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Purpose: This study aimed to evaluate the associations between mitochondrial dynamics 
related genes -MFN1, MFN2 and DRP1 polymorphisms and risk of lung cancer.
Methods: Six polymorphisms of MFN1, MFN2 and DRP1 were genotyped in 600 cases and 
600 controls using a MassARRAY platform.
Results: The MFN1 rs13098637-C and DRP1 rs879255689-A alleles were associated with an 
increased risk of lung cancer (prs13098637=0.004, prs879255689=0.005), while MFN2 rs4240897-A 
and rs2236058-G were related to a decreased risk of disease (p<0.001). The rs13098637-TC/CC 
and rs879255689-GA/AA were determined as risk genotypes for lung cancer (prs13098637=0.014, 
prs879255689=0.013), whereas the rs4240897-GA/AA and rs2236058-GG were identified as 
protective genotypes against lung cancer risk (p<0.001). Genetic model analysis showed that 
rs13098637 was correlated with an elevated risk of lung cancer in dominant and log-additive 
models (pdominant=0.007, plog-additive=0.004). Moreover, rs879255689 was associated with an 
increased risk of disease in all three models (pdominant=0.014, precessive=0.028, plog-additive=0.005). 
In contrast, rs4240897 and rs2236058 were related to reduced risk of disease in all three models 
(rs4240897: pall<0.001; rs2236058: pdominant=0.008, precessive<0.001, plog-additive<0.001). In addi
tion, these associations were related to the smoking status and pathological type of lung cancer 
patients.
Conclusion: These results shed new light on the association between mitochondrial 
dynamics related genes and risk of lung cancer.
Keywords: lung cancer, gene polymorphisms, mitochondrial dynamics, MFN1, MFN2

Introduction
Lung cancer is the malignant tumor with the highest morbidity and mortality in the 
world.1 At present, it is believed that the interaction of genetic susceptibility, 
environmental factors, hormone levels and viral infections is the main pathogenic 
factor for lung cancer.2–4 Lung tissue damage caused by related pathogenic factors 
can lead to corresponding changes in genes, epigenetics and the entire 
transcriptome.5 And these changes will affect and gradually lead to the activation 
of abnormal molecular pathways and cell functions, which will cause precancerous 
lesions and further develop to lung cancer.6 In recent years, the targeted therapy of 
lung cancer has made great breakthroughs, but the 5-year survival rate of patients 
has only increased from 7% to 15%.7,8 The mechanism of the occurrence and 
development of lung cancer is complex and has not been fully elucidated so far. 
Therefore, there is an urgent need to explore the core molecules that regulate the 
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occurrence and development of lung cancer, and design 
a more effective strategy for early prevention and targeted 
treatment of the disease.

Mitochondria are highly dynamic organelles that are 
regulated by many members of the GTPases superfamily.9 

Generally, mitochondria are connected to each other to 
form a network structure in cells, and continue to divide 
and fuse to maintain their normal structure; however, the 
mitochondrial homeostasis is disturbed in the case of 
disease.10 The genes involved in mitochondrial dynamics 
mainly include dynamin-related protein-1 (DRP1), mito
chondrial fusion protein 1, 2 (MFN1, MFN2) and so on.11 

At present, there have been a large number of reports on 
the role of mitochondrial division and fusion disorders in 
tumors. Rehman et al found that the expression level of 
DRP1 in lung cancer tissues was significantly higher than 
that in adjacent tissues, while the expression level of 
MFN1 was significantly reduced in lung cancer tissues, 
and inhibition of DRP1 activity could significantly inhibit 
the growth rate of tumors in nude mice.12 Inoue-Yamauchi 
and Oda reported that inhibition of DRP1 can promote the 
release of cytochrome C and the apoptosis of colorectal 
cancer cells.13 In addition, Zhao et al also found that the 
use of DRP1 inhibitors can significantly inhibit the inva
sion and metastasis of breast cancer cells.14 These results 
suggested that mitochondrial division and fusion disorder 
played an important role in the occurrence and develop
ment of tumors. However, to date, little information is 
found about the single nucleotide polymorphism (SNP) 
of mitochondrial dynamics related genes in cancer, espe
cially in lung cancer.

