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Machine learning 
enhances the performance 
of short and long‑term 
mortality prediction model 
in non‑ST‑segment elevation 
myocardial infarction
Woojoo Lee1, Joongyub Lee2, Seoung‑Il Woo3, Seong Huan Choi3, Jang‑Whan Bae4, 
Seungpil Jung1, Myung Ho Jeong5 & Won Kyung Lee6*

Machine learning (ML) has been suggested to improve the performance of prediction models. 
Nevertheless, research on predicting the risk in patients with acute myocardial infarction (AMI) has 
been limited and showed inconsistency in the performance of ML models versus traditional models 
(TMs). This study developed ML-based models (logistic regression with regularization, random 
forest, support vector machine, and extreme gradient boosting) and compared their performance in 
predicting the short- and long-term mortality of patients with AMI with those of TMs with comparable 
predictors. The endpoints were the in-hospital mortality of 14,183 participants and the three- and 
12-month mortality in patients who survived at discharge. The performance of the ML models in 
predicting the mortality of patients with an ST-segment elevation myocardial infarction (STEMI) was 
comparable to the TMs. In contrast, the areas under the curves (AUC) of the ML models for non-STEMI 
(NSTEMI) in predicting the in-hospital, 3-month, and 12-month mortality were 0.889, 0.849, and 
0.860, respectively, which were superior to the TMs, which had corresponding AUCs of 0.873, 0.795, 
and 0.808. Overall, the performance of the predictive model could be improved, particularly for long-
term mortality in NSTEMI, from the ML algorithm rather than using more clinical predictors.
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SVM	� Support vector machine
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Acute myocardial infarction (AMI) is a leading cause of mortality despite recent advances in percutaneous coro-
nary intervention (PCI) based on the use of drug-eluting stents and pharmacotherapy, including beta-blockers 
and the renin-angiotensin system blocker1,2. A prediction of the severity and prognosis is vital for identifying 
patients at high risk and providing intensive treatment and monitoring3. Traditional risk stratification was based 
on risk score systems, such as the thrombolysis in myocardial infarction (TIMI), global registry of acute coronary 
events (GRACE), and acute coronary treatment and intervention outcomes network—Get With The Guidelines 
(ACTION-GWTG), which extracts the weight from the regression model3–10. GRACE and ACTION-GWTG 
presented a common model for ST-segment elevation myocardial infarction (STEMI) and non-ST-segment 
elevation myocardial infarction (NSTEMI), whereas TIMI suggested two distinct risk stratifications. Although 
these models were validated and are commonly accepted tools, concerns have been raised recently because most 
traditional risk stratifications were developed 20 years ago using randomized controlled trial (RCT) data before 
the introduction of drug-eluting stents and newer generation antiplatelets11. Moreover, the outcomes of the 
prediction models were limited to short-term mortality, such as in-hospital, 14-day, and 30-day mortality3,12,13. 
Therefore, one review study on conventional risk stratification models suggested that future models would permit 
more accurate risk stratification3.

Recently, machine learning (ML) was suggested to improve the performance of the prediction model because 
it could overcome the limitations of a regression-based risk score system, including parametric assumption, 
primary reliance on linearity, and limited capability in examining higher-order interactions14. Few attempts have 
been made to apply ML to risk prediction in patients with AMI, but the attempts made were inconsistent15,16. 
Recent research reported the possibility of performance enhancement using deep learning11,17. On the other 
hand, a direct comparison was not possible because far more predictors were included in the ML models than the 
traditional methods. Therefore, it is unclear if the performance improvement comes from the machine learning 
algorithms or the inclusion of more predictors in the ML models. Furthermore, the high computation power 
and many clinical predictors, which are difficult to extract from the electronic medical records, limit the use of 
prediction models using deep learning algorithms in clinical practice.

This study compared the performance of ML models in predicting the short- and long-term mortality using 
comparable predictors in AMI patients with the traditional risk score methods. Furthermore, this study also 
examined whether adding more predictors to the ML models would improve the performance of the prediction 
models.

Results
Patient enrollment and characteristics.  Patients diagnosed with AMI were classified into STEMI and 
NSTEMI. Of the 5557 patients with STEMI, 273 patients (4.9%) died during the hospital stay (Supplemen-
tary Table 1). After excluding those with missing information on the variables during hospital admission, the 
final dataset for the three- and 12-month mortality contained 4911 survivors at hospital discharge. Among the 
survivors, 68 and 120 patients died within 3 and 12 months after hospital discharge, giving a mortality rate of 
1.4% and 2.4%, respectively. For NSTEMI, 281 patients (3.3%) died after ED arrival among the 8626 patients 
examined. Of the 7716 survivors, 142 and 306 patients died within three and 12 months after hospital discharge, 
giving a mortality rate of 1.8% and 4.0%, respectively.

Table 1 lists the demographic characteristics, according to mortality, of the patients before excluding those 
with missing information during hospital admission. The cumulative 12-month mortality of the study partici-
pants was 7.2% and 7.1% in STEMI and NSTEMI, respectively. The differences in the patients’ characteristics 
according to survival in the STEMI group were similar to those of the NSTEMI group. Patients who survived at 
the 12-month follow up were younger than those who did not (62.4 vs. 73.9 years for STEMI, 66.3 vs. 76.5 years 
for NSTEMI). The proportion of female participants in the survival group was lower than those in the death 
group in both STEMI and NSTEMI. Moreover, those who survived at the 12-month follow up were less likely 
to have hypertension, diabetes, atrial fibrillation, and a history of MI, PCI, and stroke than those who expired 
during the 12 months after AMI. On the other hand, they were more likely to have dyslipidemia and be current 
smokers. Furthermore, those who survived at the 12-month follow up were likely to experience chest pain with 
sweating, have higher blood pressure at presentation, and lower troponin levels than those who had died by the 
12-month follow up. The survival group had a lower proportion of heart failure, cardiogenic shock, left main 
disease, and three-vessel diseases. The survivors were more likely to take aspirin, beta-blockers, angiotensin-
converting enzyme inhibitors, and statin than those who died by the 12-month follow up. In contrast, they were 
less likely to take oral hypoglycemic agents, warfarin, and non-vitamin K antagonist oral anticoagulants.

