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Predicting the probability of death using
proteomics
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Predicting all-cause mortality risk is challenging and requires extensive medical data.
Recently, large-scale proteomics datasets have proven useful for predicting health-related
outcomes. Here, we use measurements of levels of 4,684 plasma proteins in 22,913 Ice-
landers to develop all-cause mortality predictors both for short- and long-term risk. The
participants were 18-101 years old with a mean follow up of 13.7 (sd. 4.7) years. During the
study period, 7,061 participants died. Our proposed predictor outperformed, in survival
prediction, a predictor based on conventional mortality risk factors. We could identify the 5%
at highest risk in a group of 60-80 years old, where 88% died within ten years and 5% at the
lowest risk where only 1% died. Furthermore, the predicted risk of death correlates with
measures of frailty in an independent dataset. Our results show that the plasma proteome
can be used to assess general health and estimate the risk of death.
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thing you would wish upon yourself or your friends. It

could, however, prove useful in the delivery of healthcare
and biomedical research. It is often possible to give a meaningful
prediction of how long individuals with specific diagnoses will
livel, but predicting when an individual will die from any cause is
altogether a different matter.

Several diseases, lifestyle’™, social and psychological factors®
associate with all-cause mortality. Commonly used risk factors for all-
cause mortality are age, sex, traditional cardiovascular risk factors
such as systolic blood pressure, cholesterol levels, smoking, and
diabetes, cardiovascular disease, cancer, alcohol consumption, body
mass index (BMI), and creatinine levels®-8. Among other biomarkers
of all-cause mortality are brain age estimated from structural mag-
netic resonance images®, DNA methylation!%, and telomere length!l.
Recently, circulating metabolic biomarkers have been found to
associate with the risk of all-cause mortality. In a study of 44,168
individuals, where 5512 died during follow-up, 14 metabolic bio-
markers were found to improve 5 and 10-year all-cause mortality
predictions over conventional risk factors®. Another study of 17,345
participants identified 106 metabolic biomarkers that improved
short-term all-cause mortality risk prediction over established risk
factors’. In a study of 3523 participants from the Framingham Heart
Study, 38 of 85 preselected circulating protein biomarkers associated
with all-cause mortality and improved all-cause mortality prediction
over cardiovascular risk factors!2. Similarly, 56 peptides (31 proteins)
correlated with 5-year mortality in a study of 2473 older men. A
panel of those peptides improved the predictive value of a commonly
used clinical predictor of mortality!3.

With the advent of new technology such as SOMAmers'* or
proximity extension assays!®, it is possible to simultaneously measure
levels of thousands of proteins efficiently. Several studies using this
technology have shown the plasma proteome to be heavily associated
with age and life span'®-20, A study of 997 participants associated 651
out of 1301 proteins with age, found that a 76-protein proteomic age
signature associated with all-cause mortality independent of chron-
ological age, and created a seven-protein mortality predictor!8. In a
study of 1025 older adults, 754 of 4265 proteins were associated with
age. A proteomic age model using the age-associated proteins pre-
dicted mortality better than chronological age!. Another study of
4263 participants measured 2925 proteins to evaluate how circulating
protein profile changes over the life span?. Some studies have used
large proteomics datasets to predict other health-related factors. A
protein-based risk score for cardiovascular outcomes in a high-risk
group was developed using 1130 candidate plasma proteins?!. In
addition, ~5000 plasma proteins were used to predict health states,
behavior, and incident diseases, with performance comparable to
traditional risk factors, in 16,894 participants?2, These studies
underscore the value of using plasma levels of a large number of
proteins to search for biomarkers in health and diseases.

Here we apply plasma levels of 4684 proteins determined with
SOMAmers to predict both long- and short-term all-cause
mortality. We developed and tested predictors using a dataset of
22,913 individuals, of whom 7061 died during the study period.
Predictors using proteins were compared to predictors using only
conventional risk factors, and we examined prediction perfor-
mance for various causes of death. We also explored how indi-
vidual proteins associate with all-cause mortality and various
causes of death. Using an independent dataset of 8814 indivi-
duals, we correlated the predictor with several frailty measures
and known risk factors of mortality.

The ability to predict when someone will die is not some-

Results
The data came from four sources; the Icelandic cancer project
(ICP)?3, deCODE health study (dHS)**, and various smaller

projects from two distinct time periods (VSP1 and VSP2). The
ICP and VSP1 data, used for model development, included 22,913
participants aged 18-101 (mean 56.6, sd. 17.4) sampled between
the years 2000-2006 (Supplementary Fig. 1), of whom 10,136
were 60 years old or older (mean 73.0, sd. 7.8). The average
follow-up time for this group was 13.7 (sd. 4.7) years, until death
or the end of the study period at the end of 2018. At the time of
sample collection, 7.0% had coronary artery disease (CAD), 5.2%
history of myocardial infarction (MI), 2.5% history of stroke, and
23.9% had been diagnosed with cancer. Since most of this dataset
was collected for cancer research, it has about three times higher
cancer prevalence than the more recently collected dHS sample
set. During the study period, 7061 participants (30.8%) died at an
average age of 81.2 (sd. 10.7) years. Of those who died, 38.1% of
deaths related to neoplasms, 8.4% to the nervous system, 35.0% to
the circulatory system, 7.7% to the respiratory system, and 10.8%
to other internal causes. Table 1 lists the baseline characteristics
for all datasets. For every participant, 4905 protein measurements
(aptamers) measuring levels of 4684 different proteins in plasma
were available after a quality check. Models were developed using
70% of the data, and results were reported on the remaining 30%.

Prediction performance at different time points. In Fig. 1,
we demonstrate the discriminatory power of our all-cause mor-
tality prediction models by using a receiver operating character-
istic (ROC) curve and the area under the curve (AUC) both for
all participants (Fig. la, b) and restricted to 60 years or older
(Fig. 1c, d).

The AUC for all participants using only age and sex (age and
sex model) increases with the time from sample collection
(Fig. la). Adding disease and lifestyle variables to the model
(baseline model) increases the AUC over the age and sex model.
Adding the growth/differentiation factor 15 (GDF15) protein
measurement, which has the strongest association with all-cause
mortality of all 4905 protein measurements, to the age and sex
model (GDF15 model) yielded a better predictor than the baseline
model. Adding more protein measurements to the age and sex
model gave an even better prediction model (protein model). The
difference between the four prediction models was greater for
short-term predictions than long-term predictions.

The proteins in the protein model were chosen separately for
predictions of all-cause mortality within 1,2,...,15 years. In
general, the short-term predictions needed fewer proteins than
the long-term predictions. For instance, the Boruta?® feature
selection chose 209 protein measurements for prediction of death
within 1 year, but 454 protein measurements for death within 15
years. 135 protein measurements were constantly chosen for
death within each of 1,2,...,15 years. The L12° penalty reduced the
model to 81 protein measurements for prediction of death within
1 year and 192 for death within 15 years, but the biggest model,
which was for prediction of death within 13 years, used 219
protein measurements. Ten protein measurements were chosen
in every model. The 5-year predictor included 117 protein
measurements, the 10-year predictor included 199, and the 2-year
predictor included 98 protein measurements (Supplementary
Table 1). The features and coefficients of the 5-year predictor are
in Supplementary Data 1.