Six tag SNPs in mitochondrial dynamics related genes 
MFN1, MFN2 and DRP1 were selected as candidate SNPs. 
Rs13098637 and rs3976523 in MFN1 have been investi
gated in patients with myopia, and the C allele of 
rs13098637 has been identified as risk allele for low to 
moderate myopia.15 Rs4240897 in MFN2 was associated 
with decreased risk of tuberculosis in a genome-wide 
association study.16 Moreover, MFN2-rs2236058-GG gen
otype was correlated with reduced risk of thoracic aortic 
dissection.17 In addition, rs879255685 and rs879255689 in 
DRP1 were missense variants and associated with devel
opmental delay, refractory epilepsy and altered function of 
peroxisomes and mitochondria.18–20 In the present study, 
we genotyped these SNPs in lung cancer patients and 
healthy controls and evaluated the associations between 
the SNPs and risk of lung cancer.

Materials and Methods
Participants
The subjects of this study included 600 lung cancer 
patients and 600 controls. All participants were of 
Chinese Han ethnicity and were recruited at Tangdu hos
pital. The patients were diagnosed with lung cancer by 
histopathological examination of biopsy specimens. The 
control group included randomly selected healthy indivi
duals with no history of cancer. All participants provided 
written informed consent. This study was approved by the 
ethics committee of the hospital (No. 201003–52) and 
carried out in accordance with the World Medical 
Association Declaration of Helsinki: Ethical Principles 
for Medical Research Involving Human Subjects.

Genotyping
Six SNPs in mitochondrial dynamics related genes MFN1, 
MFN2 and DRP1 were selected based on previous asso
ciation studies. The minor allele frequencies (MAFs) of 
these SNPs are greater than 5% in East Asian populations 
according to the 1000 Genomes database. DNA was 
extracted using a QIAamp DNA Blood Midi Kit 
(QIAGEN, Germany). Primers were designed using 
Sequenom MassARRAY Assay Design 3.0 software. 
SNP genotyping was performed on Mass ARRAY iPLEX 
platform (Sequenom, San Diego, CA, USA).

Statistical Analysis
Statistical analysis was performed with SPSS package 
version 20.0 (SPSS, Chicago, IL, USA). MAFs of each 
SNP were checked for divergence from Hardy–Weinberg 
equilibrium (HWE). HaploReg v4.1 (https://pubs.broadin 
stitute.org/mammals/haploreg/haploreg.php) was used to 
predict the potential functions of the SNPs. Allele and 
genotype frequencies in the cases and controls were eval
uated using Chi-square tests. The association between 
SNPs and lung cancer risk was evaluated using SNPstats 
(https://www.snpstats.net/start.htm) and expressed by odds 
ratios (ORs) and 95% confidence intervals (CIs). 
Statistical significance was established when p < 0.05.

Results
The characteristics of the participants are presented in 
Table 1. The case group includes 384 males and 216 
females, 381 smokers and 219 nonsmokers, with a mean 
age of 57.03 years; and the control group consists of 381 
males and 219 females, 378 smokers and 222 nonsmokers, 
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with a mean age of 56.45 years. No significant difference 
was observed in the distribution of sex, age, or smoking 
status between the two groups (p > 0.05). In addition, The 
lung cancer cases consist of 278 adenocarcinoma patients, 
187 squamous cell carcinoma patients, 110 small cell lung 
cancer patients and 25 other types of lung cancer cases.

The basic information for the candidate SNPs is listed 
in Table 2. The predicted function according to the 
HaploReg database showed that the four SNPs in MFN1 
and MFN2 were involved in the regulation of the promoter 
or enhancer histone, changed motifs, and eQTL hits. 
Moreover, two SNPs in DRP1 were missense variants 
and led to changed amino acids.

The MAFs of SNPs in cases and controls were 
described in Table 3. All of the SNPs were consistent 

with HWE (p > 0.05). Compared the MAFs of SNPs 
between cases and controls, we found that the minor allele 
C of MFN1-rs13098637 was associated with a 1.368-fold 
increased risk of lung cancer (95% CI: 1.106–1.691, 
p=0.004). In addition, the minor allele A of DRP1- 
rs879255689 was correlated with an 1.348-fold elevated 
risk of disease (95% CI: 1.094–1.662, p=0.005). In con
trast, the minor alleles of MFN2 rs4240897-A and 
rs2236058-G were related to a decreased risk of disease 
(rs4240897: OR=0.681, 95% CI: 0.572–0.812, p<0.001; 
rs2236058: OR=0.718, 95% CI: 0.612–0.843, p<0.001).