Performance of the predictive models in STEMI.  When the prediction models were built by the ML 
algorithm using traditional variables in STEMI, the performance was enhanced marginally compared to the 
best performance among the traditional models (Fig. 1). An evaluation of the performance by the area under 
the receiver operating characteristic curve (AUC) revealed extreme gradient boosting (XGBoost) to be the best 
performing model, with an AUC of 0.912 in the ML models, followed by the modified GRACE in the original 
and modified traditional models (0.901) (Table 2). On the other hand, the other models using the ML algorithms 
except for the Support Vector Machine (SVM) showed excellent performance over or near the AUC of 0.9. The 
other traditional models had a lower AUC but were close to 0.9. Regarding the three-month mortality after dis-
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Total

STEMI NSTEMI

Survival Death Survival Death

N = 14,183 N = 5155 N = 402 N = 8011 N = 615

Demographic characteristics

Age (years) 65.5 ± 12.8 62.4 ± 12.5 73.9 ± 12.3 66.3 ± 12.5 76.5 ± 9.5

Female (%) 3522(24.8%) 895(17.4%) 135(33.6%) 2242(28.0%) 250(40.7%)

Height (m) 165.2 ± 8.8 166.8 ± 8.3 162.9 ± 9.4 164.6 ± 8.9 161.4 ± 9.0

Weight (kg) 66.2 ± 12.6 68.0 ± 12.4 61.5 ± 11.9 65.9 ± 12.5 58.9 ± 11.7

Medical history

Hypertension (%) 7291(51.4%) 2281(44.2%) 223(55.5%) 4353(54.3%) 434(70.6%)

Diabetes mellitus (%) 4286(30.2%) 1205(23.4%) 137(34.1%) 2618(32.7%) 326(53.0%)

Dyslipidemia (%) 1894(13.4%) 589(11.4%) 26(6.5%) 1221(15.2%) 58(9.4%)

Previous MI (%) 1399 (9.9%) 315(6.1%) 34(8.5%) 911 (11.4%) 139(22.6%)

Previous PCI (%) 2052(14.5%) 466(9.0%) 48(11.9%) 1377(17.2%) 161(26.2%)

Stroke (%) 1066(7.5%) 253(4.9%) 44(10.9%) 662 (8.3%) 107(17.4%)

Smoking

Current smoking (%) 5234(36.9%) 2410(46.8%) 101(25.1%) 2614(32.6%) 109(17.7%)

Past smoking (%) 2867(20.2%) 914 (17.7%) 87(21.6%) 1740(21.7%) 126(20.5%)

Symptom

Chest pain (%) 12,474(88.0%) 4893(94.9%) 288(71.6%) 6905(86.2%) 388(63.1%)

Dyspnea (%) 4148(29.2%) 1164(22.6%) 141(35.1%) 2498(31.2%) 345(56.1%)

Loss of awareness (%) 750 (5.3%) 290 (5.6%) 101(25.1%) 302 (3.8%) 57 (9.3%)

Sweat (%) 3841(27.1%) 1742(33.8%) 77(19.2%) 1934(24.1%) 88(14.3%)

Vertigo and systemic weakness (%) 1429(10.1%) 495(9.6%) 47 (11.7%) 797 (9.9%) 90(14.6%)

Epigastric pain (%) 524(3.7%) 183(3.5%) 24 (6.0%) 281 (3.5%) 36 (5.9%)

Radiating pain (%) 3584(25.3%) 1432(27.8%) 69 (17.2%) 2013(25.1%) 70(11.4%)

Initial presentation

Systolic blood pressure (mmHg) 132.5 ± 31.2 128.1 ± 30.8 100.9 ± 46.7 137.9 ± 28.3 119.5 ± 36.1

Diastolic blood pressure (mmHg) 79.0 ± 19.3 77.6 ± 19.7 61.3 ± 30.0 81.5 ± 17.2 70.0 ± 22.2

Heart rate (bpm) 79.8 ± 20.7 76.5 ± 20.4 77.7 ± 35.1 81.2 ± 19.1 89.0 ± 25.5

Laboratory findings

Troponin I (ng/mL) 10.5 ± 34.7 14.5 ± 42.8 28.7 ± 56.5 7.1 ± 26.1 12.3 ± 38.9

Troponin T (ng/mL) 7.3 ± 70.1 6.0 ± 74.4 30.9 ± 182.1 6.7 ± 51.7 11.5 ± 85.7

Creatinine (ng/dL) 1.3 ± 1.8 1.1 ± 1.2 1.6 ± 1.4 1.3 ± 1.8 2.3 ± 4.1

Hemoglobin (g/dL) 13.7 ± 2.2 14.3 ± 1.9 12.3 ± 2.3 13.5 ± 2.2 11.4 ± 2.4

Clinical manifestation

Heart failure (%) 1267 (8.9%) 265 (5.1%) 89(22.1%) 708 (8.8%) 205(33.3%)

Cardiogenic shock (%) 809 (5.7%) 364 (7.1%) 161(40.0%) 190 (2.4%) 94(15.3%)

Echocardiographic finding

LV ejection fraction 51.6 ± 11.6 50.5 ± 10.3 41.5 ± 12.9 53.4 ± 11.7 41.1 ± 13.0

Atrial fibrillation at arrival (%) 749 (5.3%) 229 (4.4%) 47 (11.7%) 414 (5.2%) 59 (9.6%)

Atrial fibrillation during admission (%) 1087 (7.7%) 326 (6.3%) 94 (23.4%) 551 (6.9%) 116 (18.9%)

Coronary angiographic finding

Three-vessel disease (%) 1774 (12.5%) 497 (9.6%) 66 (16.4%) 1077(13.4%) 134(21.8%)

Left main disease (%) 803 (5.7%) 202 (3.9%) 44 (10.9%) 507 (6.3%) 50 (8.1%)

Medication at discharge*

Aspirin (%) 13,030 (95.6%) 5058 (98.1%) 125 (96.9%) 7546 (94.2%) 301 (90.1%)

Clopidogrel (%) 7379 (54.1%) 2123 (41.2%) 94 (72.9%) 4899 (61.2%) 263 (78.7%)

Prasugrel (%) 660 (4.8%) 366 (7.1%) 3 (2.3%) 289 (3.6%) 2 (0.6%)

Ticagrelor (%) 4796 (35.2%) 2548 (49.4%) 27 (20.9%) 2192 (27.4%) 29 (8.7%)

CCB (%) 1712 (12.6%) 274 (5.3%) 9 (7.0%) 1370 (17.1%) 59 (17.7%)