As an example of short-, intermediate-, and long-term
predictions, we looked at the prediction of death within 2, 5,
and 10 years (Supplementary Table 2).

Figure 1b depicts the ROC curves for all-cause mortality within 5
years for all participants. The AUC for the age and sex model was
0.852. The baseline model had an AUC of 0.885, an increase of
0.033 (p = 2.4e—11) over the age and sex model. The GDF15 model
had an AUC of 0.893, with an increase of 0.008 (p = 8.7e—2) over
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Table 1 Characteristics of all study participants by age and sample sets.
Characteristic ICP + VSP1 ICP + VSP1 dHS dHS VSP2 VSP2

All 60+ All 60+ All 60+

N=22,913 N=10,136 N=8814 N =3684 N=6798 N =261
Men 9991(43.6) 4816(47.5) 3876(44.0) 1652(44.8) 2657(39.1) 1109(42.5)
Women 12,922(56.4) 5320(52.5) 4938(56.0) 2032(55.2) 4141(60.9) 1502(57.5)
Follow up 13.7(4.7) 11.1(5.5) 1.3(0.7) 1.3(0.7) 1.6(1.4) 1.6(1.4)
Age 56.6 (17.4) 73.0(7.8) 55.4(14.7) 69.1(6.4) 52.9(16.6) 70.0(6.7)
Age-span 18-101 60-101 18-96 60-96 18-98 60-98
BMI 26.5(4.6) 26.6(4.4) 28.6(5.3) 28.9(5.1) 27.8(5.4) 27.7(4.9)
T2D 969(4.2) 809(8.0) 437(5.0) 299(8.1) 258(3.8) 177(6.8)
Statin use estimate 1897(8.3) 1617(16.0) 1623(18.4) 1256(34.1) 1489(21.9) 1140(43.7)
HT medication use 7676(33.5) 5599(55.2) 4137(46.9) 2553(69.3) 3292(48.4) 1962(75.1)
Smoker estimate 2998(13.1) 792(7.8) 844(9.6) 310(8.4) 621(9.1) 235(9.0)
CAD 1608(7.0) 1490014.7) 645(7.3) 570(15.5) 869(12.8) 723(27.7)
History of Ml 1199(5.2) 1095(10.8) 249(2.8) 202(5.5) 394(5.8) 314(12.0)
History of Stroke 568(2.5) 511(5.0) 168(1.9) 129(3.5) 184(2.7) 128(4.9)
Cancer diagnosis 5484(23.9) 3880(38.3) 675(7.7) 512(13.9) 526(7.7) 400(15.3)
Deaths 7061(30.8) 6222(61.4) 25(0.3) 22(0.6) 83(1.2) 74(2.8)
Age at death 81.2(10.7) 84.0(7.5) 76.8(10.1) 79.8(6.6) 75.1010.4) 77.3(8.5)
Cause of death
Neoplasms 2687(38.1) 2098(33.7) 12(48.0) 11(50.0) 49(59.0) 43(58.1)
Nervous system 596(8.4) 550(8.8) 1(4.0) 1(4.5) 3(3.6) 3(4.1)
Circulatory system 2472(35.0) 2345(37.7) 9(36.0) 7(31.8) 23(27.7) 20(27.0)
Respiratory system 544(7.7) 507(8.1) 0(0.0) 0(0.0) 6(7.2) 6(8.1)
Other causes 762(10.8) 722(11.6) 3(12.0) 3(13.6) 2(2.4) 22.7)
The numbers are number (percent of participants), number (percent of total deaths), mean (sd), or range

the baseline model, while the protein model yielded an AUC of
0.915, improving the baseline AUC by 0.030 (p = 1.4e—9).

Restricting the analysis to participants 60 years or older lowers
the AUCs compared to models including all the participants.
However, the differences from the baseline model were greater
(Fig. 1c, d). The lower AUC and bigger AUC differences probably
result from the exclusion of many easily classified participants
younger than 60. For example, the youngest age group is at very
low mortality risk and easily distinguished using the age variable.
That is, the smaller age range reduces the importance of age. For
the 5-year prediction, the AUCs were 0.750, 0.801, 0.820, and
0.853 for the age and sex, baseline, GDF15, and protein model,
respectively. The differences from the baseline were —0.050 (p =
4.3e—10), 0.019 (p = 3.4e—2), and 0.053 (p = 4.5e—9) for the age
and sex, GDF15, and protein models, respectively.

For 5-year prediction for all participants, the integrated
discrimination improvement (IDI) for the protein model vs. the
baseline was 0.115 (95% CI: 0.095-0.137). For older than 60
participants the IDI was 0.113 (95% CI: 0.092-0.136) for 5-year
prediction. (Supplementary Fig. 2 and Supplementary Table 2).

When the predictors were applied to a subset of participants
not diagnosed with any of the major diseases used in the baseline
at the time of plasma collection, the protein model was still
the best prediction model (Supplementary Fig. 3a). The baseline
model and the GDF15 model still did better than the age and sex
model, but the difference is much smaller than when the whole
dataset is used. This is not surprising since information about the
excluded diseases is essential to the baseline model. We also
examined the discrimination power in participants 80 years or
older separately, using the models trained for participants older
than 60. The protein predictors discriminated better than the
baseline model at every time point (Supplementary Fig. 3b).

Adding the baseline model variables to the GDF15 model and
the protein model improved predictions for all time points, both
for all and older than 60 participants (Supplementary Fig. 4 and
Supplementary Table 3). However, we were more interested in
what the protein measurements could do without information on

lifestyle and diseases; therefore, we did not include the baseline
variables in the GDF15 and protein models. Excluding age and
sex from the protein model reduced prediction performance
slightly, especially for long-term predictions, but age and sex are
an essential part of the GDF15 model. Since age and sex are easily
obtainable features, we saw no advantage in excluding them from
the models.

GDF15 is a powerful predictor on its own and as a part of the
protein model. To examine what a protein model without GDF15
could do, we created a new protein model where we excluded
GDF15 (Supplementary Fig. 4). There was no significant
difference in the AUC between the protein model and the new
protein model excluding GDF15. To see if other single proteins
were good mortality predictors, we also tried models using age,
sex, and WAP four-disulfide core domain protein 2 (WFDC2),
Thrombospondin-2 (THBS2), or Anthrax toxin receptor 2
(ANTXR?2). These were the proteins in addition to GDF15 with
the strongest association with 5-year mortality and were all useful
in predicting mortality. However, the GDF15 model remains the
only single protein model to surpass the baseline model in
prediction performance (Supplementary Fig. 5). Therefore,
GDF15 cannot easily be swapped for any single candidate
protein, but a combination of proteins can make up for
performance loss from excluding GDF15.