The genotype frequencies of SNPs in cases and con
trols are shown in Table 4 and Figure 1. Compared with 
the wild genotype TT, the TC and CC genotypes of MFN1- 
rs13098637 were associated with 1.34-fold and 2.04-fold 
increased risk of lung cancer (p=0.014). Similarly, the GA 
and AA genotypes of DRP1-rs879255689 exhibited 1.28- 
fold and 2.30-fold elevated risk of disease (p=0.013). 
However, the GA and AA genotypes of MFN2- 
rs4240897 were determined to be protective genotypes 
with 0.71-fold and 0.42-fold reduced risk of lung cancer 
(p<0.001). In addition, the GG genotype of MFN2- 
rs2236058 was also found to be protective genotype 
against lung cancer risk (OR=0.52, 95% CI: 0.37–0.71, 
p<0.001).

The associations between SNPs and risk of disease 
were further evaluated under genetic models (Table 5). 
We found that the MFN1-rs13098637 was associated 
with an increased risk of lung cancer under dominant 
and log-additive models (pdominant=0.007, plog-additive 

=0.004). Moreover, DRP1-rs879255689 was correlated 
with an elevated risk of disease in all three models 
(pdominant=0.014, precessive=0.028, plog-additive=0.005). In 
contrast, MFN2 rs4240897 and rs2236058 were both 
related to reduced risk of disease in all three models 

Table 1 The Basic Information of the Participants

Characteristics Case 
(n=600)

Control 
(n=600)

χ2/t p

Gender (%) 0.032 0.858

Male 384 (64.0) 381 (63.5)

Female 216 (36.0) 219 (36.5)

Age 0.674 0.344

Mean ±SD 57.03±10.54 56.45±10.64

Smoking (%) 0.032 0.858
Yes 381 (63.5) 378 (63.0)

No 219 (36.5) 222 (37.0)

Pathological 

types

AC 278 (46.3)
SCC 187 (31.2)

SCLC 110 (18.3)

Others 25 (4.2)

Abbreviations: AC, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small 
cell lung cancer.

Table 2 Basic Information and Predicted Functions of Candidate SNPs

SNP Gene Chromosome Position Allele Role Predicted Functions

rs13098637 MFN1 3 179375026 T>C Intron Promoter histone mark, motifs changed, eQTL hits

rs3976523 MFN1 3 179381391 A>C Intron Motifs changed, eQTL hits

rs4240897 MFN2 1 11982698 G>A Intron Enhancer histone mark, motifs changed, eQTL hits

rs2236058 MFN2 1 12002304 C>G Intron Enhancer histone mark, motifs changed, eQTL hits

rs879255685 DRP1 12 32731019 G>A Missense Variant Gly362Asp

rs879255689 DRP1 12 32722602 G>A Missense Variant Gly379Lys

Abbreviations: SNP, single nucleotide polymorphism; eQTL, expression quantitative trait locus.
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(rs4240897: pall<0.001; rs2236058: pdominant=0.008, 
precessive<0.001, plog-additive<0.001).

Stratified analysis was carried out in the aspect of smoking 
status (Table 6) and pathological type of lung cancer (Table 7). 
We found that MFN1-rs13098637 was associated with risk of 
lung cancer in both smokers and nonsmokers; while DRP1- 
rs879255689 was only related to risk of disease in nonsmokers 
(p<0.05). Moreover, MFN2-rs4240897 was correlated with 
declining risk of disease in both smokers and nonsmokers, 
while MFN2-rs2236058 was only significant in smokers 
(p<0.05). In addition, MFN1-rs13098637 was associated 

with increased risk of adenocarcinoma and small cell lung 
cancer, and DRP1-rs879255689 was related to elevated risk 
of squamous cell carcinoma and small cell lung cancer 
(p<0.05). In contrast, MFN2-rs4240897 was protective variant 
for all three types of lung cancer (p<0.05). However, MFN2- 
rs2236058 was not significant in any types of disease, which 
may due to the limited sample size.

Discussion
Abnormal division and fusion of mitochondria not only 
lead to altered morphology and function but also closely 

Table 4 Genotype Frequency Distributions Between Lung Cancer Cases and Healthy Controls

SNP Genotype Control Case OR (95% CI) p

rs13098637 T/T 430 (71.7%) 387 (64.5%) 1 0.014*
T/C 157 (26.2%) 189 (31.5%) 1.34 (1.04–1.73)
C/C 13 (2.2%) 24 (4%) 2.04 (1.02–4.06)

rs3976523 A/A 269 (44.8%) 243 (40.5%) 1 0.300
A/C 268 (44.7%) 285 (47.5%) 1.18 (0.92–1.50)