BB (%) 10,837 (79.5%) 4412 (85.6%) 93 (72.1%) 6103 (76.2%) 229 (68.6%)

ACEi (%) 4735 (34.7%) 2082 (40.4%) 43 (33.3%) 2547 (31.8%) 63 (18.9%)

ARB (%) 4948 (36.3%) 1796 (34.8%) 48 (37.2%) 2982 (37.2%) 122 (36.5%)

Statin (%) 12,589 (92.4%) 4869 (94.5%) 112 (86.8%) 7334 (91.5%) 274 (82.0%)

Ezetimide (%) 1338 (9.8%) 576 (11.2%) 3 (2.3%) 747 (9.3%) 12 (3.6%)

Warfarin (%) 203 (1.5%) 71 (1.4%) 3 (2.3%) 120 (1.5%) 9 (2.7%)

Continued
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charge, the best performing models were XGBoost and GRACE with an AUC of 0.784 and 0.766, respectively, in 
the ML and traditional models. This was followed in descending order of the AUC by logistic regression regu-
larized with an L2 penalty (Ridge regression), logistic regression regularized with an L1 penalty (Lasso regres-
sion), logistic regression regularized with an elastic net penalty (Elastic net), and a Random Forest (RF). For the 
12-month mortality, the best performing models were Ridge regression and GRACE in the ML and traditional 
models, having AUCs of 0.840 and 0.826, respectively. This was followed in descending order of the AUC by 
Lasso regression and elastic net regression, RF, modified TIMI, and XGBoost. According to the F1-score, the 
best performing ML model had a score of 0.388, 0.107, and 0.179, respectively, for the in-hospital, three- and 
12-month mortality; those were similar or slightly higher than the F1-score of the corresponding traditional 
models. The highest F1-scores of the modified traditional models were 0.345, 0.075, and 0.170 in predicting the 
in-hospital, three- and 12-month mortality, respectively.

Performance of the predictive models in NSTEMI.  The ML models in NSTEMI outperformed the 
traditional models in predicting the three and 12-month mortality when the ML algorithm was applied to the 
prediction models, including traditional variables (Table 3). The highest AUCs of the in-hospital mortality pre-
diction models were 0.889 and 0.888 in RF and XGBoost, respectively, which were superior to TIMI (AUC: 
0.669) but similar to the modified ACTION-GWTG (AUC: 0.884). For the three-month mortality, the best 
performing models were Lasso regression (AUC: 0.849) and elastic net regression (AUC: 0.849), which were 
superior to GRACE (AUC: 0.777) and ACTION-GWTG (AUC: 0.795). The ML models, except for SVM, main-
tained an AUC > 0.8 for the 12-month mortality, while the AUCs were 0.675 and 0.790 in TIMI and ACTION-
GWTG, respectively. The modified GRACE and ACTION-GWTG maintained good performance in predicting 
the 12-month mortality in addition to GRACE. Based on the F1-score, the best performing ML models were 
Lasso regression, elastic net, and XGBoost with a score of 0.236, 0.130, and 0.225 for the in-hospital, three- 
and 12-month mortality, respectively, while the highest figures were 0.224, 0.114, and 0.196, respectively in the 
traditional models. For the modified traditional models, the highest F1-scores were 0.243, 0.110, and 0.206 in 
predicting the in-hospital, three- and 12-month mortality, respectively.

Comparison of the performance between the ML and traditional models.  A comparison of all 
the ML models with three conventional models according to the statistical significance revealed the ML mod-
els to be superior to the traditional models in predicting the long-term mortality in NSTEMI (Supplemen-
tary Table 2). The ML models outperformed TIMI in predicting the in-hospital mortality among the NSTEMI 
patients, while they were similar to GRACE and ACTION-GWTG. On the other hand, Lasso and elastic net 
regression were superior to all three traditional models in predicting the three-month mortality for those who 
survived to discharge. Moreover, Lasso, Ridge, and elastic net regression, and XGBoost had significantly higher 
AUCs in predicting the 12-month mortality than TIMI, GRACE, and ACTION-GWTG. In contrast, with 
STEMI, RF and XGBoost were the only ML models that significantly outperformed TIMI in predicting the in-
hospital mortality. Otherwise, the difference between the traditional and all the ML models was not statistically 
significant. A comparison of the ML models with the modified traditional models revealed consistent findings 
(Supplementary Table 3). The differences between the ML models and the modified traditional models were 
statistically significant among AMI patients, particularly in predicting long-term mortality.

Effect of optional clinical features and medication at discharge.  The performance was not 
enhanced by including the optional predictors in the models (Fig. 2). The highest AUC was 0.911 for XGBoost 
in the ML model, including the optional predictors in STEMI, which was similar to the 0.912 for XGBoost, 
including the traditional predictors only (Supplementary Table  4). In the case of the three-month mortal-
ity in STEMI, the highest AUC was 0.813 for RF, including all predictors, which was similar to the 0.784 for 
XGBoost, including the traditional predictors only. For the 12-month mortality, the figures were 0.835 in Lasso 
regression, including all the predictors, and 0.840 in Ridge regression, including the traditional predictors only. 
With NSTEMI (Supplementary Table 5), the best performing ML models reached 0.887, 0.855, and 0.865 for 
in-hospital, three-month, and 12-month mortality, respectively, in the ML model including all the predictors, 

Table 1.   Characteristics of the study population. Abbreviations: ACEi, angiotensin-converting enzyme 
inhibitor; AMI, Acute Myocardial Infarction; ARB, angiotensin receptor blocker; BB, beta-blocker; CCB, 
calcium channel blocker; NOAC, non-vitamin K antagonist oral anticoagulants; OHA, oral hypoglycemic 
agent; STEMI, ST-segment elevation Myocardial Infarction; NSTEMI, Non-ST-segment elevation Myocardial 
Infarction. *The proportion of the medication prescribed at hospital discharge in the death group was 
calculated after excluding the in-hospital mortality but before excluding patients with missing information 
during hospital admission: 129 and 334 for the death group in STEMI and NSTEMI, respectively.

