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Abstract

Although a variety of techniques have been developed to reduce the appearance of B-mode 

speckle, quantitative ultrasound (QUS) aims at extracting hidden properties of the tissue. Herein, 

we propose two novel techniques to accurately and precisely estimate two important QUS 

parameters, namely the average attenuation coefficient and the backscatter coefficient. Both 

techniques optimize a cost function that incorporates data and continuity constraint terms, which 

we call AnaLytical Global rEgularized BackscatteR quAntitative ultrasound (ALGEBRA). We 

propose two versions of ALGEBRA, namely 1D- and 2D-ALGEBRA. In 1D-ALGEBRA, the 

regularized cost function is formulated in the axial direction, and QUS parameters are calculated 

for one line of radiofrequency (RF) echo data. In 2D-ALGEBRA, the regularized cost function is 

formulated for the entire image, and QUS parameters throughout the image are estimated 

simultaneously. This simultaneous optimization allows 2D-ALGEBRA to “see” all the data before 

estimating QUS parameters. In both methods, we efficiently optimize the cost functions by casting 

it as a sparse linear system of equations. As a result of this efficient optimization, 1D-ALGEBRA 

and 2D-ALGEBRA are respectively 600 and 300 times faster than optimization using the dynamic 

programing method previously proposed by our group. In addition, the proposed technique has 

fewer input parameters that require manual tuning. Our results demonstrate that the proposed 

ALGEBRA methods substantially outperform least-squares and dynamic programming methods in 

estimating QUS parameters in phantom experiments.
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I. INTRODUCTION

As any imaging modality, ultrasound imaging has its own advantages and disadvantages. 

Although it is a real time, portable, and safe imaging modality, it provides a qualitative 

representation of the tissue, and as such, can be subject to different interpretations by 

different clinicians. Quantitative ultrasound (QuS) has emerged to resolve the 

aforementioned issue and quantitatively characterize tissue. Spectrum-based QUS 

techniques [1]–[4] investigate the Fourier transform of the radiofrequency (RF) data to 

estimate acoustic properties of tissue such as the effective scatterer diameter [5]–[10], 

scattering strength and acoustic concentration [3, 11], mean scatterer spacing [12]–[15], 

average attenuation αavg (average attenuation from intervening tissues) [16, 17], and 

backscatter coefficient σb [18]. Assessment of renal microstructure [4, 19, 20], fat 

infiltration [21, 24], structural evaluation of the uterine cervix during pregnancy [25, 26], 

and cancer therapy monitoring and assessment [27, 28] are some of its applications.

In addition to testing new clinical applications, a growing attention has focused on 

improving QUS techniques. Recent work has demonstrated that the accuracy and precision 

of backscatter QUS parameters can be improved by regularizing the depth variation of 

estimates of tissue properties, based on the hypothesis of piece-wise variability with depth 

[29]–[33] or by regularizing lateral and axial variation [34]. Moreover, our group recently 

showed that using dynamic programming (DP) substantially improves estimates of αeff and 

σb [35] compared to a least square (LSQ) method previously devised to estimate the same 

parameters [36]. LSQ and regularized algorithms based on DP were previously employed to 

estimate attenuation and BSCs. LSQ minimizes a cost function based on the squared-

difference between the measured backscatter spectrum and a theoretical model to extract the 

values of the depth-averaged attenuation coefficient and the magnitude and frequency 

dependence of the backscatter coefficient. DP follows a similar strategy, but includes a 

regularization term in the cost function that assumes piece-wise continuity in the values of 

the depth-averaged attenuation and the magnitude and frequency dependence of the 

backscatter coefficient. To reduce the computational burden, the dynamic programing 

strategy stores minimized values of the cost function to avoid recomputing them at each 

spatial position.

However, the DP method faces three major issues:

1) It is a discrete optimization method. This means that the solution is based on minimizing 

the cost function from a set of discrete values defined by a search range and step size for the 

acoustic properties. A small step size improves the results by reducing the quantization error 

at the expense of increasing the computational complexity. This issue is exacerbated when 

processing a large field of view (i.e., abdominal or obstetric imaging). This limits the real-

time applicability of DP. In addition, the step size must be defined by the user, adding to the 

complexity of its implementation.