Other protein predictors. Other protein-based mortality pre-
dictors have been developed. We tried to replicate them in our
data and compared them to our predictors as shown in Supple-
mentary Fig. 6. The difference between protein-derived age and
chronological age, sometimes called predicted age difference
(PAD), has been shown to be predictive of mortality!819. We
calculated a PAD and used it as a feature in a mortality prediction
model. The PAD was predictive of mortality but was far from
being as good of a predictor as GDF15 alone. We also tried a
mortality predictor using the seven proteins shown to be useful
mortality predictors by Tanaka et al.!8. The seven-protein model
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Fig. 1 Discrimination power of different models for death within 1,2,...,15 years. a AUCs for all participants, N =6893. b ROC curves for death within 5
years for all participants. ¢ AUCs for participants older than 60, N =3052. d ROC curves for death within 5 years for participants older than 60.

performed better than our GDF15 model but did not reach our
protein model performance. This is expected since GDF15 was
one of the seven proteins and because our protein model makes
use of more proteins. Finally, we tried using ten of twelve proteins
used in a multivariable model by Ho et al.12, adjusted for many of
our baseline variables. This model also included GDF15 and had
prediction performance between our protein model and the seven
protein model which might be expected since it used more pro-
teins than seven and fewer than our protein model. These pro-
teins were selected out of a set of proteins targeted because of
their high value for cardiovascular disease.

Kaplan-Meier analysis. We looked at Kaplan-Meier survival
curves for participants in the ICP 4 VSP1 test set between 60 and
80 years old to reduce the effect of age. That included 2488
participants with mean age 70.1 (sd. 5.5), of whom 1312 (52.7%)
died during the study period, 305 (12.3%) within 5 years, and 701
(28.2%) within 10 years from sample collection. The curves were
plotted separately for the four prediction models. By splitting
the Kaplan-Meier curves by quantiles of predicted 10-year risk,
the proteins’ discriminative power becomes evident (Fig. 2,
Supplementary Fig. 7). Of the 5% (124 participants) predicted at
the highest risk by the age and sex, baseline, GDF15, and protein
model, 25%, 40%, 55%, and 67% died within 5 years, and 56%,
65%, 74%, and 88% within 10 years. Of the 5% (125 participants)

predicted at the lowest risk by each model, 8%, 5%, 8%, and 1%
died within 10 years.

The protein model 5% high-risk group is younger and of more
varied age (mean 74.0, sd. 4.9) than the baseline model group
(mean 76.9, sd. 2.6). Likewise, the protein model 5% low-risk
group is older and of more varied age (mean 62.7, sd. 2.4) than
the baseline model group (mean 61.9, sd. 1.3).

In a group of over 80-year-old participants, we examined
survival curves split by predicted ten-year risk. The 20% at
highest risk as predicted by the protein model had lower survival
rates than the 20 at highest risk predicted by the baseline model,
and the 20% predicted at lowest risk by the protein model had
higher survival than those predicted at lowest risk by the baseline
model (Supplementary Fig. 8).

Different causes of death. A visual examination showed that all
models were reasonably well-calibrated, allowing predicted risk
values to be interpreted directly as probabilities (Supplementary
Fig. 9).

We also examined the difference in the performance of the
prediction models for different causes of death. Figure 3 shows
the predicted 5-year risk of all-cause mortality split by survival
status after 5 years from plasma collection. Participants who died
within 5 years are also shown separately for five cause-of-death
categories; neoplasms, nervous system, circulatory system,
respiratory system, and other. All five cause-of-death categories
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showed a higher predicted risk for the protein model than the
baseline model, although the difference varied between categories.
Deaths from neoplasms were not as reliably predicted as deaths
from other causes. Deaths from respiratory system causes and
other causes showed the greatest improvement of the protein
model over the baseline model. The predicted risk for those who
did not die within 5 years was lowest with the protein model. We
also looked directly at the AUC for each cause of death within 5
years, excluding other causes (Supplementary Fig. 10). There the
protein model had the highest AUC for every category, best for
the respiratory system and other causes, and worst for neoplasms.

Associations of individual protein measurements. In a uni-
variate association corrected for age and sex, 1364 protein mea-
surements out of 4905 were significantly associated with death
within 5 years after a Bonferroni correction, 1292 positively and
72 negatively. For participants older than 60 years, the number of
associated protein measurements was 1068, 1002 associated
positively, and 66 negatively. Of the top ten single protein asso-
ciations with death within 2, 5, 10, or 15 years, six proteins were
common for all time points, with GDF15 always having the lar-
gest effect (Supplementary Table 4). As an example of protein
measurement in our dataset we show the distribution and asso-
ciation of GDF15 with age in Supplementary Fig. 11. The dis-
tribution of GDF15 levels is close to log-normal and GDF15 levels
seem to increase log-linearly with age. Most of the proteins with
the highest associations were positively correlated. For the top ten
proteins associating with all-cause mortality within 5 years, most
intercorrelations after correcting for age and sex were 0.4-0.6
(Supplementary Fig. 12). A notable exception is ANTXR2, which
was not correlated with any other top protein and the only top
protein negatively associated with death. The average correlation
between any protein measurement pair of the 4905 measurements
after correcting for age and sex was 0.35.

When univariate associations were examined separately for
different causes of death (Supplementary Table 5), the top two
proteins for all-cause mortality, GDF15 and WFDC2, were
among the top five proteins for all the death categories except for
the nervous system category. The nervous system category had a
different protein profile from the other categories, with the top
four proteins having negative associations with death and GDF15
far from being significantly associated with death. This difference
is probably partly responsible for the slight improvement of the
protein model over the age and sex model in predicting nervous
system deaths, as depicted in Fig. 3. All top five proteins for
neoplasms were also in the top ten for all-cause mortality.
Because neoplasms are the most common cause of death in our
data, it is not surprising that all-cause mortality and neoplasm
mortality have similar protein profiles.

Single protein predictor performance was in accordance with
the univariate associations. Supplementary Fig. 5b shows that
ANTXR2 was the top protein in predicting nervous system-
related deaths. WFDC2 was best at predicting respiratory system-
related deaths, while GDF15 was best at predicting neoplasm and
other deaths. GDF15 and WFDC2 were best at predicting
circulatory system deaths.

All 5-year all-cause mortality protein associations are in
Supplementary Data 2 and Supplementary Data 3. We also
examined associations using the Cox proportional hazards model
with similar results (Supplementary Data 4).

Pathway analysis. We performed pathway analysis, finding the
most over-or underrepresented protein pathways from the
Reactome database?’, in the subset of most relevant proteins,
selected with the Boruta method, for 5-year mortality prediction.

The subset includes 249 protein measurements (244 different
proteins are included in the analysis) relevant for 5-year mortality
prediction without correcting for age and sex. Using a false dis-
covery rate of 0.1 as a significance threshold, three pathways were
significantly overrepresented; Regulation of Insulin-like Growth
factor (IGF) transfer and uptake by Insulin-like Growth Factor
Binding Proteins (IGFBPs) (R-HSA-381426), Extracellular matrix
organization (R-HSA-1474244), and Degradation of the extra-
cellular matrix (R-HSA-1474228) which is a component of the
Extracellular matrix organization pathway.

