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Summary

Plants are able to adjust phenotype in response to changes in the environment. This system 

depends on an internal capacity to sense environmental conditions and to process this information 

to plant response. Recent studies have pointed to mitochondria and plastids as important 

environmental sensors, capable of perceiving stressful conditions and triggering gene expression, 

epigenomic, metabolic and phytohormone changes in the plant. These processes involve integrated 

gene networks that ultimately modulate the energy balance between growth and plant defense. 

This review attempts to link several unusual recent findings into a comprehensive hypothesis for 

the regulation of plant phenotypic plasticity.
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I. Introduction

Phenotypic plasticity is a concept that encompasses diverse mechanisms to allow plants to 

adjust their growth behavior in response to environmental change (Schlichting, 1986). In 

general, plastic growth responses are adaptive and may be heritable, reflecting an 

accelerated evolution process that facilitates the acclimation of a plant species to new niches. 

Phenotypic plasticity does not necessarily manifest in morphological changes, and can 

reflect subtle physiological adjustments in growth rate, day-length response or behavior 

under stress. The underlying mechanisms that reprogram growth in response to 

environmental change are only just coming into focus, with a surprising interlinkage of 

metabolism, stress networks and organellar redox effects on the plant adaptation process 

(Margalha et al., 2019).

II. Energy-generating organelles as important environmental sensors in 

plants

Mitochondria and plastids function as signal integrators to link metabolic processes with 

environmental sensing and can lead to epigenetic changes in the plant. The vast majority of 
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proteins required for mitochondrial and chloroplast function are nuclear-encoded, so nuclear 

communication with organelles, or anterograde regulation, is essential to adjust organellar 

properties during development. Retrograde, or organelle-to-nucleus signaling, is mediated 

by a variety of organelle-generated molecules that direct plant responses (Box 1), many 

involving environmental sensing (Wang et al., 2020). Not surprisingly, the numerous 

metabolic intermediates that participate in plastid retrograde signaling are regulated through 

their organellar export and/or import. For example, plastid signaling involves carotenoid-

derived β-cyclocitral and dihydroactiniolide as a consequence of increased singlet oxygen 

(Ramel et al., 2012), derivatives of the isoprenoid precursor methylerythritol 

cyclodiphosphate (MEcPP) to influence salicylic acid (SA) and jasmonate pathways (Xiao et 

al., 2012), or 3′-phosphoadenosine 5′-phosphate, a metabolite affecting 5′–3′ 
exoribonuclease activity within the nucleus (Estavillo et al., 2011). The spectrum of 

intermediates identified as components of retrograde signaling point to a vital function of 

plastid envelope transport systems in the evolution of this intracellular communication (Unal 

et al., 2020). What remains unclear is how these transport systems partition to specialized 

plastid types.

Retrograde signaling links to nuclear RNA metabolism to broadly impact nuclear gene 

expression (Zhao et al., 2020). The resulting adaptive responses can be complex, such as 

repressing photosynthesis-associated nuclear genes while simultaneously inducing 

photoprotectant anthocyanin accumulation in response to light shifts (Richter et al., 2020) or 

supporting nuclear microRNA (miRNA) biogenesis under stress conditions to alter 

development and environmental stress responses (Fang et al., 2019). Similarly expansive 

nuclear influence on organellar gene expression is accomplished via nuclear-encoded RNA-

binding proteins that include organellar ribosome maturation and splicing domain proteins, 

pentatricopeptide repeat proteins, DEAD-Box RNA helicases and S1-domain containing 

proteins (Lee & Kang, 2020). The multifarious nature of this coregulation system reflects a 

post-endosymbiotic evolution process that has equipped the plant system for broad-spectrum 

responsiveness through coordinated organelle-nuclear networks.

Components of plastid redox regulation, including plastoquinone and tocopherol pools, also 

influence nuclear gene expression (Havaux, 2020) and reactive oxygen is a vital component 

of organellar signaling. In plastids, the relationship of plastoquinone to reactive oxygen 

species (ROS) homeostasis is not yet entirely clear, but PQ-9 can influence photosynthetic 

acclimation by adjusting ROS signaling with SNT7, a kinase that alters redox homeostasis 

by phosphorylation of light-harvesting components (Tikkanen et al., 2012). This process of 

dictating ROS production generates cell-wide signals that alter hormonal networks within 

the cell (Tikkanen et al., 2012). Likewise, hydrogen peroxide accumulation within the PQ 

pool can participate directly in retrograde signaling to alter gene expression (Mubarakshina 

& Ivanov, 2010; Exposito-Rodriguez et al., 2017; Havaux, 2020). This plastid-nuclear ROS 

signaling can be surprisingly direct through physical interaction of clusters of perinuclear 

plastids via organellar stromule extensions or plastid-nuclear complexes (Mullineaux et al., 

2020).