2) A search range must be defined by the user. If ranges of values for the parameters of 

interest are not available for the tissue under study, a very large search range should be used, 

which further increases the computational complexity.
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3) A fundamental problem of DP is that the graph formed by regularization costs must be a 

tree, and cannot have a cycle. As such, DP cannot consider the entire data. In other words, 

DP is applied on a 2D (axial vs lateral) array of power spectra but considers regularization 

only over depth for each lateral location independent from the others.

To cope with these issues, here we propose two versions of a novel technique which we call 

fast AnaLytical Global rEgularized BackscatteR quAntitative ultrasound, or ALGEBRA. 

ALGEBRA solves the regularized cost function analytically and does not need search ranges 

and step sizes. The first version of ALGEBRA, 1D-ALGEBRA, minimizes exactly the same 

cost function as DP [35], where 1D refers to regularization in one (axial) direction. The 

second version is called 2D-ALGEBRA and performs a global regularization in both axial 

and lateral directions. 1D- and 2D-ALGEBRA are inspired by state of the art regularization 

strategies used in ultrasound elastography [36, 37]. 1D- and 2D- ALGEBRA are about 600 

times and 300 times faster than DP [35], respectively, and also provides more accurate and 

precise QUS estimates.

In the following sections, we describe the mathematical background of ALGEBRA. The 

performance of 1D- and 2D-ALGEBRA is compared with that of DP and LSQ on four 

tissue-mimicking phantoms. We demonstrate that both versions of ALGEBRA provide more 

accurate and precise estimates of the average attenuation and the backscatter coefficient than 

DP, and in a significantly shorter time.

II. ALGORITHMS

The application of ALGEBRA on QUS is based on the reference phantom method (RPM) 

[39] to provide system- and operator- independent QUS parameter estimation. According to 

the RPM, the ratio of the power spectrum Ss (f, z) of a sample s (phantom or tissue with 

unknown attenuation coefficient αs and backscatter coefficient σb,s) to the power spectrum 

Sr(f, z) of a reference phantom r (with known αr and σb,r, and similar sound speed to the 

sample, and where subscript r indicates “reference”) [40] can be modeled as:

Ss(f; z, x)
Sr(f; z) = σb, s(f; z, x)As(f; z, x)

σb, r(f)Ar(f, z) (1)

where f, z, and x are frequency, depth, and lateral position, respectively. The factor A 
accounts for total attenuation of the acoustic pulse from the transducer to depth z:

A(f; z, x) = exp −4∫
0

z
α(f; z′, x)dz′ . (2)

where α is in Np.cm−1. Assuming that the attenuation coefficient varies linearly with 

frequency [35], i.e., α (f; z, x) = α0 (z, x) f, where α0 in Np.cm−1 MHz−1 is the specific 
attenuation as defined by the International Electrotechnical Commission [41], then the total 

attenuation Eq. (2) can be expressed as:
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A(f; z, x) = exp −4f∫
0

z
α0(z′, x)dz′

A(f; z, x) = exp(−4f αavg(z, x)z)
(3)

where αavg is the average attenuation equal to the average specific attenuation along the 

propagation depth z.

αavg(z, x) = ∫
0

z
α0(z′, x)dz′ (4)

In the case of the homogeneous reference, the average attenuation αavg [cm−1 MHz−1] is 

equal to its local attenuation coefficient α0,r. Note that α, α0, and αavg can also be expressed 

in dB cm−1 or dB cm−1 MHz−1 by multiplying their numerical value by 8.686.

We employ a power law model to parameterize the frequency dependence of σb (f; z, x) as 

follows:

σb(f; z, x) = β(z, x)fν(z, x) (5)

where β and ν indicate the value of the backscatter coefficient at 1MHz and its frequency 

dependence, respectively. After substituting Eqs. (2)–(4) into (1) and taking the natural 

logarithm from both sides similar to [35], we have:

X(f; z, x) = ln Ss(f; z, x)
Sr(f; z, x)

X(f; z, x) = − 4a(z, x)fz + b(z, x) + n(z, x) ln f
(6)

where

a(z, x) = αavg(z, x) − α0, r
b(z, x) = ln βs (z, x) − lnβr,
n(z, x) = νs(z, x) − νr .