We repeated the pathway analysis in a set of most relevant
protein measurements corrected for age and sex before applying
Boruta. In the corrected subset, we have 246 protein measure-
ments (238 different proteins are included in the analysis), of
which 135 intersect with the subset from the uncorrected analysis.
Using the same significance criteria, no pathway was significantly
over-or underrepresented. However, the top overrepresented
pathway was the Regulation of IGF transfer and uptake by
IGFBPs (p = 5.3e—5). Other pathways with low p-values included
many components of the Extracellular matrix organization
pathway.

When we used the full set of 1364 protein measurements that
were significantly associated with 5-year mortality (1314 different
proteins are included in the analysis), no pathway was
significantly over-or underrepresented, but Regulation of IGF
transfer and uptake by IGFBPs and Extracellular matrix
organization were among the three with the lowest p-values.

The ten pathways with the lowest p-values for all sets are in
Supplementary Data 5.

Ranking of included protein measurements. Few protein mea-
surements in addition to age and sex can achieve most of the
discrimination performance. Five, ten, or twenty proteins, selected
with a forward selection, yielded AUCs of 0.905, 0.910, and 0.912
for 5-year prediction and 0.913, 0.917, and 0.919 for 10-year pre-
diction (Supplementary Fig. 13). In both 5- and 10-year prediction,
the first three proteins selected into the model were GDF15,
ANTXR2, and IGFBP2 (Supplementary Table 6).

Heritability. There were 20,983 sibling pairs and 18,166 parent-
offspring pairs in the combined ICP, VSP1, dHS, and VSP2
datasets. Sibling pairs older than 60 years were 7022, and parent-
offspring pairs in this age group were 1712. The sibling estimated
heritability for predicted all-cause mortality risk was 0.22 and
0.24 in each age group and 0.13 and 0.17 when estimated with
parent-offspring pairs. This method fails to account for simila-
rities in the environment of relatives, making this an upper bound
of heritability.

Associated phenotypes. The 8814 participants from the dHS
underwent deep phenotyping at the time of sample collection.
Although only 0.3% of them have died (n=25) since recruit-
ment, we calculated for all 8814 their predicted 5-year risk of all-
cause mortality using the protein all-cause mortality prediction
model, corrected it for age and sex, and correlated that with ten
health and frailty related phenotypes. The predicted risk corre-
lated negatively with the maximum oxygen uptake (VO2 max) in
a graded cycle ergometer exercise tolerance test, max grip
strength, forced expiration volume in one second (FEV1), num-
ber of correct codes in a digit coding test?8, and lean appendicular
body mass scaled to height squared measured with Dual-energy
X-ray absorptiometry (DXA). The predicted risk correlated
positively with time spent completing trail making test B2,
resting heart rate, and average length from neck to waist over the
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Table 2 Correlation of 5-year mortality risk predicted by the protein model and corrected for age and sex with frailty related
phenotypes in the dHS dataset.
Phenotype All participants Participants older than 60

N Correlation P-value N Correlation P-value
Graded cycle ergometer exercise test: VO2 max 6930 —-0.15 3.5E-36 2334 —-0.23 3.4E-28
Max grip strength corrected for height 8737 —-0.10 1.1E-21 3637 -0.16 1.5E-21
FEV1 8015 —0.15 1.3E-40 3217 -0.18 1.5E—-25
Digit coding: number of correct codes 8562 —0.09 6.1E—17 3530 —-0.14 1.5E-17
Trail making test B: time to complete 8485 0.09 2.7E-16 3475 0.10 1.1E—-09
Resting heart rate 6688 0.08 2.0E-10 2851 0.08 6.0E—-05
Average length from neck to waist over back adjusted for height 8022 0.08 7.0E-12 3300 0.12 1.0E-T
Lean appendicular body mass divided by height squared 871 -0n 2.8E—23 3643 -0.16 5.9E—-22
Non-HDL cholesterol level, not using statins 6397 —0.01 6.2E-01 2181 0.00 9.0E-01
Non-HDL cholesterol level, using statins 1525 —-0.03 1.9E-01 1181 —-0.04 1.7E-01
BMI 8812 0.03 8.7E—03 3683 0.01 5.5E—01

back. BMI and non-HDL cholesterol levels were not found to be
correlated with predicted mortality risk (Table 2).

Information on various diseases and other traits collected
through the Icelandic health system was available for most
participants. We looked at how six traits, known to be risk factors
for mortality, were associated with the predicted 5-year risk
corrected for age and sex in the combined dHS and VSP2
datasets. The protein model predicted higher mortality risk for
participants with type 2 diabetes (T2D), MI, CAD, or cancer, and
those who smoked, but predicted risk did not associate with
clonal haematopoiesis (Supplementary Table 7). For those who
died during the study period (n=108), the protein model
predicted a much higher 5-year risk than the baseline model
(Supplementary Fig. 14). The baseline had a C-index of 0.900,
while the protein model had 0.938. In this case, we use C-index
rather than AUC because of extensive censoring from limited
follow-up in this dataset.

Discussion

By analyzing 4905 measurements of 4684 plasma proteins in
22,913 participants, we developed a predictor, built on age, sex,
and 81 to 219 protein measurements, that outperforms a pre-
dictor composed of traditional risk factors both for long- and
short-term prediction. This was true both for participants 18
years or older and when restricted to participants over 60 years
of age.

Adding the plasma protein GDF15 to the age and sex model
yielded a model superior to the baseline model that included
traditional risk factors. No other single protein surpassed the
baseline. This supports previous research where GDF15 has been
identified as an important biomarker of all-cause mortality!218.30,
It is also strongly associated with ageing!7-1920, and associations
have been found with cardiovascular diseases, cancer, diabetes,
fibrosis, body weight, energy balance, and inflammation!2-3132,
Although GDF15 is strongly associated with ageing, various dis-
eases, and mortality, both positive and negative effects of high
GDF15 expression have been reported3!. It has been suggested
that high GDFI15 levels are protective responses against ageing
and stress®!»33. Further research is needed to determine the
function of GDF15 in ageing and mortality risk to determine
possible uses of it as a drug or drug target. Still, a high expression
seems indicative of poor health.

We also showed that better performance could be achieved by
adding more proteins to the age and sex model. The proteins were
selected by the model without any consideration of their biology.
The best short-term prediction model had fewer proteins than the
best long-term prediction model. This may be partly explained by

the availability of more cases for longer-term prediction, making
it possible to utilize more features without overfitting. Our long-
term prediction also includes short-term prediction; therefore,
both long-term and short-term risk factors have to be considered,
making it a more complicated problem.