C/C 63 (10.5%) 72 (12%) 1.26 (0.86–1.85)

rs4240897 G/G 257 (42.8%) 321 (53.5%) 1 <0.001*
G/A 273 (45.5%) 242 (40.3%) 0.71 (0.56–0.90)

A/A 70 (11.7%) 37 (6.2%) 0.42 (0.27–0.64)

rs2236058 C/C 138 (23%) 179 (29.8%) 1 <0.001*
C/G 289 (48.2%) 306 (51%) 0.82 (0.62–1.08)

G/G 173 (28.8%) 115 (19.2%) 0.52 (0.37–0.71)

rs879255685 G/G 393 (65.5%) 386 (64.3%) 1 0.140
G/A 193 (32.2%) 188 (31.3%) 0.99 (0.77–1.26)

A/A 14 (2.3%) 26 (4.3%) 1.91 (0.98–3.72)

rs879255689 G/G 421 (70.2%) 381 (63.5%) 1 0.013*

G/A 167 (27.8%) 194 (32.3%) 1.28 (1.01–1.65)

A/A 12 (2%) 25 (4.2%) 2.30 (1.14–4.65)

Note: *p < 0.05 indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

Table 3 The MAF and HWE of Candidate SNPs Between Lung Cancer Cases and Healthy Controls

SNP Gene MAF-Cases MAF-Controls HWE p OR (95% CI) p

rs13098637 MFN1 0.20 0.15 0.87 1.368(1.106–1.691) 0.004*

rs3976523 MFN1 0.36 0.33 0.78 1.138(0.962–1.347) 0.132

rs4240897 MFN2 0.26 0.34 0.93 0.681(0.572–0.812) <0.001*

rs2236058 MFN2 0.45 0.53 0.41 0.718(0.612–0.843) <0.001*

rs879255685 DRP1 0.20 0.18 0.10 1.107(0.904–1.357) 0.325

rs879255689 DRP1 0.20 0.16 0.44 1.348(1.094–1.662) 0.005*

Note: *p < 0.05 indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy–Weinberg equilibrium.
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related to the occurrence and development of diseases and 
tumors.21,22 In this study, we genotyped six SNPs in three 
mitochondrial dynamics related genes MFN1, MFN2 and 
DRP1, in a case-control cohort and found that two SNPs 
(MFN1-rs13098637 and DRP1-rs879255689) associated 
with an increased risk of lung cancer and two SNPs 
(MFN2 rs4240897 and rs2236058) associated with 
a reduced risk of the disease.

MFN1 gene is located at chromosome 3 q25-26, with 
a molecular weight of 84kDa and consists of 742 amino acid. 
MFN1 is located in the outer mitochondrial membrane, and its 
N-terminus and C-terminus are both exposed to the cytoplasm. 
There is a GTPase domain at its N-terminus, which participates 
in the oligomerization of mitochondrial fusion-related proteins 
and promotes the fusion of adjacent mitochondrial outer 
membranes.23 Moreover, MFN1 is also involved in many 
physiological functions such as maintaining the number of 
healthy mitochondria in the cell and reducing the content of 
intracellular ROS.24 Li et al found that MFN1 was lowly 
expressed in osteosarcoma tissue and related to the poor prog
nosis, and overexpression of MFN1 can lead to osteosarcoma 
cell cycle arrest, inhibit cell proliferation and promote 
apoptosis.25 Zhao et al reported that knockdown of MFN1 in 
breast cancer cell lines can lead to mitochondrial fragmentation 
and promote breast cancer cell metastasis, while overexpres
sion of MFN1 can inhibit the formation of lamellipodia in 
breast cancer cells and reduce the recruitment of mitochondria 
to the lamina area.14 Huang et al demonstrated that the ratio of 
DRP1/MFN1 was significantly up-regulated in liver cancer 
tissues, with increased mitochondrial division and decreased 
fusion, thereby promoting mitochondrial autophagy and 

inhibiting mitochondrial-dependent apoptosis, and ultimately 
promoting the proliferation and growth of liver cancer cells.26 

In this study, we identified that the minor allele C of MFN1- 
rs13098637 was associated with an increased risk of lung 
cancer, suggesting that rs13098637 polymorphism may have 
an influence on the development of lung cancer via disturbing 
the mitochondrial homeostasis in the human body.