(7)

Both 1D- and 2D-ALGEBRA make use of a cost function containing a data term, D, and a 

regularization term, R:

C = D + R . (8)

A. 1D-ALGEBRA

The ALGEBRA methods are applied to an NR × NC × NF power spectra matrix, where NR is 

the number of rows corresponding to different axial positions, NC is the number of columns 

corresponding to different lateral positions, and NF is the number of frequency bins within a 

useable frequency range. In 1D-ALGEBRA, one column (or lateral position) of power 

spectra is considered and regularization is performed in the axial direction to estimate a, b, 

and n at different axial positions along that column. In 2D-ALGEBRA, the entire array of 

power spectra is used in a 2D regularization strategy.
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Removing the x dependence in (5), data and regularization terms D and R in 1D-ALGEBRA 

are defined as follows:

D = ∑
l = 1

NF
∑
i = 1

NR
(X(fl, zi) − bi − niln (fl) + 4aiflzi)2 (9)

R = ∑
p = 1

3
∑
i = 2

NR
wp(pi − pi − 1)2 (10)

where i and l refer axial location and frequency indices, respectively. Index p refers to the 

three parameters (p = 1 for a, 2 for b, and 3 for n) and wp is the regularization weight for 

parameter p.

As Fig. 1(a) and Eq. (10) show, regularization is employed in the axial direction. To obtain 

the optimum parameters, we calculate the partial derivatives of the cost function with respect 

to ai, bi, an ni and set them to zero. After some manipulations, we arrive at a set of simple 

linear equation as follows:

UY = T . (11)

Y is a column vector with 3NR components containing the parameters to be estimated at 

different depths, i.e., ai, bi, an ni :

Y = [a1, ⋯, aNR, b1, ⋯, bNR, n1, ⋯, nNR]T, (12)

where superscript T indicates transposition. U is a 3NR × 3NR matrix which can be 

separated into two 3NR × 3NR matrices named C and W:

U = C + W . (13)

Matrix C is formed of 6 component matrices:

C =
C1 C2 C3
C2 C4 C5
C3 C5 C6

(14)

and Cj, j = 1, .., 6, are NR × NR diagonal matrixes:

C1 = 16Σl = 1
NF fl

2 Z2, C2 = −4Σl = 1
NF fl Z1, C3 = −4Σl = 1

NF fllnfl Z1, C4 =

(NF) I, C5 = Σl = 1
NF ln fl I, C6 = Σl = 1

NF ln fl
2 I,

(15)

where I is the NR × NR identity matrix and
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Z1 =

z1 0 … 0
0 z2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … zNR

, Z2 =

z1
2 0 … 0

0 z2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … zNR

2

. (16)

Matrix W is defined as:

W =
Wa O O
O Wb O
O O Wn

(17)

where Wa,Wb, and Wn are NR × NR matrices given by:

Wp = wpB (18)

where

B =

1 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −1 1

and O is a NR × NR matrix with zero elements.

T in (11) is a 3NR vector containing three vertically-concatenated NR × 1 column vectors, 

T1, T2, and T3 as follows:

T =
T1
T2
T3

, (19)

whose ith components are given by:

T1i = − 4zi∑l = 1
NF X(fl, zi)fl,

T2i = ∑l = 1
NF X(fl, zi),

T3i = ∑l = 1
NF X (fl, zi) ln fl .

(20)

The values of ai, bi, an ni at different depths are obtained by solving (11) for Y.

B. 2D-ALGEBRA

In 2D-ALGEBRA, we have similar data and regularization terms:
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D = ∑l = 1
NF ∑i = 1

NR ∑j = 1
NC (X(fl, zi, xj) − bi, j − ni, jln (fl)+4ai, j flzi)2 (21)

R = ∑p = 1
3 ∑i = 2

NR ∑j = 2
NC wp, z (pi, j − pi − 1, j)2 + wp, x (pi, j − pi, j − 1)2 (22)

where j refers to the lateral location index. The indices of the regularization weights indicate 

(z) axial and (x) lateral directions. Thus, as Eq. (22) shows, the regularization is employed in 

both axial (z) and lateral (x) directions (Fig 1(b)).