Total

STEMI NSTEMI

Survival Death Survival Death

N = 14,183 N = 5155 N = 402 N = 8011 N = 615

NOAC (%) 546 (4.0%) 186 (3.6%) 8 (6.2%) 325 (4.1%) 27 (8.1%)

OHA (%) 3194 (23.4%) 1035 (20.1%) 35 (27.1%) 2007 (25.1%) 117 (35.0%)
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whereas the corresponding numbers were 0.889, 0.849, and 0.860 in the ML model including the traditional 
predictors. None of the ML models, except for the SVM, showed a significant difference in the AUCs when the 
performance of the models with the traditional predictors only was compared with the model applying all the 
predictors. Moreover, a comparison of the ML models, including the traditional and optional predictors, and the 
corresponding models, including medication at discharge, showed no significant difference in both STEMI and 
NSTEMI (Supplementary Table 6).

Supplementary Tables 7 and 8 list the importance of the variables. The variable importance was differ-
ent for each prediction model. Some variables in the traditional predictors in the ML models were excluded, 
whereas some of the optional variables were included. Furthermore, the performance of the predictive models 
did not change significantly in both STEMI and NSTEMI when the problem of class imbalance was addressed 

Figure 1.   ROC curves of the in-hospital, three-month, and 12-month mortality prediction models in acute 
myocardial infarction with the traditional predictors. (a) In-hospital mortality in STEMI, (b) In-hospital 
mortality in NSTEMI, (c) three-month mortality in STEMI, (d) three-month mortality in NSTEMI, (e) 
12-month mortality in STEMI, (f) 12-month mortality in NSTEMI.
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Table 2.   Performance in the mortality prediction models in ST-segment elevation myocardial infarction 
using the traditional features. AUC, area under the receiver operating characteristic curve; CI, confidential 
interval; LR, Logistic regression; Lasso, L1 penalty; Ridge, L2 penalty; Elastic net, Elastic net penalty; RF, 
Random Forest; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting; Thrombolysis in 
myocardial infarction, TIMI; Global registry of acute coronary events, GRACE; Acute coronary treatment 
and intervention outcomes network—Get With The Guidelines, ACTION-GWTG. *Traditional models were 
modified using the recalculated parameters for TIMI, GRACE, and ACTION-GWTG.

AUC (95% CI) Specificity Sensitivity Accuracy F1-score

In-hospital mortality

Machine learning algorithms

LR with Lasso 0.890 (0.852–0.928) 0.881 0.726 0.873 0.388

LR with Ridge 0.889 (0.850–0.927) 0.766 0.871 0.772 0.298

LR with Elastic net 0.890 (0.852–0.928) 0.888 0.677 0.876 0.378

RF 0.910 (0.879–0.941) 0.817 0.823 0.817 0.333

SVM 0.819 (0.765–0.873) 0.804 0.677 0.797 0.271

XGBoost 0.912 (0.884–0.939) 0.845 0.839 0.845 0.376

Traditional and modified traditional model

TIMI 0.855 (0.813–0.897) 0.769 0.774 0.769 0.272

GRACE 0.896 (0.862–0.930) 0.842 0.774 0.838 0.347

ACTION-GWTG​ 0.891 (0.855–0.927) 0.837 0.758 0.832 0.335

Modified TIMI* 0.885 (0.849–0.920) 0.826 0.806 0.825 0.339

Modified GRACE* 0.901 (0.870–0.932) 0.826 0.823 0.826 0.345

Modified ACTION-GWTG* 0.859 (0.810–0.907) 0.833 0.710 0.826 0.312

3-month mortality

Machine learning algorithms

LR with Lasso 0.777 (0.682–0.871) 0.673 0.857 0.677 0.101

LR with Ridge 0.779 (0.683–0.875) 0.620 0.857 0.625 0.088

LR with Elastic net 0.777 (0.683–0.872) 0.652 0.857 0.657 0.095

RF 0.763 (0.656–0.870) 0.801 0.571 0.797 0.107

SVM 0.667 (0.525–0.810) 0.852 0.381 0.842 0.092

XGBoost 0.784 (0.688–0.880) 0.726 0.762 0.727 0.106

Traditional and modified traditional model

TIMI 0.743 (0.650–0.837) 0.610 0.810 0.614 0.082

GRACE 0.766 (0.670–0.862) 0.652 0.857 0.657 0.096

ACTION-GWTG​ 0.709 (0.602–0.816) 0.630 0.667 0.630 0.070

Modified TIMI* 0.704 (0.593–0.815) 0.628 0.714 0.629 0.075

Modified GRACE* 0.602 (0.458–0.745) 0.832 0.238 0.820 0.053

Modified ACTION-GWTG* 0.653 (0.528–0.778) 0.731 0.476 0.726 0.068

12-month mortality

Machine learning algorithms

LR with Lasso 0.835 (0.776–0.895) 0.799 0.688 0.796 0.179

LR with Ridge 0.840 (0.784–0.896) 0.720 0.844 0.724 0.165

LR with Elastic net 0.835 (0.781–0.889) 0.776 0.719 0.775 0.171

RF 0.825 (0.749–0.901) 0.697 0.875 0.703 0.160

SVM 0.684 (0.574–0.795) 0.592 0.719 0.597 0.103

XGBoost 0.806 (0.743–0.869) 0.782 0.656 0.778 0.160

Traditional and modified traditional model

TIMI 0.793 (0.726–0.860) 0.642 0.844 0.648 0.134

GRACE 0.826 (0.770–0.881) 0.677 0.812 0.681 0.142

ACTION-GWTG​ 0.780 (0.709–0.850) 0.770 0.562 0.763 0.134

Modified TIMI* 0.802 (0.736–0.868) 0.786 0.688 0.783 0.170

Modified GRACE* 0.741 (0.663–0.820) 0.771 0.625 0.766 0.148

Modified ACTION-GWTG* 0.659 (0.554–0.764) 0.748 0.531 0.741 0.117
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Table 3.   Performance of the mortality prediction models in Non-ST-segment elevation myocardial infarction 
using the traditional features. AUC, area under the receiver operating characteristic curve; LR, Logistic 
regression; Lasso, L1 penalty; Ridge, L2 penalty; Elastic net, Elastic net penalty; RF, Random Forest; SVM, 
Support Vector Machine; XGBoost, Extreme Gradient Boosting; Thrombolysis in myocardial infarction, 
TIMI; Global registry of acute coronary events, GRACE; Acute coronary treatment and intervention outcomes 
network—Get With The Guidelines, ACTION-GWTG. *Traditional models were modified using the 
recalculated parameters for TIMI, GRACE, and ACTION-GWTG.

