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Abstract

In modern observational studies using electronic health records or other routinely collected data, 

both the outcome and covariates of interest can be error-prone and their errors often correlated. A 

cost-effective solution is the two-phase design, under which the error-prone outcome and 

covariates are observed for all subjects during the first phase and that information is used to select 

a validation subsample for accurate measurements of these variables in the second phase. Previous 

research on two-phase measurement error problems largely focused on scenarios where there are 

errors in covariates only or the validation sample is a simple random sample of study subjects. 

Herein, we propose a semiparametric approach to general two-phase measurement error problems 

with a quantitative outcome, allowing for correlated errors in the outcome and covariates and 

arbitrary second-phase selection. We devise a computationally efficient and numerically stable 

expectation-maximization algorithm to maximize the nonparametric likelihood function. The 

resulting estimators possess desired statistical properties. We demonstrate the superiority of the 

proposed methods over existing approaches through extensive simulation studies, and we illustrate 

their use in an observational HIV study.
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1 | INTRODUCTION

In modern observational studies using electronic health records or other routinely collected 

data, a multitude of variables are collected on a large number of subjects. These databases 
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generate abundant opportunities for researchers to investigate associations of scientific and 

clinical interest. Due to the observational or retrospective nature of their data collection, 

however, the outcome and covariates of interest in these databases are often error-prone. 

Common errors include misclassification and/or incorrect dates of clinical diagnoses, 

incorrectly recorded measurements potentially due to data entry errors or wrong units, 

incorrect types and/or dates of medications, and missing pertinent information in free text 

notes by only extracting based on structured data (eg, insurance billing codes). In addition, 

errors in the outcome and covariates are frequently correlated, particularly when analysis 

variables are derived from other variables in the electronic health record. For example, if the 

date of treatment initiation are incorrectly recorded, then lab values at the time of treatment 

initiation are also likely to be incorrect. It is important to check the validity of these data 

records before incorporating them in analysis so as to avoid biased and misleading results.1

Data audits, which are commonly used in clinical trials,2 have also been implemented in 

observational studies to ensure data quality.3–6 A data audit typically involves a group of 

external auditors comparing the data in the research database to those in the patients’ clinical 

charts and reporting any discrepancies between the two data sources. An audit of the entire 

database is generally prohibitively time-consuming and expensive for large databases. A 

cost-effective solution often applied in practice is the two-phase design, under which the 

error-prone outcome and covariates are obtained for all subjects during the first phase (eg, 

extraction of data from electronic health records) and a subsample of these error-prone 

variables are subsequently audited in the second phase. This type of design greatly reduces 

the cost associated with data validation and thus has been used in several large-scale studies, 

including the Caribbean, Central, and South America Network for HIV Research 

(CCASAnet).7

There is extensive research on analyzing data from two-phase studies with measurement 

errors in covariates only.8–10 Measurement error in a quantitative outcome is generally 

ignored in regression analysis because it can be absorbed into the residual error provided 

that it is homoscedastic.11 This conclusion no longer holds when both the outcome and 

covariates are error-prone and their errors are correlated.12 To deal with this general 

measurement error problem, Chen and Chen13 proposed a “unified approach based on 

estimating equations” (abbreviated as CCE hereafter). This approach requires the second-

phase validation sample to be selected completely at random. Shepherd and Yu12 proposed a 

moment-based estimator (MBE). They allow the selection of the second-phase validation 

sample to be stratified on an error-free covariate (eg, study site). Both the CCE and MBE are 

computationally simple but statistically inefficient. Shepherd et al14 proposed a multiple 

imputation approach, which requires specifying the conditional distribution of measurement 

errors given the true outcome and covariates. This approach is sometimes more efficient, but 

may yield biased estimators when the error models are misspecified.

Classical two-phase studies with error-prone covariates are closely related to those with 

expensive covariates, where the outcome and inexpensive covariates are accurately measured 

for all subjects in the first phase and that information is used to select subjects for 

measurements of expensive covariates during the second phase. Efficient semiparametric 

estimation theory for two-phase studies with expensive covariates was established by Robins 
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et al.15 For continuous outcomes, their augmented inverse-probability weighting estimator is 

difficult to implement in practice because it requires numerical solution of an infinite-

dimensional integral equation. Efficient estimators that are computationally feasible were 

developed by Breslow et al,16 Song et al,17 Lin et al,18 and Tao et al.19 These approaches are 

more appealing than parametric ones (eg, multiple imputation) because they allow for an 

arbitrary covariate distribution. In addition, they accommodate outcome- or residual-

dependent sampling designs, or both, which tend to be more efficient than (stratified) simple 

random sampling.18,20 Efficient estimators that are computationally feasible have not been 

developed for two-phase studies with error-prone outcome and covariates.

The primary contributions of this article are: (a) to adapt the semiparametric efficient 

method of Tao et al19 developed for two-phase studies with expensive covariates to settings 

with errors in covariates and (b) to extend this method to handle the often-encountered 

situation where there are also errors in a quantitative outcome, which may be correlated with 

the errors in covariates. Specifically, we relate the quantitative outcome and covariates of 

interest through linear regression models while leaving the distribution of errors unspecified. 