For the 2D regularization the components of C have different sizes (NRNC × NRNC) as each 

component should also include lateral coefficient parameters. Therefore, the size of C will 

be 3NRNC × 3NRNC. The matrix components of W2 are defined as follows:

W2 =
Wa2 O O

O Wb2 O
O O Wn2

(23)

where

Wp2 = V + ρ . (24)

V is a NRNC × NRNC matrix defined as

V =

V1 0 ⋯ 0
0 V2 0 0
0 0 ⋱ 0
0 ⋯ 0 VNC

(25)

where V1, V2, …, VNC are NR × NR matrices, and V2 = V3= … =VNC−1:

V1 =

wp, z + wp, x 0 ⋯ 0
0 2wp, z + wp, x ⋱ ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ wp, z + wp, x

(26)

V2 =

wp, z + 2wp, x 0 ⋯ 0
0 2wp, z + 2wp, x ⋱ ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ wp, z + 2wp, x

(27)

Jafarpisheh et al. Page 7

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VNC =

wp, z + wp, x 0 ⋯ 0
0 2wp, z + wp, x ⋱ ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ wp, z + wp, x

(28)

In (26) to (28), except for the first and last elements, all the elements of the main diagonal 

are repeated NR −2 times. The size of matrix ρ in Eq. (29) is NRNC × NRNC same as V.

The formulation of ρ is as follows:

ρ =

m1 m2 O O
m2 m1 ⋱ O
O ⋱ ⋱ m2
O O m2 m1

(29)

where m1 and m2 are NR x NR matrices as follows. Matrix m1 is repeated NC times and 

matrix m2 is repeated NC − 1 times in each direction to form ρ.

m1 =

0 −wp, z 0 ⋯ 0
−wp, z 0 ⋱ … …

0 ⋱ ⋱ ⋱ 0
⋮ … −wp, z ⋱ −wp, z
0 0 0 −wp, z 0

. (30)

m2 =

−wp, x 0 … 0
0 ⋱ 0 ⋮
⋮ 0 ⋱ 0
0 … 0 −wp, x

. (31)

Again, index p refers to the three parameters (p = 1 for a, 2 for b, and 3 for n). It is important 

to note that Eq. (24) has the same functional form for the three parameters a, b and n 
because it is expressed in terms of index p. However, the actual values of the matrix Wp2 are 

different for different values of p due to the different values of the weights wp1 and wp2. 

Here, we also have a similar T vector but with 3NRNC elements. After solving a similar 

equation to (11), we will solve for all 3NRNC parameters.

III. METHODS

A. Tissue-mimicking phantoms

1D- and 2D-ALGEBRA were tested to data acquired from five tissue mimicking phantoms 

with the following properties:

• Phantom A: Uniform
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– α0,s = 0.654dBcm−1MHz−1

– βs = 1.02 × 10−6cm−1sr−1MHz−ν

– νs = 4.16

– σb,s(6.6MHz) = 2.62 × 10−3cm−1 sr−1

• Phantom B: Reference for Phantom A

– α0,s = 0.670dBcm−1MHz−1

– βs = 8.79 × 10−6cm−1sr−1MHz−ν

– νs = 3.14

– σb,s (6.6MHz) = 3.29 × 10−3cm−1sr−1

• Phantom C: Attenuation step

Top and bottom layers:

– α0,s = 0.510dBcm−1 MHz−1

– βs = 1.60 × 10−6cm−1sr−1MHz−ν

– νs = 3.52

– σb,s(8.9MHz) = 3.52 × 10−3cm−1sr−1

Middle layer:

– α0,s = 0.779dBcm−1 MHz−1

– βs = 3.22 × 10−6cm−1sr−1MHz−ν

– νs = 3.13

– σb,s(8.9MHz) = 3.02 × 10−3cm−1 sr−1

• Phantom D: Backscatter step

Top and bottom layers

– α0,s = 0.554dBcm−1 MHz−1

– βs = 4.82 × 10−7cm−1sr−1MHz−ν

– νs = 3.80

– σb,s(8.9MHz) = 3.52 × 10−3cm−1 sr−1

Middle layer

– α0,s = 0.58dB · cm−1MHz−1

– βs = 3.94 × 10−6cm−1sr−1MHz−ν

– νs = 3.38

– σb,s(8.9MHz) = 6.37 × 10−3cm−1sr−1
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• Phantom E: Inclusion phantom (Gammex 410SCG phantom (Gammex-

SunNuclear, Middleton, WI)):

Background

– α0,s = 0.5dBcm−1 MHz−1

– βs = 2.997 × 10−6cm−1sr−1 MHz−1

– νs = 3.34

– σb,s(8MHz) = 3.11 × 10−3cm−1sr−1

Inclusions

– Three 8mm-diameter cylindrical inclusions with +12, +6 and −6dB 

scattering with respect to the background

More details about the composition of phantoms A-D are available in [34, 40].

Phantom A comprises a water-based agarose-propylene combined with filtered milk. 