In mitochondria, potential damage from overactive electron flow is mitigated by alternative 

oxidase encoded by Alternative oxidase I (AOX1) (Millar, et al., 2011). Investigation of the 
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AOX1 system by forward genetic screens unveils a number of unexpected links between this 

electron bypass system to cellular growth and metabolism. Regulator of Alternative Oxidase 
(rao) mutants are identified by their inability to induce AOX1a expression in response to 

antimycin A, an inhibitor of mitochondrial cytochrome c reductase (Zarkovic, et al., 2005). 

A diverse set of AOX regulators have been identified through this screen, providing details 

of mitochondrial association with plant growth functions. RAO1, for example, encodes the 

Cyclin-Dependent Kinase E1 (CDKE1) (Ng et al., 2013). This gene regulates both AOX1a 
and Light Harvesting Complex B (LHCB) to integrate mitochondrial and plastid retrograde 

signals during stress (Blanco et al., 2014). RAO1 also interacts with KIN10 (Ng et al., 

2013), a subunit of the Sucrose Nonfermenting-Related Kinase 1 (SnRK1), which balances 

energy signaling for growth with plant defense response (Baena-González et al., 2007).

Interestingly, RAO mutants also encode components of auxin transport in the plant. These 

include rao3/big, rao4/pin1, rao5/mdr1/abcb19 and rao6/asymmetric leaves 1 (as1) (Ivanova 

et al., 2014). Studies of these mutants, together with chemical inhibitors of auxin, reveal an 

antagonistic relationship between auxin and mitochondrial retrograde signaling, presumably 

part of the plant’s ability to modulate growth during stress. Auxin can activate the TARGET 

of RAPAMYCIN (TOR) pathway (Schepetilnikov et al., 2013) and, in plants, the TOR 

pathway works antagonistically with SnRK1 in adjusting the balance in energy for growth 

with stress response (Margalha et al., 2019). Discovery of AOX1 in this network serves to 

interlink these cellular programming controls with mitochondrial status and further 

elaborates mitochondrial influence at the plant–environment intersection.

Plastid functions appear similarly intrinsic to establishing energy balance and stress 

perception by the plant. For example, instability of the plastid genome triggers a specific 

nuclear genome response. Enhanced nuclear endoreplication and altered cell cycle 

regulation occur in response to chemical and genetic disruption of the plastid genome (Duan 

et al., 2020). This phenomenon requires the gene SOG1, a putative nuclear transcription 

factor responsive to DNA damage (Duan, et al., 2020). Plastid genome disruption triggers 

increased ROS to effect this response and, remarkably, SOG1 interacts with Sucrose 
Nonfermenting-Related Kinase 1 (SnRK1) (Hamasaki et al., 2019), reiterating the linkage of 

plastid status with energy homeostasis. Mitochondria maintain their cellular population 

through fission and fusion, so that functions they perform are relatively uniform in scope 

across cell types. However, plastids do not fuse and, thus, can undergo spatiotemporal 

differentiation to acquire specialized properties in various plant tissues (Wise, 2007). These 

properties include photosynthesis and light perception, cellular metabolism, carbohydrate 

and lipid storage, and environmental sensing, each requiring specialized plastid proteome 

components.

III. The potential role of sensory plastids in stress signaling

Sensory plastids reside within epidermal and vascular tissues and differ in size, thylakoid 

structure and proteome composition from the mesophyll chloroplast of neighboring cells 

(Beltrán et al., 2018). The sensory plastid, while presumably photosynthetic (Barton et al., 

2016), contains a proteome enriched in components of shikimate pathway-associated 

metabolism and stress response. Estimating the extent to which sensory plastids participate 
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in retrograde signaling and environmental sensing is confounded by the fact that past and 

present studies of chloroplast functions are generally carried out in experiments that pool 

mesophyll and sensory plastids.

Perhaps the most well-detailed plastid retrograde signaling pathway, mediated by SAL1 and 

3′-phosphoadenosine 5′-phosphate (PAP), appears to be sensory plastid-associated. The 

redox-regulated phosphatase SAL1 localizes to both mitochondria and plastids, with 

predominant expression in vascular tissues, and regulates the concentration of PAP by 

dephosphorylation to adenosine monophosphate (Estavillo et al., 2011). A by-product of 

sulfur metabolism, PAP is transferred to the nucleus where it influences gene expression by 

inhibiting XRN type exoribonucleases (Estavillo et al., 2011; Litthauer & Jones, 2018). 

These exoribonucleases target miRNAs that can broadly influence plant response. 