In a group of 60-80 years old, the protein model could identify
a group of 5% with an 88% probability of dying within 10 years
and a 67% probability of dying within 5 years. Furthermore, the
protein model could identify a 5% group with a 1% probability of
death within 10 years. In contrast, a similar high-risk group
identified by the baseline model had a 65% probability of dying
within 10 years and a 40% probability of dying within 5 years,
while a 5% low-risk group had a 5% probability of dying within
10 years. This shows that with the protein model, a group at
extremely high risk of death and another at very small risk can be
identified. The protein model also relied much less on age in
separating high- and low-risk groups than the baseline model.
The difference in age between the groups was less for the protein
model than the baseline model and the variance in age in each
group higher.

The protein model predicted mortality within 5 years more
accurately than the baseline model for various causes of death,
i.e., neoplasms, the nervous system, the circulatory system, the
respiratory system, and other reasons. Similarly, the model pre-
dicted those who did not die within 5 years at a lower risk. This
suggests that the protein model predicts all-cause mortality rather
than being biased to a specific cause of death. Of the various
causes of death, the poorest prediction by all models was for
cancer death. Since the age and sex model did considerably worse
in that category, we suspect the poor performance is largely
because the average age of death from neoplasms is lower than
from any of the other causes.

It is reassuring to see that predicted risk by the protein model
correlates well, in an independent dataset, with phenotypes that
can be considered as measures of health and frailty34. Participants
at higher predicted mortality risk performed worse in an exercise
test, had weaker grip, lower FEV1, performed worse on a digit
coding test, took longer time at a trail making test, had faster-
resting heart rate, and had less appendicular lean body mass.
Interestingly, the higher predicted risk was also correlated with
greater length from neck to waist over the back, which could be
due to age-related kyphosis>°.

We identified more than a thousand proteins associated with
all-cause mortality, confirming many that have been identified
before!213:18 and identifying new ones. It is interesting to note
that about 5% of the associated proteins were negatively asso-
ciated with death. Previous studies have shown that most plasma
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protein levels rise with age, especially after 6020. We speculate
that these associations have a common root and are likely to be
either caused by the body starting to fail or as a response to
counteract the failing.

Examining protein profiles of different disease categories of
death revealed that most major systems, except the nervous sys-
tem, have similar profiles. It is fascinating to find that GDF15,
which has the biggest effect by a large margin in most categories,
is not associated with nervous system deaths. Despite these dif-
ferences, the top associations with nervous system deaths are all
associated with all-cause mortality and in the same directions.
From this, it seems that deaths connected to the nervous system
lack factors common to other systems.

Pathway analysis on a set of proteins relevant for all-cause
mortality prediction without correcting for age and sex points to
involvement of the Regulation of IGF transfer and uptake by
IGFBPs and the Extracellular matrix organization pathways.
When the selection of relevant proteins was corrected for age and
sex, no pathway was significantly overrepresented. However, the
same pathways as for the uncorrected protein selection were
among the most overrepresented. It is probable, since age is an
important predictor of all-cause mortality, that these pathways
are mostly connected to normal ageing. However, since they were
also among the most important pathways when we corrected for
age they might also be involved directly in mortality risk.
Accelerated ageing, where biological age is higher than chron-
ological age, is associated with increased mortality risk!®1? and it
seems likely that the same pathways are involved in normal
ageing and accelerated ageing. The extracellular matrix provides
structural support for the organs and is also involved in many
other functions within the body3¢. The Extracellular matrix
organization pathway has been connected with ageing and all-
cause mortality before!®20. IGFs are major growth factors
responsible for stimulating the growth of all cell types and are
required for normal growth and health maintenance. IGFBPs are
the main IGF transport proteins in the bloodstream, where they
carry the growth factors predominantly in stable complexes®’.

One of the study’s limitations is that some of the risk factors
were not available at the time of plasma collection for some
participants. Therefore some imputation had to be employed for
medication data, BMI, and smoking. Furthermore, we used ApoB
levels as a surrogate for non-HDL cholesterol and hypertension
medication for blood pressure. Other common risk factors such
as levels of creatinine, glucose, and triglycerides were not included
in the baseline model, but our analysis suggests they would not
have added much to the baseline. The baseline model would have
benefited from the inclusion of other diseases than T2D, CAD,
M]I, stroke, and cancer. The severity of diseases, diagnosis times,
and all medication information would probably also have
improved the baseline model.

Another possible problem is that the training and testing data
are enriched with cancer patients. Therefore, it is not a random
sample of the population. However, the model could predict other
causes of death better than that of cancer.

The model using age, sex, and protein levels outperformed the
baseline model without having direct information about tradi-
tional risk factors. Thus, the protein approach only needs single
blood draw to get prediction accuracy better than a model that
includes multiple risk factor measurements and disease diagnosis.
Recent technical advantages in simultaneously measuring a large
number of proteins open up the possibility of accurate evaluation
of an individual’s state of health from only one blood draw. If the
number of proteins is a limitation, only measuring 1-20 proteins
still yields a powerful predictor.

The largest multi-biomarker all-cause mortality study we know
of is the metabolomics study by Deelen et al.3 They use a dataset

of 44,168 individuals, which is far greater than ours, but in our
dataset, we have more deaths during the study period and a larger
set of biomarkers measured. We have not seen proteomics all-
cause mortality studies with as many participants as we have.
Therefore, we believe our study is the largest to date.

Other studies have identified combinations of proteins pre-
dictive of mortality in much smaller datasets!2!819  These
we could replicate to some extent in our data, confirming
the predictive power of these protein combinations. Our protein
predictor outperformed the others, mostly because it uses a much
larger number of proteins. Our predictor also had the advantage of
being developed in data from the same population as the test set.

A good all-cause mortality predictor could be useful to help
assess treatment effects. It could, for example, be used as a clinical
study endpoint, making it possible to get results without waiting
for participants to die. Since our study’s protein measurements
are not normalized on the sample set, our predictor could be used
directly on individual protein measurements from the SOMAscan
platform. This was not possible with the metabolomics all-cause
mortality predictor®.

Death is the final event and can never be considered trivial.
Any further insights into the long-term causes of death will
always be valuable. This study shows the power of protein levels
in plasma as predictors of death. Possible next steps could be to
analyze the plasma proteins in terms of specific causes of death,
finding causal relationships, and useful biomarkers for early
detection of different health problems and the possibility of
intervention.

Methods

Study populations. The participants were all Icelandic, and the plasma samples
were collected at two time periods. In the first dataset, 22,913 participants were
recruited in the years 2000-2006 at deCODE through the Icelandic cancer project
(ICP)23 (N = 20,226) and various smaller projects (VSP1) (N = 2687) (Supple-
mentary Fig. 1). The second dataset consists of participants recruited through the
deCODE health study (dHS)?* (N = 8814) in the years 20162019, and participants
recruited in various smaller projects (VSP2) (N = 6798) at deCODE in the years
2010-2019. Since very little follow up (mean 1.4 years, sd. 1.1 years) was available
for the 2010-2019 samples, we only used the samples from 2000-2006 (mean
follow up 13.7 years, sd. 4.7 years) for the development of models to predict both
long-term and short-term all-cause mortality.