Phantom B is composed of water-based agarose added by graphite powder. Both phantoms 

contain glass-beads with 5-43μm diameter as the source of scattering. The ground truth 

values were obtained with single element transducers to measure attenuation and backscatter 

coefficient utilizing narrowband substitution and broadband pulse-echo techniques, 

respectively [41, 42].

Phantoms C (uniform BSC) and D (uniform attenuation) are water-based phantoms with 

three layer phantoms composed of mixtures of gelatin and unfiltered milk. The 

concentration of scatterers in phantom C is 4g/L in all parts, while in phantom D the 

concentration of scatterers in the second layer is 8g/L which is 4 times more than the other 

two layers. On the other hand, molten gelatin and unfiltered milk have been mixed with the 

ratio of 2.1:1 in all layers in phantom D. This ratio in the middle layer of phantom C is 1:1 

to increase its attenuation with respect to the first and third layer, where the ratio is 2.85:1 

[40].

B. Data Acquisition

1) Homogenous Phantom: Two phantoms (A and B above) were scanned with a 9L4 

linear array transducer on a Siemens Acuson S3000 (Issaquah, WA) scanner operated at a 

6.6MHz nominal center frequency to obtain 10 uncorrelated frames of RF data for each 

phantom [35]. Phantom B was used as reference for the characterization of phantom A. RF 

data was accessed through the Axius Direct Research Interface [41].

2) Layered Phantoms: 10 uncorrelated frames of RF data were acquired from 

Phantoms C and D, using their top layers as references. Both phantoms were scanned using 

a linear array transducer on a Siemens Acuson S2000 scanner operated at an 8.9MHz center 

frequency [36].

3) Different Echogenicity Phantom (Gammex phantom): Phantom E was scanned 

using a Verasonics Vantage 128 system (Verasonics, Kirkland, WA) with a L11-5v 
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transducer operated at 8MHz to obtain 10 uncorrelated frames of RF data. Uncorrelated 

frames from a homogeneous region of the same phantom were used as reference.

C. Power Spectra Estimation

We applied LSQ, DP, 1D- and 2D-ALGEBRA to 10 independent frames of RF echo data 

from each phantom. Parameter estimation regions of size 4mm ×4mm were swept axially 

and laterally over each frame with an overlap of 85%, computing at each position the echo 

signal power spectrum using a multitaper approach [44]. This procedure resulted in power 

spectra matrices with 40 columns and 74 rows in the uniform phantom, 86 columns and 108 

rows in the layered phantoms, and 55 columns and 103 rows in Phantom E.

We have solved LSQ analytically. To apply DP, the following search ranges were used:

αs_min − αr − 0.5
8.686 < a <

αs_max − αr + 0.5
8.686

log 0.1
βs_min

βr
< b < log 10

βs_max
βr

νs_min − νr − 2 < n < νs_max − νr + 2

where min and max indices refer to the minimum and maximum ground truth values in the 

layered phantoms. These values were the same in the uniform phantom.

Tables I(A) and (B) show the regularization weights in each method. The weights of 1D-

ALGEBRA are same as DP. The first and second elements of 2D-ALGEBRA weights 

correspond to the axial and lateral regularizations, respectively. In each method, first, the 

algorithm was executed using weights in order of 10. Then, considering the results, the 

weights were increased or decreased. The weights were increased when we saw a high 

variance in results, in other words when results were close to LSQ. On the other hand, 

weights were decreased when results were approaching a flat line. The values included in 

Table I(A) and (B) are the final ones.

It can be easily shown that a symmetric diagonal dominant matrix, where its diagonal entries 

are positive, is a positive definite matrix. In addition, according to a theorem in linear 

algebra [45], the unique solution for equation Ax = b exists if and only if A (here, matrix U) 

is full rank. Therefore, as U is full rank, the unique solution exists. 1D- and 2D-ALGEBRA 

were implemented in Matlab R2018a (MathWorks, USA).

To obtain Y in Eq. (11), we use the mldivide function “\” in Matlab. This operator is time 

efficient and provides two algorithms for full and sparse inputs [46].

IV. RESULTS

A. Phantom A

Figure 2(a) shows the mean and the standard deviation (error bars) of the attenuation 

coefficient (αs) vs. depth obtained from the 400 estimates using DP (green), 1D-ALGEBRA 

(blue), and 2D-ALGEBRA (red). The black dash line refers to the expected values. While 
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1D-ALGEBRA resulted in larger standard deviation compared to DP, the standard deviation 

obtained with 2D-ALGEBRA was close to that of DP.