MFN2 gene is located at chromosome 1 and it has 80% 
similar protein sequence with MFN1. MFN2 is also an outer 
mitochondrial membrane GTPase and involved in mitochon
drial dynamics and function. In addition, MFN2 could affects 
the interaction between endoplasmic reticulum (ER) and mito
chondria and ER stress response, which is distinct from 
MFN1.27 Abnormal expression of MFN2 has been associated 
with variable types of disease, including Alzheimer’s disease, 
Parkinson’s disease, obesity, diabetes/insulin resistance, and 
cardiomyopathy.27 In addition, previous studies have shown 
that MFN2 expression was downregulated in lung, liver, color
ectal and breast cancers.12,13,28,29 The decreased MFN2 levels 
affected the mitochondrial fragmentation, and the mitochon
drial fragmentation was proven to be a protective factor against 
Ca2+-dependent apoptosis.30 In our study, we identified that 
MFN2 rs4240897 and rs2236058 polymorphisms associated 
with decreased risk of lung cancer, which is consistent with 
previous association study on tuberculosis and thoracic aortic 
dissection,16,17 respectively. However, the underlying molecu
lar mechanism is still need to be investigated in further study.

DRP1 gene is located at chromosome 12 and encodes the 
most important mitochondrial fission related protein. DRP1 
is also a cytosolic GTPase, which can be recruited to the 
outer mitochondrial membrane and exert its function.31 

Figure 1 The genotype distributions of candidate SNPs between lung cancer cases and healthy controls.
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Mitochondrial fission is critical for tissue development and 
function, and organelle Ca2+ homeostasis and cell apoptotic 
signaling.30,32 Therefore, DRP1 has been widely involved in 
the development of variable types of diseases and cancers. Yu 
et al reported that the expression of DRP1 was significantly 
upregulated in lung cancer tissues and associated with poor 
prognosis of patients.33 Hu et al revealed that ROS-mediating 
CaMKII/DRP1 signaling played a crucial role in the regula
tion of mitochondrial fission and apoptosis in triple-negative 
breast cancer cells.34 Moreover, Deng et al found that the 
anti-tumor effect of baicalein in lung cancer depended on the 

DRP1-mediated mitochondrial fission to a large extent.35 In 
addition, Liang et al demonstrated that DRP1 was upregu
lated in pancreatic cancer and let to more mitochondrial 
fission and enhanced aerobic glycolysis, which resulting in 
cancer cell growth and metastasis.36 In the present study, we 
identified that DRP1-rs879255689 was related to elevated 
risk of lung cancer. Rs879255689 is a missense variant and 
led to Gly379Lys, therefore, we speculated that this variant 
may change the mitochondrial fission and dynamics of lung 
cancer patients and participant in the development of the 
disease.

Table 5 Association Between SNPs and Risk of Lung Cancer in Genetic Models

SNP Model Genotype Control Case OR (95% CI) p

rs13098637 Dominant T/T 430 (71.7%) 387 (64.5%) 1 0.007*
T/C-C/C 170 (28.3%) 213 (35.5%) 1.40 (1.09–1.78)

Recessive T/T-T/C 587 (97.8%) 576 (96%) 1 0.068
C/C 13 (2.2%) 24 (4%) 1.87 (0.94–3.70)

Log-additive — — — 1.37 (1.11–1.70) 0.004*

rs3976523 Dominant A/A 269 (44.8%) 243 (40.5%) 1 0.130
A/C-C/C 331 (55.2%) 357 (59.5%) 1.19 (0.95–1.50)

Recessive A/A-A/C 537 (89.5%) 528 (88%) 1 0.410

C/C 63 (10.5%) 72 (12%) 1.16 (0.81–1.67)

Log-additive — — — 1.14 (0.96–1.35) 0.130

rs4240897 Dominant G/G 257 (42.8%) 321 (53.5%) 1 <0.001*
G/A-A/A 343 (57.2%) 279 (46.5%) 0.65 (0.52–0.82)

Recessive G/G-G/A 530 (88.3%) 563 (93.8%) 1 <0.001*

A/A 70 (11.7%) 37 (6.2%) 0.49 (0.32–0.75)

Log-additive — — — 0.67 (0.56–0.80) <0.001*

rs2236058 Dominant C/C 138 (23%) 179 (29.8%) 1 0.008*
C/G-G/G 462 (77%) 421 (70.2%) 0.71 (0.54–0.91)

Recessive C/C-C/G 427 (71.2%) 485 (80.8%) 1 <0.001*

G/G 173 (28.8%) 115 (19.2%) 0.59 (0.45–0.77)
Log-additive — — — 0.72 (0.61–0.85) <0.001*

rs879255685 Dominant G/G 393 (65.5%) 386 (64.3%) 1 0.680
G/A-A/A 207 (34.5%) 214 (35.7%) 1.05 (0.83–1.33)