AUC (95% CI) Specificity Sensitivity Accuracy F1-score

In-hospital mortality

Machine learning algorithms

LR with Lasso 0.886 (0.855–0.918) 0.793 0.818 0.794 0.236

LR with Ridge 0.885 (0.852–0.918) 0.810 0.758 0.808 0.235

LR with Elastic net 0.886 (0.854–0.918) 0.791 0.803 0.792 0.230

RF 0.889 (0.856–0.923) 0.793 0.758 0.792 0.220

SVM 0.760 (0.707–0.813) 0.709 0.667 0.707 0.150

XGBoost 0.888 (0.857–0.919) 0.785 0.803 0.786 0.226

Traditional and modified traditional model

TIMI 0.669 (0.613–0.724) 0.686 0.576 0.682 0.123

GRACE 0.873 (0.840–0.906) 0.734 0.803 0.736 0.191

ACTION-GWTG​ 0.871 (0.836–0.907) 0.812 0.712 0.808 0.224

Modified TIMI* 0.709 (0.656–0.763) 0.506 0.788 0.516 0.112

Modified GRACE* 0.876 (0.841–0.912) 0.806 0.773 0.805 0.235

Modified ACTION-GWTG* 0.884 (0.851–0.916) 0.819 0.758 0.817 0.243

3 month mortality

Machine learning algorithms

LR with Lasso 0.849 (0.795–0.903) 0.728 0.833 0.731 0.127

LR with Ridge 0.826 (0.764–0.889) 0.719 0.833 0.722 0.124

LR with Elastic net 0.849 (0.795–0.904) 0.735 0.833 0.738 0.130

RF 0.799 (0.719–0.878) 0.681 0.778 0.683 0.104

SVM 0.715 (0.633–0.798) 0.557 0.778 0.562 0.077

XGBoost 0.824 (0.760–0.888) 0.654 0.861 0.659 0.106

Traditional and modified traditional model

TIMI 0.672 (0.592–0.751) 0.689 0.528 0.685 0.073

GRACE 0.777 (0.711–0.844) 0.705 0.694 0.704 0.100

ACTION-GWTG​ 0.795 (0.728–0.862) 0.726 0.750 0.727 0.114

Modified TIMI* 0.675 (0.596–0.754) 0.534 0.750 0.539 0.071

Modified GRACE* 0.774 (0.709–0.838) 0.623 0.778 0.627 0.089

Modified ACTION-GWTG* 0.782 (0.721–0.843) 0.759 0.639 0.756 0.110

12 month mortality

Machine learning algorithms

LR with Lasso 0.860 (0.825–0.895) 0.693 0.901 0.703 0.219

LR with Ridge 0.858 (0.821–0.894) 0.710 0.859 0.717 0.219

LR with Elastic net 0.859 (0.824–0.894) 0.721 0.845 0.727 0.222

RF 0.836 (0.796–0.876) 0.688 0.803 0.694 0.195

SVM 0.729 (0.675–0.784) 0.625 0.746 0.631 0.157

XGBoost 0.851 (0.817–0.884) 0.725 0.845 0.731 0.225

Traditional and modified traditional model

TIMI 0.675 (0.619–0.731) 0.695 0.549 0.688 0.140

GRACE 0.808 (0.764–0.852) 0.697 0.789 0.701 0.196

ACTION-GWTG​ 0.790 (0.740–0.839) 0.719 0.718 0.719 0.191

Modified TIMI* 0.729 (0.683–0.776) 0.545 0.845 0.559 0.150

Modified GRACE* 0.820 (0.779–0.861) 0.715 0.761 0.717 0.199

Modified ACTION-GWTG* 0.808 (0.768–0.848) 0.739 0.732 0.739 0.206
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(Supplementary Table 9 and 10). The highest AUC of the ML models was similar to that of the models using 
up-sampling, down-sampling, and SMOTE. Only the SVM benefited from balancing the classification using 
re-balancing methods.

Performance in external validation.  The performance of the ML-based models was validated externally 
using the Korean Acute Myocardial Infarction Registry-National Institutes of Health (KAMIR-NIH) database, 
which is an independent prospective multicenter registry (Table 4). The AUCs exceeded 0.9 except for the SVM 
for in-hospital mortality among the patients with STEMI and NSTEMI, but those were close to 0.8 for the 
12-month mortality. The ML models were superior to the traditional model in predicting the 12-month mor-

Figure 2.   ROC curves of the in-hospital, three-month, and 12-month mortality prediction models in acute 
myocardial infarction with traditional and optional predictors. (a) In-hospital mortality in STEMI, (b) 
In-hospital mortality in NSTEMI, (c) 3-month mortality in STEMI, (d) 3-month mortality in NSTEMI, (e) 
12-month mortality in STEMI, (f) 12-month mortality in NSTEMI.
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tality in NSTEMI, which is similar to the finding using the test data. On the other hand, the F1 scores in the 
KAMIR-NIH registry were lower than those in the internal validation.

Discussion
Mortality prediction models were developed using several ML algorithms (Lasso regression, Ridge regression, 
elastic net, RF, SVM, and XGBoost). Their performance was comparable in predicting the short- and long-term 
mortality of patients with STEMI with those of traditional risk stratification with comparable predictors. On the 
other hand, the discrimination improved the existing the prognosis prediction tools in NSTEMI, particularly in 
predicting long-term mortality. Furthermore, adding more clinical variables to the models did not enhance the 
performance of the predictive models for mortality in AMI.

The ML algorithms outperformed the traditional risk score methods when the predictors were the same, 
but the difference was similar in STEMI, and the best working algorithms varied according to the predictors 
and outcomes. Some studies suggested applying ML algorithms to enhance the performance of the prognosis 
prediction model for patients with AMI11,17. A recent study reported that deep learning (AUC: 0.905) could 
outperform the GRACE score (AUC: 0.851) in predicting the in-hospital mortality of AMI patients11. The other 
study suggested that when predicting cardiac and sudden death during a one-year follow-up, the AUC in the ML 
models was improved by 0.08 compared to that in GRACE17. Another study reported AUCs of 0.828, 0.895, 0.810, 
and 0.882 in an artificial neural network (ANN), decision tree (DT), naïve Bayes (NB), and SVM, respectively, 
for the 30-day mortality, which were slightly higher than or similar to the values (0.83) from the GRACE risk 
score methods suggested in the validation study3,18. On the other hand, the previous study did not compare the 
performance between the conventional models and the ML models in the research data, so that it could only be 
inferred indirectly18. Although the above three studies showed that ML algorithms could enhance discrimina-
tion, other researchers proposed that the ML models were not always preferable to the traditional model. Some 
studies on the prognosis of AMI patients suggested that ML models were not superior but showed comparable 
performance to the regression-based approach19–21. One study using the administrative database of the National 
Inpatient Sample showed that RF (AUC: 0.85) was comparable to the traditional LR (AUC: 0.84) in predicting 
the in-hospital mortality among women with STEMI19. Another study showed that the best performance of 
ML models was similar to that of the GRACE score (AUC: 0.91 vs. 0.87)20. Austen et al. reported that when the 
cubic spline was included in the LR, it outperformed the ML models of the RF, regression trees (RT), bagged 
RT, and boosted RT21.

