Kasela et al. 201745); and GTEx v8 datasets containing
QTLs for gene expression (see Methods: https://www.ebi.ac.uk/eqtl/Methods/).

We lifted the GWAS summary statistics over to hg38 build to match the eQTL
Catalog. For each genome-wide significant (p < 5 × 10−8) GWAS locus we
extracted the 1Mbp radius of its top hit from QTL datasets and ran the
colocalization analysis for those eQTL Catalog traits that had at least one cis-QTL
within this region with p < 1 × 10−6. We considered two signals to colocalize if the
posterior probability for a shared causal variant was 0.8 or higher. All results with a
PP4 > 0.8 can be found in Supplementary Data 2.

Results were visualized with the LocusCompareR library (v1.0.0)46.

Look-up of phenome-wide associations in GWAS catalog and with PhenoScanner v2.
FUMA v1.3.6a47 was used to compare the genome-wide significant lead signals and
markers in high LD with these markers against the results in the GWAS catalog.
The results of this look-up are presented in Supplementary Data 2.

PhenoScanner v248,49 was used for look-up of phenotype associations for the
GWAS lead variants in previous GWAS studies. PhenoScanner query was done
using the rsid-s of GWAS lead variants and the phenoscanner R package (https://
github.com/phenoscanner/phenoscanner). Query results were filtered to keep one
association per variant per trait, keeping studies from newer or larger studies.
Descriptions of experimental factor ontology (EFO) terms and classification of EFO
broad categories were obtained from the GWAS Catalog. Missing categories were
added by manually searching the EMBL-EBI EFO webpage (www.ebi.ac.uk/efo/).
For visualization of PhenoScanner results, parent categories with fewer results were
grouped into larger categories and a heatmap was created using the pheatmap
library in R 3.6.1. and a modified script from (https://github.com/LappalainenLab/
spiromics-covid19-eqtl/blob/master/eqtl/summary_phenoscanner_lookup.Rmd).
The results of this look-up are presented in Supplementary Data 3.

Mouse phenotypes. We used the Mouse Genome Database17 (http://www.informatics.
jax.org) to evaluate the PNPT1 effect on phenotype in mouse models. We downloaded
the data on MCV in Pnpt1tm1a(KOMP)Wtsi mutant mice (Supplementary Data 4)
from (https://www.mousephenotype.org/data/charts?accession=MGI:1918951&allele_
accession_id=MGI:4364657&pipeline_stable_id=M-G-P_001&procedure_stable_id=
M-G-P_016_001&parameter_stable_id=M-G-P_016_001_005&zygosity=
heterozygote&phenotyping_center=WTSI).

Look-up of variants associated with relevant phenotypes. We conducted a look-up of
variants associated with relevant phenotypes (vitamin B12 levels and gastric parietal
cell autoantibody positivity) in our GWAS meta-analysis summary statistics. We used a
list of variants reported in association with vitamin B12 levels in the general population
(Icelandic and Danish data) by Grarup et al.8 and variants associated with parietal cell
autoantibody positivity in type 1 diabetes patients9,24 (Supplementary Data 5).

We further conducted a look-up for variants associated with vitiligo and
(autoimmune) thyroid issues, conditions commonly co-occurring with pernicious
anemia, to rule out the confounding effect of these concomitant diagnoses. For
vitiligo, we chose variants associated with melanocyte biology50 and for thyroid
issues (Graves’ disease and Hashimoto thyreoiditis) we selected variants that do not
have an obvious role in the immune system regulation from the GWAS catalog and
from a study by Cooper et al.30 (Supplementary Data 5).

Analysis of associated phenotypes in EstBB. Using the individual level data in the
EstBB, we conducted an analysis to find ICD10 diagnosis codes associated with the
D51.0 diagnosis. We tested the association between pernicious anemia status
(defined as ICD10 D51.0) and other ICD10 codes using logistic regression and
adjusting for sex, age, and ten PCs. Bonferroni correction was applied to select
statistically significant associations (Number of tested ICD main codes—1944,
corrected p value threshold—2.5 × 10−5). Results were visualized using the PheWas
library (https://github.com/PheWAS/PheWAS). All analyses were carried out in R
3.6.1. The results of this analysis are presented in Supplementary Data 6.

Analysis of autoimmune disease prevalence. To test the prevalence of other auto-
immune diseases in pernicious anemia cases, we made a list of 40 autoimmune
diagnoses51 (Supplementary Data 7) and checked their cumulative prevalence (%
of individuals having at least one of these diagnoses) among the EstBB and UKBB
cohorts, for which we had access to individual level data.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Used UKBB and FinnGen summary statistics can be browsed and downloaded from UKBB
PheWeb (http://pheweb.sph.umich.edu/SAIGE-UKB/) and FinnGen PheWeb (http://r3.
finngen.fi), respectively. Full meta-analysis summary statistics can be downloaded from http://
www.geenivaramu.ee/tools/pernicious_anemia_Laisketal2021_sumstats.gz. All GWAS
analyses and meta-analysis were carried out with standard tools and pipelines. The analyses in

this paper also use data from the Mouse Genome Database: http://www.informatics.jax.org;
International Mouse Phenotyping Consortium: https://www.mousephenotype.org; GTEx
Portal: https://gtexportal.org/home/; eQTL Catalog: https://www.ebi.ac.uk/eqtl/; GWAS
Catalog: https://www.ebi.ac.uk/gwas/; Roadmap Epigenomics project (http://egg2.wustl.edu/
roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/
final/).

Code availability
In EstBB, GenomeStudio (v2.0.4), Eagle (v2.3), and Beagle (v28Sep18.793) were used as
part of the standard genotyping and imputation pipeline. Cohort-level analyses were
carried out with SAIGE (v0.38). HLA allele imputation was carried out with SNP2HLA
1.0.3. Central meta-analysis was conducted using the GWAMA software (v2.2.2).
Finemapping was carried out with R package corrcoverage v1.2.1 (https://annahutch.
github.io/corrcoverage/index.html). Inkscape 1.1.0-dev (0486c1a, 2020-10-10) was used
for finetuning the figures. For colocalization, COLOC (v.3.2.1) was used and results were
visualized with LocusCompareR (v1.0.0) library. FUMA v1.3.6a was used for GWAS
catalog (e91_r2018-02-06) look-up. PhenoScanner v2 was used for look-up of phenotype
associations for the GWAS lead variants in previous GWAS studies, using the
phenoscanner (v1.0) R package, and the results were visualized using pheatmap library in
R 3.6.1. and a modified script from (https://github.com/LappalainenLab/spiromics-
covid19-eqtl/blob/master/eqtl/summary_phenoscanner_lookup.Rmd). Associated
phenotypes analysis was visualized with the PheWas library (0.99.5–4) (https://github.
com/PheWAS/PheWAS). All other analyses were conducted in R 3.6.1.
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