Deaths and the causes of death until the end of 2018 were obtained from the
Icelandic death registry. Cancer information was obtained from the Icelandic
cancer registry, and previous cancer diagnosis was defined as any cancer diagnosis
except non-melanoma skin cancer, which was excluded. Information on the
diagnosis of T2D, CAD, MI, and stroke was gathered from the Icelandic healthcare
system as has been described previously3s. The Icelandic prescription registry
provided medication information.

Pregnant women (N = 145), individuals who died from external causes (ICD10
S00-T98, N =241), and participants younger than 18 were excluded from
the study.

The cause of death was documented with ICD-10 codes. Codes C00-D48 are
connected to neoplasms, G00-G99 to the nervous system, 100-199 to the circulatory
system, J00-J99 to the respiratory system, and all other codes are taken as one
category of other causes.

All participants who donated samples gave informed consent, and the National
Bioethics Committee of Iceland approved the study, which was conducted in
agreement with conditions issued by the Data Protection Authority of Iceland
(VSN_14-015, VSN_15-130, and VSN_15-214). Personal identities of the
participant’s data and biological samples were encrypted by a third-party system
(Identity Protection System), approved and monitored by the Data Protection
Authority.

Protein measurements. Blood was collected in EDTA tubes. The tubes were
inverted 4-5 times before being centrifuged for 10 min at 3000g at 4 °C. Plasma
samples were frozen in aliquots at —80 °C. Plasma aliquots were kept away from
light while they were allowed to thaw on ice. The aliquots were mixed by inverting
the tubes three times and then centrifuged for 10 min at 3220g at 4 °C before
measurement.

All samples were measured with the SOMAscan platform (https://www.
somalogic.com/), containing 5284 aptamers providing measurements of the relative
binding of the plasma sample to each of the aptamers in relative fluorescence units
(RFU). The technology and its performance have been previously described!439-42,
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As a quality control, we calculated the correlation of log-transformed RFU units
over all the 5284 aptamers for every pair of samples. We then calculated the
average correlation of each sample with all other samples. The average correlation
was high (median = 0.94), and we excluded samples with a correlation of less than
0.82. Furthermore, for evaluating the internal repeatability of the SOMAscan
platform, we examined 200 samples drawn from the same individuals at different
time points and 228 that were replicates of the same sample. We used the replicates
to exclude aptamers that were not robust within the same sample. We also
excluded aptamers that did not measure human proteins resulting in a total of 4905
protein aptamers measuring 4684 different proteins, i.e. unique UniProt IDs. Some
aptamers measured multiple proteins, and some proteins were measured by
multiple aptamers. In our dataset, to maintain consistency, we restricted the data to
one sample per person. In the case of repeated measurements on the same
individual, we chose the newest sample, and in the case of replicated measurements
of the same sample, we selected one at random.

All protein levels were log-transformed. We randomly split the ICP and VSP1
data 70% / 30% into training/test sets. The means and standard deviations of the
training set were used to standardize all features used for prediction. Only the
training set was used for feature and model selection.

Features of the development set. If possible, all features were recorded/collected
at the time of plasma collection. We included age, age squared, sex, and their
interactions in all models. The baseline model also had current smoking status,
T2D, CAD, history of MI, history of stroke, previous cancer diagnosis, use of
statins, hypertension treatment, BMI, BMI squared, ApoB, and ApoB x statin. Most
of the BMI values were available at the time of plasma collection, but 2095 were
imputed with the median of all available BMI measurements for that individual,
and BMI values for 455 individuals with no BMI measurements were imputed with
the mean value of training and testing data separately. Since cholesterol levels were
only available for a small portion of the participants, the ApoB protein was used as
a substitute®3, The ApoB protein has a correlation of 0.7 with non-HDL cholesterol
in the dHS data, where both are available. Medication information was only
available from 2003 and on, therefore statin use before 2003 was predicted using
the proteomics data. Those receiving hypertension treatment in the first half of
2003 with samples collected earlier were assumed to have already been receiving
treatment at the time of sample collection. Current smoking status was estimated
using the proteomics data when data were not available. See Supplementary Data 6
for a summary of available measurements and performed imputations.

Additionally, baseline variable interactions with age and sex that had a p-value
lower than 0.1 in logistic regression models for death within 1, 5, 10, or 15 years
were included in the baseline model. Those were BMI, BMI squared, CAD, MI,
cancer, statin use, and hypertension treatment interactions with age and CAD,
smoking, cancer, and diabetes interactions with sex.

Other disease diagnoses were not considered, and missing values prevented the
use of other quantitative features. We did, however, examine the effects of adding
other quantitative features to the baseline in subsets with available data
(Supplementary Fig. 15 and Supplementary Fig. 16). Common risk factors such as
cholesterol levels (HDL, TC), systolic blood pressure (SBP), creatinine levels, and
glucose levels were not found to add much to the baseline. Some combinations of
features were found to add considerably to the baseline. However, there is probably
some selection bias in the data since these measurements came from hospital data
and the features were probably only measured in people where the measurements
were thought to be important.

Polygenic risk scores (PRSs) for cancer, hypertension, stroke, CAD,
Alzheimer’s, attention deficit hyperactivity disorder (ADHD), Parkinson’s,
educational attainment, depression, bipolar disorder, BMI, schizophrenia, IQ,
autism, and anorexia were tested as features in the all-cause mortality risk
predictor. They did not improve the baseline prediction for 5-year mortality and
only improved the 10-year prediction slightly (Supplementary Fig. 17). Based on
this, we think that including PRSs will have more value in longer-term predictions.
Due to their small effect, the PRSs were not used in any of our prediction models.

The Boruta feature selection method?> was used to select all the most relevant
protein measurements out of the available 4,905. This was done separately for
events within 1,2,...,15 years.

Metrics. For comparing prediction performance, we used the ROC curve, the area
under the curve (AUC), and the integrated discrimination improvement (IDI)#4,
When the follow-up was heavily censored, we made use of the concordance index
(C-index)* instead of the AUC. The confidence intervals for the AUC and IDI
were obtained by bootstrapping with 1,000 iterations, and ROC curves were
compared using the Delong method#¢. Kaplan-Meier curves with log-log con-
fidence intervals were also examined. Calibration was assessed with a visual
examination of actual incidence and predicted risk in 5% quantile groups. The test
data were used for all model comparisons.

Types of prediction models. We evaluated six different protein prediction models
for 5 and 10-year prediction; logistic regression with an L1 penalty2°, logistic
regression with an L2 penalty, logistic regression with an elastic net penalty?,
multi-layered perceptron (MLP), XGBoost*® decision trees, and a Cox survival

model with an elastic net penalty. We optimized the parameters for the MLP and
XGBoost with a Bayesian optimization algorithm and 5-fold cross-validation (CV),
while we used a grid search and 5-fold CV for the rest. The parameters were chosen
to minimize log-loss except in the Cox models, where the concordance was
maximized. The methods were all compared using the mean AUC of 10-fold CV
on the training set. Logistic regression performed best, where the penalty type did
not have much effect on the result. We used logistic regression with an L1 penalty
for the final model since it used the fewest features (Supplementary Fig. 18). For the
age and sex model, baseline model, and age, sex, and one protein model, logistic
regression was used. L2 penalty was added when prediction with age, sex, and
1-100 preselected proteins was performed.