This study showed that ML models were better than the traditional models in NSTEMI but could not reach 
statistical significance in STEMI. The different superiority of the ML models compared to the traditional models 

Table 4.   Performance of the mortality prediction models tested in the Korean Acute Myocardial Infarction 
Registry-National Institutes of Health. AUC, area under the receiver operating characteristic curve; LR, 
Logistic regression; Lasso, L1 penalty; Ridge, L2 penalty; Elastic net, Elastic net penalty; RF, Random Forest; 
SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting.

STEMI NSTEMI

AUC (95% CI) Specificity Sensitivity Accuracy F1-score AUC (95% CI) Specificity Sensitivity Accuracy F1-score

In-hospital mortality In-hospital mortality

Machine learning algorithms Machine learning algorithms

LR with Lasso 0.923 (0.897–0.948) 0.877 0.807 0.876 0.124 0.916 (0.891–0.941) 0.848 0.787 0.847 0.096

LR with Ridge 0.923 (0.898–0.948) 0.755 0.982 0.757 0.081 0.918 (0.894–0.942) 0.868 0.770 0.867 0.107

LR with Elastic net 0.923 (0.898–0.948) 0.884 0.754 0.883 0.123 0.917 (0.893–0.941) 0.845 0.803 0.845 0.096

RF 0.924 (0.897–0.952) 0.815 0.860 0.816 0.092 0.924 (0.903–0.946) 0.860 0.803 0.860 0.106

SVM 0.875 (0.844–0.907) 0.772 0.807 0.773 0.072 0.848 (0.815–0.880) 0.723 0.852 0.725 0.060

XGBoost 0.938 (0.920–0.955) 0.855 0.860 0.855 0.114 0.911 (0.885–0.937) 0.832 0.787 0.832 0.088

Traditional model Traditional model

TIMI 0.866 (0.820–0.913) 0.774 0.807 0.774 0.072 0.672 (0.612–0.731) 0.693 0.590 0.692 0.038

GRACE 0.921 (0.891–0.950) 0.851 0.825 0.850 0.107 0.917 (0.890–0.944) 0.799 0.852 0.800 0.081

12-month mortality 12-month mortality

Machine learning algorithms Machine learning algorithms

LR with Lasso 0.789 (0.719–0.860) 0.751 0.696 0.750 0.048 0.815 (0.781–0.848) 0.727 0.720 0.726 0.100

LR with Ridge 0.789 (0.718–0.859) 0.636 0.761 0.637 0.037 0.809 (0.774–0.843) 0.735 0.695 0.735 0.099

LR with Elastic net 0.789 (0.721–0.858) 0.721 0.696 0.721 0.044 0.814 (0.780–0.847) 0.749 0.695 0.748 0.104

RF 0.772 (0.702–0.843) 0.572 0.826 0.575 0.034 0.792 (0.751–0.832) 0.746 0.703 0.745 0.104

SVM 0.687 (0.606–0.768) 0.425 0.804 0.429 0.025 0.721 (0.676–0.765) 0.662 0.695 0.663 0.080

XGBoost 0.796 (0.736–0.857) 0.701 0.717 0.701 0.042 0.808 (0.773–0.843) 0.783 0.653 0.781 0.111

Traditional model Traditional model

TIMI 0.701 (0.633–0.769) 0.624 0.804 0.626 0.038 0.676 (0.635–0.717) 0.693 0.590 0.692 0.038

GRACE 0.738 (0.671–0.806) 0.650 0.761 0.651 0.038 0.778 (0.741–0.814) 0.799 0.852 0.800 0.081
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in STEMI and NSTEMI may partially explain the inconsistency of the literature11,17–20. Two of the three stud-
ies showing comparable performance between the traditional and ML models included patients with STEMI 
only19,20. In contrast, all three studies showing superior performance of the ML models included all patients with 
STEMI and NSTEMI11,17,18. Although this could not explain all the inconsistency because subgroup analysis 
showed that ML also outperformed GRACE in STEMI in a previous study11, the different performances of the 
ML models between the STEMI and NSTEMI groups may have contributed to the inconsistent findings. The 
ML models may have higher discrimination in the NSTEMI group than the traditional model because NSTEMI 
has more heterogeneous clinical and pathological features than STEMI22,23. STEMI results from a complete 
thrombotic occlusion of the infarct-related artery, while NSTEMI occurs in more heterogeneous conditions, 
such as incomplete coronary occlusion, coronary artery spasm, coronary embolism, myocarditis, and others24. 
Moreover, ML-based models could outperform the traditional models when analyzing complex data because of 
the non-parametric assumption, non-linearity, and higher-order interaction. Furthermore, the inconsistency 
appears to be due to the relatively small difference in the AUC between the ML model and GRACE because the 
GRACE risk score was updated in 2014, and the continuous variables were divided into many categories to reflect 
the non-linear relationship8. The ML-based models also require tuning parameters that may influence the model 
performance, which may fit and perform differently in different datasets14.

Traditional risk stratification focused on predicting the short-term mortality, while only a few suggested the 
one-year mortality. The CADILLAC risk score developed in 2005 showed good performance for the one-year 
mortality (c-statistic of 0.79). Moreover, GRACE 2.0, which was updated in 2014 considering the non-linear 
relationship between mortality and continuous variables, showed an AUC of 0.823,8,25. After introducing the ML 
algorithms, some studies suggested that discrimination could be improved to predict the long-term mortality15,17. 
One recent study on the one-year mortality showed that the AUC of the prediction model could be up to 0.901 
among patients admitted to the ICU with AMI, which was achieved using the Logistic Model Trees15. Another 
study also showed good discriminative power for the one-year mortality with an AUC of 0.898, which was 
achieved using either the Deep Neural Network or Gradient Boosting Machine17. The present study suggested 
that ML models maintained good discrimination for the 12-month mortality, but the AUC value was lower than 
those of the two previous studies15,17. This might be because the one-year mortality was defined not as the cumu-
lative mortality, including in-hospital mortality, as in other studies, but as the mortality of those who survived at 
hospital discharge during the one-year follow-up. The current study aimed to help cardiologists make a treatment 
and management plan considering the risk of mortality when a patient is discharged.