Tocopherols, derived from tyrosine in the sensory plastid, serve to upregulate PAP and, 

consequently, nuclear miRNA biogenesis (Fang et al., 2019). What links this process to the 

sensory plastid is its dependence on CUE1 (Fang et al., 2019), a phosphoenolpyruvate 

import protein that resides on the inner membrane of the sensory plastid (Lundquist, et al., 

2014; Beltrán et al., 2018). Disruption of CUE1 (also named PPT1) results in a reticulata 
green venation phenotype because of its association with vascular plastids, while its 

counterpart, PPT2, serves to import PEP within mesophyll chloroplasts (Hilgers et al., 

2018). Genetic evidence of CUE1 dependence for the tocopherol-influenced XRN activity 

locates SAL1-PAP signaling to the sensory plastid and to vascular tissues of the plant, but 

parallel association of this pathway to mesophyll chloroplasts remains unclear.

One means of rescuing the cue1 mutant, and other sensory plastid-associated reticulata 
mutants, is by supplementing with aromatic amino acids (Streatfield et al., 1999). This 

observation is consistent with proteome studies showing sensory plastid enrichment for 

components of the shikimate pathway (Beltrán et al., 2018). Aromatic amino acid 

metabolism plays a significant role in plant defense, and effector-triggered immunity is 

characterized by significant increases in phenylalanine pools, and phenylpropanoid 

metabolism more generally (Yoo et al., 2020). Thus, specialized plastids may also play a 

previously undetailed role in biotic stress response.

ICS2, a gene encoding isochorismate synthase, converts chorismate to isochorismate during 

the biosynthesis of phylloquinone, a component of electron transport. This enzyme is also 

encoded by ICS1, and both participate in SA biosynthesis, an important component of plant 

defense (Garcion et al., 2008). The genes are differentially regulated by environmental 

factors (Macaulay et al., 2017), but ICS2 predominantly localizes to vascular tissue. 

Consistent with this localization, sensory plastid perturbation induces upregulation of the SA 

pathway (Shao et al., 2017; Yang et al., 2020).

Fluctuating light is an important environmental factor that elicits plastid retrograde signaling 

in plants. In response, epidermal plastids display dynamic stress-response morphological 

behaviors that are distinct from neighboring mesophyll chloroplasts. These visible changes 

involve abundant stromule production, perinuclear association and H2O2 plastid-nuclear 

transfer (Brunkard et al., 2015; Exposito-Rodriguez et al., 2017). Studies of this signal, 

using an elegant fluorescent sensor, show H2O2 within plastids of epidermal cells that align 
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in physical association with the nucleus (Exposito-Rodriguez et al., 2017). While aspects of 

this light response, as well as plastid stromule production, can also occur in mesophyll 

chloroplasts, epidermal and mesophyll plastids are distinct systems as evidenced in their 

response to sucrose and photosynthesis inhibitors (Brunkard et al., 2015; Virdi et al., 2016; 

Exposito-Rodriguez et al., 2017).

Unique to the sensory plastid proteome are components that contribute to phenotypic 

plasticity by triggering epigenetic changes in the plant (Mackenzie & Kundariya, 2020). The 

plant-specific gene MSH1 encodes a dual-targeted mitochondrial and plastid protein that 

resides within the sensory plastid but not the mesophyll chloroplast (Xu et al., 2011). 

Downregulation or disruption of MSH1 causes sensory plastid perturbation, a reduced 

plastoquinone pool, and enhanced expression of abiotic and biotic stress response pathways 

(Xu et al., 2011, 2012; Virdi et al., 2016; Shao et al., 2017). Progeny from MSH1-

suppressed plants, when restored for MSH1 expression, can display heritable msh1 stress 

memory (Xu et al., 2012; Virdi et al., 2015) that depends on RNA-directed DNA 

methylation (RdDM) pathway components (Yang et al., 2020), The msh1 memory 

phenomenon alters gene expression and DNA methylation in auxin response, phytohormone 

signaling, circadian rhythm and alternative RNA splicing pathways (Yang et al., 2020). 

Recapitulation of these memory effects in other plant species (Xu et al., 2012; Yang et al., 

2015; Raju et al., 2018) suggests this to be a conserved process in plants.

Incorporation of msh1 mutants as rootstocks in graft experiments to wild-type scions 

produces progeny that are also altered heritably. Whereas the parental rootstock displays 

stress effects, the graft progeny plants are enhanced in growth vigor and resilience relative to 

the wild-type (Virdi et al., 2015; Kundariya et al., 2020). This unexpected acquired vigor is 

similarly small interfering RNA- and RdDM-dependent (Kundariya et al., 2020).