In addition to models trained on all participants, separate models were trained
for participants older than 60 years only. All prediction analysis restricted to the
older than 60 group used predictions by these models.

Other protein models. We trained new predictors using logistic regression with
PAD or the selected sets of proteins with age, sex, age squared, and their inter-
actions or the baseline as features. We also experimented with using Cox pro-
portional hazards models since those were used in the original predictors, but the
logistic regression approach gave better predictions.

To predict biological age using the proteome, we used a linear regression model
with L1 penalty. All 4,905 protein measurements and sex were used as candidate
features in the model. The penalization strength was selected to minimize the mean
square error using 5-fold CV on the training data. The PAD was then calculated as
the difference between predicted age and chronological age.

We used all seven proteins identified by Tanaka et al.18 since they were all
available in our data. Our data did not include measurements of AGP1 and
UCMGP. Therefore, only ten of twelve proteins identifies by Ho et al.!? were used.
They also included multiple covariates, not all available in our data, which
prompted us to add the baseline features to the model.

Univariate associations. Associations of single protein measurements with
mortality were examined using logistic regression. The model included age, age
squared, sex, and their interactions as covariates. Associations were also examined
using Cox proportional hazards models. The Cox model used age, age squared, sex,
and their interactions as covariates. To avoid age violating the proportional hazards
assumption significantly, the model used different baseline hazards for each age
bin; 18-40, 40-60, 60-80, and 80+. Associations were considered significant if they
had a p-value lower than 0.05 after Bonferroni correction, i.e., lower than 0.05/
4905 = 1.02e—5. Associations with cause-specific mortality were examined by
excluding deaths from all other causes in the data. Correlations of protein mea-
surements were calculated with Pearson correlation after correcting for age, age
squared, sex, and their interactions.

Pathway analysis. For analyzing the over- and underrepresentation of Reactome?”
protein pathways, we used the PANTHER classification system, version 16 (http://
pantherdb.org/)*°. As a reference, we used all 4905 protein measurements, which
resulted in 4619 unique Uniprot IDs recognized by the system. In cases where a
protein measurement had multiple proteins associated with it, we included all of
them. The Fisher exact test was used to determine statistical significance and false
discovery rate (FDR) to account for multiple testing. To select proteins relevant to
5-year mortality risk the Boruta?® feature selection method was used. To correct for
age and sex we subtracted linear regression of age, age squared, sex and their
interaction from the protein levels before applying Boruta.

Ranking of protein measurements. We used two approaches to order protein
measurements by effects. The first method was a stepwise forward selection with
age, age squared, sex, and their interactions as baseline features, sequentially adding
the protein that maximally increased the log-likelihood. The other method trained
1000 logistic regression models with an L1 penalty each time resampling the
training data. The protein measurements were then ordered by how often they were
included in the model. In the case of protein measurements included equally often,
the protein measurement with the higher mean coefficient was ranked higher.

Heritability estimate. Heritability of 5-year predicted mortality risk was estimated
by using the correlation of mortality risk between siblings and between parent-
offspring pairs. The predictions were corrected for age and sex, normalized, and
corrected again for age, sex, and year of birth.

Associations with phenotypes. Before examining connections to other pheno-
types, the predicted values were corrected for age, age squared, sex, and their
interactions using linear regression. Calculated correlations are Pearson correla-
tions, and means were compared with a two-sided t-test. Associations were con-
sidered significant if they had a p-value lower than 0.05 after Bonferroni correction.
The quantitative phenotypes were corrected for age and sex and normalized.

Statistics and reproducibility. Standard metrics and statistical tests were used to
evaluate and compare models. All data preparations, plotting, model training, and
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most of statistical tests were done in Python version 3.6.3. The logistic regression
models were implemented using the machine learning library scikit-learn®’. AUCs
were compared using R version 3.6.0 with the package pROC?!.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We declare that the data supporting the findings of this study are available within the
article, its supplementary information, and upon reasonable request. Individual-level
data used in this publication are not publicly available because Icelandic law and the
regulations of the Icelandic Data Protection Authority prohibit the release of individual-
level and personally identifying data.

Code availability
Custom code is available at https://github.com/thjodbjorge/Mortality_prediction.

Received: 3 November 2020; Accepted: 3 June 2021;
Published online: 18 June 2021

References

1. Glare, P. et al. Predicting survival in patients with advanced disease. Eur. J.
Cancer 44, 1146-1156 (2008).

2. Hippisley-Cox, J. & Coupland, C. Development and validation of QMortality
risk prediction algorithm to estimate short term risk of death and assess frailty:
cohort study. BMJ 358, j4208 (2017).

3. Flegal, K. M,, Kit, B. K,, Orpana, H. & Graubard, B. I. Association of all-cause
mortality with overweight and obesity using standard body mass index
categories: a systematic review and meta-analysis. JAMA 309, 71-82 (2013).

4. Danaei, G. et al. The preventable causes of death in the United States:
comparative risk assessment of dietary, lifestyle, and metabolic risk factors.
PLoS Med. 6, €1000058 (2009).

5. Puterman, E. et al. Predicting mortality from 57 economic, behavioral, social,
and psychological factors. Proc. Natl. Acad. Sci. https://doi.org/10.1073/
pnas.1918455117 (2020).

6. Wang, T. ]. et al. Multiple biomarkers for the prediction of first major
cardiovascular events and death. N. Engl. J. Med. 355, 2631-2639 (2006).

7. Fischer, K. et al. Biomarker profiling by nuclear magnetic resonance
spectroscopy for the prediction of all-cause mortality: an observational study
of 17,345 persons. PLoS Med. 11, 1001606 (2014).

8. Deelen, J. et al. A metabolic profile of all-cause mortality risk identified in an
observational study of 44,168 individuals. Nat. Commun. 10, 3346 (2019).

9. Cole, J. H. et al. Brain age predicts mortality. Mol. Psychiatry 23, 1385-1392
(2018).

10. Zhang, Y. et al. DNA methylation signatures in peripheral blood strongly
predict all-cause mortality. Nat. Commun. 8, 14617 (2017).

11. Cawthon, R. M., Smith, K. R,, O’Brien, E., Sivatchenko, A. & Kerber, R. A.
Association between telomere length in blood and mortality in people aged 60
years or older. Lancet 361, 393-395 (2003).

12. Ho, J. E. et al. Protein biomarkers of cardiovascular disease and mortality in
the community. J. Am. Heart Assoc. 7, €008108 (2018).

13. Orwoll, E. S. et al. High-throughput serum proteomics for the identification of
protein biomarkers of mortality in older men. Aging Cell 17, €12717 (2018).

14. Rohloff, J. C. et al. Nucleic acid ligands with protein-like side chains: modified
aptamers and their use as diagnostic and therapeutic agents. Mol. Ther.
Nucleic Acids 3, €201 (2014).