Recessive G/G-G/A 586 (97.7%) 574 (95.7%) 1 0.048*

A/A 14 (2.3%) 26 (4.3%) 1.92 (0.99–3.72)
Log-additive — — — 1.11 (0.90–1.36) 0.320

rs879255689 Dominant G/G 421 (70.2%) 381 (63.5%) 1 0.014*

G/A-A/A 179 (29.8%) 219 (36.5%) 1.35 (1.06–1.72)

Recessive G/G-G/A 588 (98%) 575 (95.8%) 1 0.028*
A/A 12 (2%) 25 (4.2%) 2.14 (1.06–4.30)

Log-additive — — — 1.36 (1.10–1.68) 0.005*

Note: *p < 0.05 indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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To assess the interaction between SNPs and smoking 
and the associations in different types of lung cancer, we 
performed a stratification analysis. We found that MFN1- 
rs13098637 and MFN2-rs4240897 have associations with 
risk of lung cancer in both smokers and nonsmokers, 
suggesting that these polymorphisms have strong relation
ships with risk of disease. However, the MFN2-rs2236058 
was only significant in smokers, suggesting that rs2236058 
polymorphisms may have interaction with smoking. In 
addition, MFN1-rs13098637 and DRP1-rs879255689 was 

related to different types of lung cancer, which further 
demonstrated that different types of cancer can be caused 
by different mechanisms.

To sum up, we found that MFN1-rs13098637 and 
DRP1-rs879255689 polymorphisms were associated with 
an increased risk of lung cancer, while MFN2 rs4240897 
and rs2236058 were protective variants against the risk of 
the disease. Our results shed new light on the association 
between mitochondrial dynamics related genes and risk of 
lung cancer.

Table 6 Association Between SNPs and Risk of Lung Cancer in Smokers and Nonsmokers

SNP Model Genotype Smokers Nonsmokers

OR (95% CI) p OR (95% CI) p

rs13098637 Dominant T/T 1 0.028* 1 0.130
T/C-C/C 1.41 (1.04–1.93) 1.36 (0.91–2.02)

Recessive T/T-T/C 1 0.980 1 0.004*

C/C 1.01 (0.42–2.46) 5.06 (1.42–18.03)
Log-additive — 1.31 (1.00–1.72) 0.052 1.47 (1.04–2.07) 0.026*

rs3976523 Dominant A/A 1 0.320 1 0.230
A/C-C/C 1.16 (0.87–1.54) 1.26 (0.87–1.84)

Recessive A/A-A/C 1 0.520 1 0.550

C/C 1.17 (0.73–1.87) 1.19 (0.67–2.10)
Log-additive — 1.12 (0.90–1.40) 0.290 1.18 (0.89–1.56) 0.240

rs4240897 Dominant G/G 1 0.014* 1 0.004*
G/A-A/A 0.70 (0.52–0.93) 0.57 (0.39–0.84)

Recessive G/G-G/A 1 0.039* 1 0.002*
A/A 0.60 (0.37–0.98) 0.30 (0.13–0.68)

Log-additive — 0.73 (0.59–0.91) 0.005* 0.57 (0.42–0.78) <0.001*

rs2236058 Dominant C/C 1 0.420 1 0.180
C/G-G/G 0.88 (0.64–1.20) 1.40 (0.99–3.11)

Recessive C/C-C/G 1 0.012* 1 0.230
G/G 0.65 (0.46–0.91) 1.35 (0.46–2.79)

Log-additive – 0.82 (0.67–0.99) 0.049* 1.81 (0.36–2.41) 0.140

rs879255685 Dominant G/G 1 0.930 1 0.550
G/A-A/A 1.01 (0.75–1.36) 1.13 (0.76–1.68)

Recessive G/G-G/A 1 0.680 1 0.052

A/A 1.19 (0.51–2.80) 3.78 (1.22–11.71)

Log-additive — 1.03 (0.79–1.34) 0.840 1.26 (0.90–1.76) 0.170

rs879255689 Dominant G/G 1 0.110 1 0.042*

G/A-A/A 1.28 (0.95–1.72) 1.52 (1.01–2.30)
Recessive G/G-G/A 1 0.100 1 0.140

A/A 2.20 (0.83–5.85) 2.08 (0.77–5.65)

Log-additive — 1.30 (0.99–1.70) 0.056 1.46 (1.03–2.06) 0.030*

Note: *p < 0.05 indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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