This study showed that the performance of the prediction model was not increased significantly by adding the 
optional variables. This might be because the optional variables used in this study could not add more informa-
tion to the ML models in predicting the mortality of patients with AMI. Only a few studies revealed the influence 
of features on the performance of prediction models. One study on the prediction model of the 30-day mortality 
after STEMI showed that the performance of most ML algorithms plateaued when the models introduced the 
highest 15 ranked variables among 54 variables20. Another study on the one-year mortality of patients with ante-
rior STEMI showed a change in the performance of the prediction model when the top 20 ranked variables were 
selected instead of all 59 variables26. For RF, the AUC barely changed from 0.932 in the full model to 0.944 with 
the 20 features, while the changes depended on the model. The AUC decreased from 0.931 to 0.864 in LR, while 
it increased from 0.772 to 0.852 in the decision tree. The top 20 variables listed in their study were as follows: 
New York Heart Association Classification at discharge, heart failure at admission, heart rate, age, left ventricular 
ejection fraction, serum cystatin, initial BNP, platelet count, fibrinogen, serum creatinine, blood glucose, systolic 
blood pressure, diastolic blood pressure, total bilirubin, blood urea nitrogen, and revascularization type. Only 
five variables overlapped with the traditional variables in the present study. The predictive models using the ML 
algorithm appeared to be less dependent on the specific predictors because many clinical predictors influenced 
and reflected one another. ML algorithms, which allow non-linearity, higher-order effects, and interactions, may 
not depend on specific predictors as much as the traditional risk stratification methods.

This study suggested that the ML algorithm could enhance the performance of predictive models in AMI and 
pointed out the particular area where the predictive models could benefit from applying ML algorithms in AMI. 
Hence, clinicians can identify better those at high risk of mortality in NSTEMI using ML prediction models and 
focus on the high-risk group at admission and discharge. The ML-based prediction model could be integrated 
into the electronic medical records as a part of clinical decision support and be utilized in clinical practice. This 
model will inform clinicians of those who require close monitoring and intensive care during the hospital stay 
and require frequent follow-up and high medication adherence at discharge.

This study had some limitations. First, the ML algorithm is less intuitive than the risk scoring system devel-
oped using traditional statistical analysis. The prediction model developed using the ML algorithm. The impor-
tance of predictors in the model is more challenging to interpret because they could contain non-linear models 
and ensemble methods. Moreover, the proposed prediction model may be specific to the study population, 
Korean patients with AMI. A previous study reported different risk factors and responses to medical and inter-
ventional treatments between Korean and Western AMI patients. Hence, predictive models could show differ-
ent performance measures in other populations, and ML algorithms should be compared to confirm which is 
best27,28. Despite the improvement of AUC, the F1 scores were low in both the ML and traditional models, and 
the difference in the F1 scores between the ML and traditional models was small. Moreover, the statistical differ-
ence in the F1 scores could not be evaluated. Ranganathan and Aggarwal demonstrated it with an example that 
a test with good sensitivity and specificity could have low precision when applied to a disease with a low pretest 
probability29. The low F1 score in the current study may be due to the low precision and low mortality rate. They 
suggested that it would be prudent to apply a diagnostic test only in those with a high pretest probability of the 
disease29, and it could be interpreted that the F1-score would increase if it is applied to patients with moderate 
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to high severity. Future research should set a proper indication of the mortality prediction model or enhance 
the precision and F1 score for all patients with AMI.

Conclusion
A prediction model for short- and long-term mortality was generated in patients admitted with AMI using 
multicenter registries and validated using independent cohort data. The ML-based approach increased the dis-
criminative performance of the patients with NSTEMI in predicting mortality compared to the traditional risk 
scoring method. On the other hand, the performance did not depend on the inclusion of more predictors.

Methods
Data source.  A retrospective cohort study was conducted using the data from the Korean Registry of Acute 
Myocardial Infarction for Regional Cardiocerebrovascular Centers (KRAMI-RCC) registry. The KRAMI-RCC 
is a prospective multicenter registry of AMI in Korea. The data were collected from all 14 Regional Cardiocer-
ebrovascular Centers (RCCVCs) established by the Ministry of Health and Welfare for the prevention and treat-
ment of cardiovascular disease in Korea since 2008. The purpose and impact of RCCs on AMI are published 
elsewhere30,31. KRAMI-RCC is a web-based registry of consecutive AMI cases reflecting real-world information 
on the clinical practice in RCCs and consists of pre-hospital, hospital, and post-hospital data. The institutional 
review board of Inha University Hospital approved this study protocol, and the need for informed consent was 
waived because of the retrospective nature of the study using anonymized data with minimal potential for harm 
(IRB number: 2020–05-035). All methods were carried out in accordance with the relevant guidelines and regu-
lations, and the data were obtained with the approval of the committee of RCCVCs after anonymization.

Study participants.  All enrolled participants were patients diagnosed with AMI and admitted to the RCCs 
through the emergency department (ED). This study included 15,247 patients with AMI in KRAMI-RCC from 
July 2016 to July 2019 who finished the 12-month follow up in this research. The exclusion criteria were (1) less 
than 18 years of age, (2) chest pain onset more than 24 h in STEMI, and (3) missing data to calculate the tradi-
tional risk score: TIMI, GRACE, and ACTION-GWTG. Of the 15,247 patients enrolled in the KRAMI registry, 
6177 and 9070 patients were diagnosed with STEMI and NSTEMI, respectively (Fig. 3). After excluding patients 
with missing data on the predictors at the emergency department (ED) or before ED arrival and those who 
visited the hospital 24 h after symptom onset, 5557 patients with STEMI were eligible for the final analysis of 
in-hospital mortality. Furthermore, patients who survived upon discharge were included in the final analysis of 
the three- and 12-month mortality. This study excluded missing data on the clinical predictors during hospital 
admission and rare categorical responses among the survivors at hospital discharge. Therefore, the number of 
patients with STEMI was 4911 for the final analysis of the three and 12-month mortality. For NSTEMI, the num-
ber of patients was 8626 for a final analysis of the in-hospital mortality after excluding missing data at the pre-ED 
or ED level. Regarding the three and 12-month mortality, the number of patients with NSTEMI was 7716 after 
excluding missing data during the hospital stay and in-hospital deaths.