DNA methylation and gene expression in msh1 graft progeny reveal a pronounced auxin 

response signal that is phenotypically evident in vigorous lateral root growth (Kundariya et 

al., 2020). Network-based analysis of DNA methylation repatterning for the msh1-derived 

vigor phenotype identifies TOR, SnRK1 and PP2C as putative network hubs integrating 

growth with stress response (Kundariya et al., 2020). Extending upon previous reports of 

mitochondrial AOX1-directed stress behaviors, these observations support mito-plastid 

coordination in environmental sensing and reveal a capacity to influence key integrators of 

growth and stress response towards reprogramming of plant phenotype (Fig. 1).

IV. Alternative RNA splicing as a nuclear response to organellar signaling

One means of broad and rapid influence on nuclear gene expression, following organellar 

perturbation, occurs through alternative RNA splicing (Staiger, 2015). The light environment 

of a plant appears to be a strong determinant of alternative splicing behavior as a likely 

means of enhancing growth plasticity (Tognacca et al., 2020). Changing light conditions 

leads to reduction of the plastoquinone pool in plastids, which alters particular splicing 

factors for light-responsive nuclear genes (Petrillo et al., 2014). Auxin response factor 

regulation by alternative splicing is likewise an important component of phenotypic 

resilience during environmental change (Lanctot & Nemhauser, 2020). DNA methylation 
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repatterning following MSH1 suppression shows changes in numerous components of the 

RNA spliceosome pathway (Yang et al., 2020).

During abiotic stress, alternative splicing occurs predominantly in regulatory loci, with 

outcomes that range from nonsense mediated decay to activation of otherwise nonfunctional 

transcripts (Mastrangelo et al., 2012). This association of environment-induced alternative 

splicing activity with regulators offers an elegant means of rapidly deploying phenotypic 

plasticity to a system under stress. It is perhaps not surprising, then, that gene-associated 

DNA methylation repatterning occurs within gene networks that align with stress response 

pathways and phenotype changes (Yang et al., 2020; Kundariya et al., 2020); subtle 

methylation changes may be sufficient to adjust or respond to local splicing changes that 

relax phenotypic constraints (Zhang et al., 2020).

V. Conclusions

Mitochondria and plastids, as energy-generating, light-sensing, phytohormone-producing 

and metabolic regulators of the cell, function as central integrators of environmental 

information for the plant (Fig. 1). Thus, organellar signaling is multifaceted and broadly 

targeted. Yet, cell- and tissue-level resolution of plant processes make it feasible to localize 

organellar sensing and signaling functions, with epidermal and vascular tissues appearing 

particularly important.

Implementation of forward genetic mutant, transcriptomic, epigenomic and physiological 

studies by numerous groups reveal striking intersection of organellar signaling with central 

gene networks to regulate bioenergetics for growth and plant defense. This emerging 

research provides the most comprehensive view yet of the components underpinning 

phenotypic plasticity in plants and offers a preliminary road map for understanding the 

genotype-to-phenotype relationship under dynamic change.
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Box 1.

Signaling metabolites that participate in retrograde regulation.

Metabolite References

Tetrapyrrole derivatives

 Heme Woodson et al. (2011)

 GUN4/5 Mochizuki et al. (2001), Larkin et al. (2003)

 Mg-ProtoIX Strand et al. (2003)

Carotenoid derivatives

 β′ cyclocitral (β-cyc) Ramel et al. (2012)

 Dihydroactinidiolide Shumbe et al. (2014)

3′-Phosphoadenosine 5′-phosphate (PAP) Estavillo et al. (2011)

2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP) Xiao et al. (2012)

Ca2+ Guo et al. (2016)

Fatty acids (FAs)

 Oxylipin Muñoz & Munné-Bosch (2020)

 NO2-FAs Mandal et al. (2012)

 Free fatty acid (FFAs) Walley et al. (2013)

Dihydroxyacetone phosphate (DHAP) Alsharafa et al. (2014)
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Fig. 1. 
Highly simplified diagram of nuclear-organellar communication in an epidermal pavement 

cell in plants. An example of retrograde regulation involving epidermal sensory plastids and 

mitochondria is shown in the SAL1–3′-phosphoadenisine-5′-phosphate (SAL1-PAP) 

pathway. Anterograde signaling is depicted by red dashed arrows, emanating from 

components linked to the growth-stress network represented by TARGET of RAPAMYCIN 

(TOR), SnRK1/2 and associated components. MSH1, shown within the sensory plastid, is 

suppressed by environmental stress and its depletion can induce organellar genome changes 

that are postulated to trigger plastid-nuclear signaling. ROS, reactive oxygen species; PEP, 

phosphoenolpyruvate.
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