15. Assarsson, E. et al. Homogenous 96-Plex PEA immunoassay exhibiting high
sensitivity, specificity, and excellent scalability. PLoS ONE 9, €95192 (2014).

16. Menni, C. et al. Circulating proteomic signatures of chronological age. J.
Gerontol. A. Biol. Sci. Med. Sci. 70, 809-816 (2015).

17. Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging
Cell 17, 12799 (2018).

18. Tanaka, T. et al. Plasma proteomic biomarker signature of age predicts health
and life span. eLife 9, e61073 (2020).

19. Sathyan, S. et al. Plasma proteomic profile of age, health span, and all-cause
mortality in older adults. Aging Cell 19, e13250 (2020).

20. Lehallier, B. et al. Undulating changes in human plasma proteome profiles
across the lifespan. Nat. Med. 25, 1843-1850 (2019).

21. Ganz, P. et al. Development and validation of a protein-based risk score for
cardiovascular outcomes among patients with stable coronary heart disease.
JAMA 315, 2532-2541 (2016).

22. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of
health. Nat. Med. 25, 1851-1857 (2019).

23. Rafnar, T. et al. The Icelandic Cancer Project—a population-wide approach to
studying cancer. Nat. Rev. Cancer 4, 488-492 (2004).

24. Ivarsdottir, E. V. et al. Sequence variation at ANAPC1 accounts for 24% of the
variability in corneal endothelial cell density. Nat. Commun. 10, 1284 (2019).

25. Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta Package. JSS
J. Stat. Softw. 36, 1-13 (2010).

26. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc.
Ser. B Methodol. 58, 267-288 (1996).

27. TJassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48,
D498-D503 (2020).

28. Ebaid, D., Crewther, S. G., MacCalman, K., Brown, A. & Crewther, D. P.
Cognitive processing speed across the lifespan: beyond the influence of motor
speed. Front. Aging Neurosci. 9, 62 (2017).

29. Reitan, R. M. Validity of the trail making test as an indicator of organic brain
damage. Percept. Mot. Skills 8, 271-276 (1958).

30. Wiklund, F. E. et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a
new marker of all-cause mortality: Serum MIC-1/GDF15 and mortality risk.
Aging Cell 9, 1057-1064 (2010).

31. Baek, S.J. & Eling, T. Growth differentiation factor 15 (GDF15): a survival
protein with therapeutic potential in metabolic diseases. Pharmacol. Ther. 198,
46-58 (2019).

32. Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and
energy balance. Nature 578, 444-448 (2020).

33. Moon, J. S. et al. Growth differentiation factor 15 protects against the aging-
mediated systemic inflammatory response in humans and mice. Aging Cell 19,
13195 (2020).

34. Lara, J. et al. Towards measurement of the healthy ageing phenotype in
lifestyle-based intervention studies. Maturitas 76, 189-199 (2013).

35. Nishiwaki, Y. et al. Association of thoracic kyphosis with subjective poor
health, functional activity and blood pressure in the community-dwelling
elderly. Environ. Health Prev. Med. 12, 246-250 (2007).

36. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326,
1216-1219 (2009).

37. Le Roith, D. Insulin-like growth factors. N. Engl. J. Med. 336, 633-640 (1997).

38. Helgadottir, A. et al. Genetic variability in the absorption of dietary sterols
affects the risk of coronary artery disease. Eur. Heart J. 41, 2618-2628 (2020).

39. Brody, E. et al. Life’s simple measures: unlocking the proteome. J. Mol. Biol.
422, 595-606 (2012).

40. Gold, L. et al. Aptamer-based multiplexed proteomic technology for
biomarker discovery. PLoS ONE 5, €15004 (2010).

41. Kim, C. H. et al. Stability and reproducibility of proteomic profiles measured
with an aptamer-based platform. Sci. Rep. 8, 8382 (2018).

42. Candia, J. et al. Assessment of variability in the SOMAscan assay. Sci. Rep. 7,
14248 (2017).

43. The Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and
risk of vascular disease. JAMA 302, 1993-2000 (2009).

44. Pencina, M. J., D’Agostino, R. B., D’Agostino, R. B. & Vasan, R. S. Evaluating
the added predictive ability of a new marker: From area under the ROC curve
to reclassification and beyond. Stat. Med. 27, 157-172 (2008).

45. Harrell, F. E,, Califf, R. M., Pryor, D. B, Lee, K. L. & Rosati, R. A. Evaluating
the yield of medical tests. JAMA 247, 2543-2546 (1982).

46. DeLong, E. R, DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas
under two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics 44, 837-845 (1988).

47. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J.
R. Stat. Soc. Ser. B Stat. Methodol. 67, 301-320 (2005).

48. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc.
22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining 785-794 (Association for Computing Machinery, 2016). https://
doi.org/10.1145/2939672.2939785.

49. Mi, H. et al. PANTHER version 16: a revised family classification, tree-based
classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49,
D394-D403 (2021).

50. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830 (2011).

51. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and
compare ROC curves. BMC Bioinform. 12, 77 (2011).

Author contributions

T.E, D.FG, P.S,, U.T, KS., and M.O.U. designed the experiments, interpreted the
results and drafted the manuscript. T.E,, S.A,, B.AJ., SHL, EV.L, KN, EF, D.F.G, and
M.O.U. analyzed the data. H.S,, 1], HH,, TR, J.S,, GLN,, G.T,, U.T,, and K.S. con-
tributed to acquisition of the data and T.E., S.A,, B.AJ, EF, HS, HH, TR, D.EFG,PS,
U.T., K.S., and M.O.U. revised the manuscript. All authors contributed to the final
version of the paper.

Competing interests
The authors declare the following competing interests: all authors are employed by
deCODE genetics/Amgen, Inc.

10 COMMUNICATIONS BIOLOGY | (2021)4:758 | https://doi.org/10.1038/s42003-021-02289-6 | www.nature.com/commsbio


https://github.com/thjodbjorge/Mortality_prediction
https://doi.org/10.1073/pnas.1918455117
https://doi.org/10.1073/pnas.1918455117
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02289-6

ARTICLE

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02289-6.

Correspondence and requests for materials should be addressed to K.S. or M.O.U.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
32

bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | (2021)4:758 | https://doi.org/10.1038/s42003-021-02289-6 | www.nature.com/commsbio 1


https://doi.org/10.1038/s42003-021-02289-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Predicting the probability of death using proteomics
	Results
	Prediction performance at different time points
	Other protein predictors
	Kaplan–nobreakMeier analysis
	Different causes of death
	Associations of individual protein measurements
	Pathway analysis
	Ranking of included protein measurements
	Heritability
	Associated phenotypes

	Discussion
	Methods
	Study populations
	Protein measurements
	Features of the development set
	Metrics
	Types of prediction models
	Other protein models
	Univariate associations
	Pathway analysis
	Ranking of protein measurements
	Heritability estimate
	Associations with phenotypes
	Statistics and reproducibility

	Reporting summary
	Data availability
	Code availability
	References
	Author contributions
	Competing interests
	Additional information