Predictors.  The possible predictors for mortality were extracted from the database based on previous stud-
ies, including demographic information, past medical history, initial symptoms, laboratory findings, events 
before ED arrival and during the hospital stay, and coronary angiographic findings3,4,6,8–10. The predictors were 
classified according to the time frame (pre-ED, ED, and hospital admission). The predictors used in the tradi-
tional risk stratification model were selected as the traditional variables3; the other predictors were categorized 
as optional variables, as described in Supplementary Table 11. The predictors for in-hospital mortality were lim-
ited to the variables available in the pre-ED and ED stage. In contrast, those for the three-month and 12-month 
mortality included all the variables in the pre-ED, ED, and hospital admission stage. Furthermore, medication at 
discharge was also included in the model for predicting the three- and 12-month mortality.

Outcomes.  The outcomes of interest in this study were in-hospital, three-month, and 12-month mortality. 
The patients who survived to discharge were followed up by telephone at three and 12 months. The follow-up 
information was collected through contact with the patients or their families. If unavailable, a follow-up visit or 
death certificate on the electronic medical records was also checked to determine death.

Predictive models.  ML algorithms, such as RF, SMV, XGBoost, Lasso, Ridge regression, and Elastic net, 
were applied to develop a mortality prediction model. RF builds multiple decision trees and merges them to 
make a more accurate and stable prediction, while XGBoost provides a parallel tree boosting with a gradient 
descent that solves many data science problems in a fast and accurate manner. SVM constructs a hyperplane or 
a set of hyperplanes in high- or infinite-dimensional space for classification.

For each prediction model, tenfold cross-validation was used to tune the hyperparameters, with the AUC as 
the evaluation standard. The hyperparameters in RF were tuned by searching for all the combinations of the num-
ber of trees (500, 1000, and 2000) and the number of variables (2, 4, 6, and 8). For XGboost, this study searched 
for all the combinations of the number of boosting iterations (25, 50, 75, 100, 125, and 150), learning rate (0.05, 
0.1, and 0.3), minimum loss reduction (0 and 5), and the maximum depth of the tree (4, 6, and 8). Regarding 
SVM, the hyperparameters were optimized with combinations of the cost of constraints violation (0.0039, 0.0625, 
1.0000, and 2.0000) and bandwidth of the radial kernel (0.0039, 0.0625, 1.0000, and 2.0000). For Lasso, Ridge 
regression, and elastic net, the default setting of ‘glmnet’ package in R was used to select the hyperparameters32.
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Three different sampling methods were also considered to adjust the highly imbalanced classes: up-sampling, 
down-sampling, and synthetic minority oversampling technique (SMOTE). The number of study participants 
in the training set changed from 4443 to 8464, 422, and 1477 when up-sampling, down-sampling, and SMOTE, 
respectively, were applied to the in-hospital mortality data of STEMI. The number of participants was 13,422, 
430, and 1505 in the datasets of up-sampling, down-sampling, and SMOTE for the in-hospital mortality data 
of NSTEMI.

Traditional and modified traditional models.  TIMI and the updated version of GRACE and ACTION-
GWTG were used as the references of the traditional models to compare with ML3,4,8,13,33. The TIMI risk scores 
for STEMI and NSTEMI were used in this study4,33. The TIMI for STEMI and NSTEMI was developed to predict 
the 30-day and 14-day mortality, respectively, whereas the prognostic capacity of TIMI for STEMI was stable 
over multiple time points from 24 h to one year after hospital admission4. GRACE v2.0, in which Anderson et al. 
updated the initial GRACE risk score in 2014, used non-linear functions to enhance discrimination8. Although it 
was developed to predict the six-month mortality, it was validated externally over the longer term with an AUC 
of 0.82 at one and three-year mortality. In another validation study, GRACE v2.0 also showed excellent discrimi-
nation with an AUC of 0.91 for predicting the in-hospital mortality34. The updated ACTION-GWTG developed 
in 2016 had high discrimination with an AUC of 0.88 to predict in-hospital mortality13.

These traditional models were fitted to the training data and modified by recalculating the model parameters. 
In addition to the original traditional models, the modified traditional model was compared with the ML models.

Analysis and Performance measures.  The continuous variables, such as age and weight, are represented 
as the mean and standard deviation in statistical analysis, while the categorical variables are the frequency and 

Figure 3.   Flowchart of study inclusion. AMI, Acute Myocardial Infarction; STEMI, ST-segment elevation 
Myocardial Infarction; NSTEMI, Non-ST-segment elevation Myocardial Infarction.
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proportion. After standardization, the data were split by random sampling into a training set (80%) for develop-
ing the ML-based models and a test set (20%) for internal validation. The performance of the mortality predic-
tion model was evaluated using the test data, and was described by the sensitivity, specificity, accuracy, F1-score, 
and area under the receiver operating characteristic curves (AUC) in the tables and the receiver operating char-
acteristics (ROC) curve in the plots. The AUC of the ML algorithms was suggested with a 95% confidence 
interval and was compared with traditional risk stratification (TIMI, GRACE, and ACTION-GWTG) using 
a DeLong Test35. All analyses were implemented using R software version 4.0.0 (R Development Core Team, 
Vienna, Austria)36.

Validation.  In addition to internal validation using a test set, external validation was performed using the 
KAMIR-NIH registry, which is a prospective multicenter registry in Korea. The registry enrolled patients diag-
nosed with AMI at 20 tertiary university hospitals who were eligible for primary PCI from November 2011 to 
December 2015. The detailed study protocols are published elsewhere37. The performance of the ACTION-
GWTG was not estimated because prior peripheral arterial disease was not collected in the KAMIR-NIH regis-
try. Moreover, the three-month mortality was not available due to different follow-up schedules in the registry. 
The ML models were validated for the in-hospital and 12-month mortality after matching the operational defini-
tion of the pre-ED cardiac arrest and abnormal cardiac biomarkers.

Data availability
The data that support the findings of this study are available from KRAMI-RCC, but restrictions apply to the 
availability of these data. Data are available from the authors upon reasonable request and with permission of 
KRAMI-RCC.
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