In Fig 2(b), the BSC is reconstructed from the average values of the 400 estimates of βs and 

νs. It can be observed that the bias of estimation using 1D- and 2D-ALGEBRA is lower than 

LSQ and DP.

Fig 3 shows the B-mode image of the phantom and parametric images of the reconstructed 

BSC evaluated at 6.6MHz in dB scale with respect to 10−4 cm−1 sr−1 using LSQ, DP, 1D- 

and 2D-ALGEBRA. In all phantoms, the range of color bar corresponds to the range of 

values obtained with DP. Visual comparison confirms that 1D- and 2D-ALGEBRA have the 

most similarity to ground truth compared to DP and LSQ. Quantitative analysis of bias and 

variance of BSC at center frequency reveals that using 1D-ALGEBRA leads to 98% 

decrease in variance and 39% in bias respect to DP. In addition, using 2D-ALGEBRA results 

in 100% and 35% reduction in variance and bias, respectively.

To estimate the QUS parameters in an image with NC =74 and NR =40 using 1D- and 2D- 

ALGEBRA required 4 and 8 sec, respectively. In comparison, a Matlab implementation of 

DP required 2400 second for the same problem.

B. Phantoms C and D

Fig 4(a) and 4(b–d) show the average and standard deviation (error bars) over 860 estimates 

of αavg for Phantom C (attenuation step) and the results of the reconstruction of the 

backscatter coefficient from the average values of βs and νs in each layer using Eq. (5), 

respectively. In these figures, the black dashed line is the expected value of the parameter. In 

the case of the average attenuation (Fig 4(a)), there is a smooth transition from the top to the 

middle layer to do the averaging effect of Eq. (4). Also, the standard deviation of DP is 

lower than 1D-ALGEBRA. On the other hand, Fig 5 reveals that the step size in DP had not 

been small enough as we see each layer is not distinguished well. Here, to show how 

different layers are distinguished, we created a parametric image of the local attenuation 

(αlocal). The following equation shows how αlocal is obtained from αavg:

αlocal(i) = αavg(i)zi − αavg(i − 1)zi − 1
zi − zi − 1

(32)

Fig 5(f) demonstrates that using 2D-ALGEBRA, αlocal estimation agrees well with ground 

truth. The analysis of bias and variance of local attenuation shows that 1D- and 2D-

ALGEBRA yield 81% reduction in bias. The variance of DP results is small, but it should 

not be misinterpreted as we see the parametric image of DP is far from the ground truth. 

This is evidence of the drawbacks of DP referred to in the introduction section.

To estimate the QUS parameters in an image with NC =108 and NR =86 required 6 and 12 

sec, respectively. In comparison, a Matlab implementation of DP required 3600 sec for the 

same problem.
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Fig 6(a) shows the error bars over 860 estimate of αavg for phantom D (backscatter step) and 

Fig(6-d) shows results of the reconstruction of the backscatter coefficient from the average 

values of αs and νs in each layer.

Fig. 7. shows the B-mode (a) and ground truth (b) as well as parametric images of 

backscatter coefficient obtained at the center frequency using LSQ (c), DP (d), 1D (e)- and 

2D-ALGEBRA (f) in phantom D (backscatter step). Visual assessment confirms that 1D- 

and 2D-ALGEBRA outperform other methods. Quantitative assessments of BSC at central 

frequency disclose 88% reduction in variance as well as 56% in bias using 1D-ALGEBRA 

compared to DP. In addition, using 2D-ALGEBRA leads to 99% and 55% decrease in 

variance and bias compared to DP, respectively.

To estimate the QUS parameters in an image with NC =108 and NR =86 with 1D- and 2D-

ALGEBRA took 9 and 18 sec, respectively. In comparison, a Matlab implementation of DP 

took 5400 second for the same problem.

C. Phantom E

Fig 8 shows the parametric image of BSC at the center frequency. Quantitative assessment 

of BSC at the center frequency reveals that using 1D-ALGEBRA leads to 35% reduction in 

bias in addition to 29% reduction in variance laterally compared to DP. Furthermore, using 

2D-ALGEBRA yields 31% and 25% reduction in variance laterally and axially, respectively 

as well as 26% reduction in bias with respect to DP.

To estimate the QUS parameters in an image with NC =103 and NR =55, required 2 and 4 

sec, respectively. In comparison, a Matlab implementation of DP took 1200 second for the 

same problem.

Figs 9(a) and (b) show two parametric images of phantom E using 1D-Algebra with two 

different sets of weights: [10, 10, 10] and [104, 104, 104], respectively. Fig 9(b) is smoother 

than Fig 9(a) (less variance), at the expense of blurring the edges of the inclusions (larger 

bias).

V. DISCUSSION

This work presented two analytical, regularized estimators of the attenuation and backscatter 

properties of tissue-mimicking materials. After various tests in tissue-mimicking phantoms, 

these algorithms, named 1D- and 2D-ALGEBRA, outperformed previously proposed 

regularized strategies (DP) in the following aspects:

1. Because of 1D- and 2D-ALGEBRA are analytical solutions to the minimization 

of a cost function, it does not require the definition of search ranges for the 

expected values of the parameters.

2. Contrary to DP, the attenuation and backscatter parameters can be estimated on a 

continuous scale.

3. Both 1D- and 2D-ALGEBRA are up to 600 times faster than DP.

Considering these advantages, ALGEBRA has great potential to be applied clinically.
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Theoretically, we expect exactly the same result using DP and 1D-ALGEBRA as the cost 

functions are the same. However, achieving this requires step sizes to be small enough so 

that discontinuous ranges provided by DP be approximated by continuous range provided by 

1D-ALGEBRA. On the other hand, as we are using a large number of samples, it is 

practically impossible to consider small step size for each parameter. For that reason, DP 

results are not as good as 1D-ALGEBRA. Nevertheless, 1D-ALGEBRA yields estimates 

with similar levels of bias and standard deviation than DP, but in a much shorter time.

Moreover, comparing 1D-ALGEBRA and 2D-ALGEBRA reveals that 2D-ALGEBRA 

outperforms 1D-ALGEBRA in terms of bias and variance as it exploits regularization in 

both axial and lateral directions. Comparing the backscatter coefficient estimation results 

shown in Fig 2, 4, 6(b–d) can result in the misleading conclusion that 1D-ALGEBRA and 

2D-ALGEBRA provide almost the same results. This happens as we are plotting semi-log of 

βs
νs. The improved performance of 2D-ALGEBRA compared to 1D-ALGEBRA is clear 

when 2D color-coded images are compared as shown in Figs 3, 5, and 7. In phantom A 

(uniform) shown in Fig 3, 2D-ALGEBRA leads to almost same estimations in all parts of 

the phantom. For the layered phantoms (Figs 5, 7) it can be seen that 2D-ALGEBRA can 

well distinguish three layers of phantoms C and D, especially in phantom D with the 

backscatter step.

This work has various limitations:

1. As shown in Eq. (10), the regularization term is based on an L2 norm. In a 

previous study based on dynamic programing, Vajihi et al. [47] showed that the 

use of L1 norm in the regularization terms provides better precision in parameter 

estimates than the use of L2 norm. However, the L1 norm is not analytically 

differentiable so it could not be implemented in ALGEBRA. Despite this 

limitation, we showed here that 1D- and 2D-ALGEBRA significantly improve 

the accuracy and precision of the parameter estimates over DP, probably due to 

the removal of the restriction of a discrete grid of parameter values over which 

the cost function is minimized.

2. The current implementation of ALGEBRA required adjusting the regularization 

weights to each phantom experiment. In general, larger weights are used in 

phantoms in which there is not a large change in the acoustic properties, such as 

phantom A, thus allowing a significant variance reduction. However, increasing 

the weights to reduce the variance can result in biased estimates. In other words, 

there is a trade-off between variance and bias in the selection of the weights. We 

are currently working on an automated method to select the weights based on 

identifying what acoustic properties are the most influential in the selection 

process. The weights that result from applying this method to representative data 

from various organ could be saved as part of the imaging presets in the scanner 

to provide ALGEBRA-based parametric images in real time. This is topic of our 

current research.

3. The attenuation coefficient was assumed to be linearly dependent on frequency. 

A more realistic model would be a power-law fit [48]. However, the effect of the 
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power law dependence could be minimized by the averaging effect of the average 

attenuation. If a significant deviation from a linear dependence on frequency is 

expected, ALGEBRA could be applied over contiguous, narrow frequency bands 

over which the variation of the average attenuation with frequency could be 

approximated as linear, as implemented by Nasief et al. [49] Then, the values 

obtained from the various frequency bands could be combined.

4. The backscatter coefficient was parametrized in terms of a power law. We chose 

the power law to model the backscatter coefficient vs. frequency because (1) is 

the same model assumed in the LSQ and DP methods and (2) because the size of 

the scatterers in the phantoms were such that the product of the wave number and 

the scatterer radius is smaller than 0.5, which can lead to biased estimates of the 

scatterer size [50]. However, Eq. (5) could be modified to consider different 

scattering models, such as form factors for different scatterer geometries to 

estimate the effective scatterer size [6], and structure factor models to quantify 

scatterer volume fraction in cases of highly packed scatterers [51]. We have 

recently reported results on the modified DP to estimate effective scatterer size 

and acoustic concentration in tissue mimicking phantoms [52]. We are currently 

working on modifying ALGEBRA to estimate these parameters.

VI. CONCLUSION

In this study, two versions of an analytically-solved, regularized QUS estimation technique, 

1D-ALGEBRA and 2D-ALGEBRA, were proposed to estimate the average attenuation as 

well as the magnitude and frequency dependence of the backscatter coefficient. 1D-

ALGEBRA is the fast version of our previous DP method which applies an axially 

regularized cost function. On the other hand, 2D-ALGEBRA uses a globally (axially and 

laterally) regularized cost function. Regarding the quantitative analysis of bias and variance, 

we can conclude that applying 2D-ALGEBRA substantially improves the results compared 

to DP as it benefits the regularization in both axial and lateral directions.
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Fig. 1. 
Regularization strategies for (a) 1D- and (b) 2D-ALGEBRA.
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Fig. 2. 
Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) in 

phantom A (uniform). The error bars show the standard deviation over the 400 samples for 

average attenuation coefficient (a) and reconstructed backscatter coefficient averaged over 

400 samples (b). In (a), blue, red, cyan and black are superimposed. The black dashed line is 

the ground truth.

Jafarpisheh et al. Page 22

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Parametric images of the backscatter coefficient at the center frequency in phantom A 

(uniform). Results are shown on a dB scale with respect to 10−4 cm−1 sr−1. The colorbar 

shows BSC at the center frequency.
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Fig. 4. 
Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) in 

phantom C (attenuation step). The error bars show the standard deviation over the 860 

samples for average attenuation coefficient (a) and reconstructed backscatter coefficient 

averaged over 400 samples in layer 1 (b), layer 2 (c), layer 3 (d). The black dashed line is the 

ground truth values. The red curve is superimposed by the blue curve.
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Fig. 5. 
Parametric images of the local attenuation (computed from Eq. (30)) of phantom C 

(attenuation step). The color bar shows the value of local attenuation.
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Fig. 6. 
Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) in 

phantom D (backscatter step). The error bars show the standard deviation over the 860 

samples for the average attenuation (a) and reconstructed backscatter coefficient averaged 

over 400 samples in layer 1 (b), layer 2 (c), layer 3 (d). The black dashed line is the expected 

value. The red curve is superimposed by the blue curve.
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Fig. 7. 
Parametric image of the backscatter coefficient at the center frequency of phantom D 

(backscatter step). Results are shown on a dB scale with respect to 10−4cm−1 sr−1

Jafarpisheh et al. Page 27

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Parametric image of the backscatter coefficient at the center frequency of phantom E 

(inclusion phantom). Results are shown on a dB scale with respect to 10−4 cm−1 sr−1.
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Fig. 9. 
Influence of regularization weights in the parametric images of phantom E with 1D-

ALGEBRA. Weights in (a): [10 10 10], weights in (b): [104 104 104].
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TABLE I(A)

REGULARIZATION WEIGHTS IN FOUR PHANTOMS

DP

Phantom wα wb wn

A 1012 108 108

C 7×106 101 6×104

D 7×108 3×101 104

E 8×102 8×102 8×102
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TABLE I(B)

REGULARIZATION WEIGHTS IN FOUR PHANTOMS

2D-ALGEBRA

Phantom wα wb wn

A [1010

1010]
[108

108]
[108 108]

C [7×106

109]
[101

101]
[6×104

6×104]

D [7×108

7×108]
[3×101

3×101]
[104

104]

E [4×102

4×102]
[4×102

4×102]
[4×102

4×102]
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