We consider additive errors in the outcome while accommodating both additive and 

multiplicative errors in covariates. We allow the existence and magnitude of measurement 

errors to be correlated with error-free covariates (if there are any). Dealing with this general 

framework is very challenging because the likelihood function involves the conditional 

density functions of measurement errors given quantitative covariates. We address this 

challenge by approximating the conditional density functions with B-spline sieves.21,22 We 

maximize the sieve nonparametric likelihood function through a computationally efficient 

and numerically stable expectation-maximization (EM) algorithm. We show that the 

resulting estimators are consistent, asymptotically normal, and asymptotically efficient. We 

demonstrate the superiority of the proposed methods over existing approaches through 

extensive simulation studies. We illustrate their use in an observational HIV/AIDS study 

using the data from CCASAnet.

2 | METHODS

2.1 | Model and Data

Let Y and X denote the true outcome of interest and vector of covariates, respectively. We 

relate Y and X through the linear model

Y = α + βTX + ϵ,

where ϵ is normally distributed with mean zero and variance σ2. In the database, Y* and X* 

are recorded instead of Y and X, where

Y ∗ = Y + W , (1)

X∗ = X + U, (2)
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W and U are the discrepancies between the true values of the outcome and covariates in the 

patient’s clinical chart and those in the database, respectively. We assume that W and U are 

independent of ϵ.

The observation (Y*, X*, W, U) is assumed to be generated from the joint density

p Y ∗, X∗, W , U = p Y ∗ X∗, W , U p W , U X∗ p X∗

= pθ Y X p W , U X∗ p X∗ ,
(3)

where p(Y*|X*, W, U) is the conditional density of Y* given X*, W, and U, p(W, U|X*) is 

the joint conditional density of W and U given X*, p(X*) is the marginal density of X*, and 

pθ (Y|X) is a linear regression model indexed by parameter θ, that is,

pθ Y X = 2πσ2 −1/2exp (Y − α − βTX)2/(2σ2) ,

and θ = (α, βT, σ2)T. In Equation (3), the equivalence of p(Y*|X*, W, U) and pθ(Y|X) 

follows from the additive error models (1) and (2) and the assumption that W and U are 

independent of ϵ. Our main interest lies in the inference of θ.

Remark 1. In classical measurement error problems, the outcome is accurately measured and 

only the covariates are error-prone. In this situation, the distribution of W has a point mass at 

zero, and Equation (3) reduces to

p Y , X∗, U = pθ Y X p U X∗ p X∗ .

Alternatively, there may be a subset of the covariates that are error-prone, and the others are 

error-free. In this situation, we represent X and X* as Xa
T, Xb

T T
 and Xa

∗T, Xb
T T

, respectively, 

where the subscripts a and b correspond to error-prone and error-free covariates, 

respectively. Then, Equation (3) can be rewritten as

p Y ∗, X∗, W , U = pθ Y Xa, Xb p W , Ua Xa
∗, Xb p Xa

∗, Xb , (4)

where Ua is the corresponding part of Xa in U. We observe from Equation (4) that the 

outcome and covariate measurement errors are allowed to depend on both error-prone and 

error-free covariates.

Remark 2. We do not assume a specific form for p(W, U|X*) in Equation (3). Therefore, we 

accommodate both unbiased errors that are centered around zero and biased errors that are 

not centered around zero. In addition, we allow for the measurement errors in X* to be 

multiplicative. To see this, suppose that

X∗ = X ∘ U, (5)
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where U denotes the multiplicative errors in X* that are independent of ϵ, and “◦” denotes 

component-wise product. Equation (5) can be rewritten as X∗ = X + X ∘ U − X , which has 

the same form as Equation (2) because X ∘ U − X is independent of ϵ. As a side note, we 

cannot accommodate multiplicative errors W  in Y* ie, Y ∗ = Y W  because Y W − Y  is not 

independent of ϵ.

2.2 | Sieve maximum likelihood estimation

If data audits are performed for all n subjects in the study, then the inference on θ is 

typically based on the likelihood ∏ i = 1
n pθ Y i |Xi . Under the two-phase design, however, 

only (Y*, X*) is recorded for all n subjects in the database, and (Y, X) is validated for a 

subsample of size n2 in the second phase. Let V denote the indicator of a subject being 

selected for data auditing in the second phase. The two-phase design requires that the joint 

distribution of (V1, … , Vn) depends on (Yi, Xi, Y i
∗, Xi

∗, Wi, Ui) (i = 1, …, n) only through 

the first-phase data ( Y i
∗, Xi

∗,) (i = 1, …, n); this is equivalent to assuming that the variables 

(Y, X, W, U) are missing at random. Thus, the observed-data log-likelihood takes the form

∑
i = 1

n
V i logpθ Y i Xi + logp W i, Ui Xi

∗

+ ∑
i = 1

n
1 − V i log∫ pθ Y i

∗ − w Xi
∗ − u p w, u Xi

∗ dwdu .
(6)

We wish to maximize Expression (6) using nonparametric maximum likelihood estimation 

(NPMLE). That is, for each distinct observed x*, we wish to estimate p(W, U|x*) by a 

discrete probability function on the distinct observed values of (W, U), denoted by (w1, u1), 

… ,(wm, um) (m≤n2), where m is the total number of distinct values (ie, m increases with 

n2). Unfortunately, this NPMLE approach is not feasible because only a small number of 

observations on (W, U) are associated with each x*.

To address this difficulty, we extend the sieve maximum likelihood estimation (SMLE) of 

Tao et al19 for two-phase studies with expensive-covariates to studies with error-prone 

outcome and covariates. Specifically, we approximate p w, u |Xi
∗  and logp w, u |Xi

∗  in 

Expression (6) by

∑
k = 1

m
I w = wk, u = uk ∑

j = 1

sn
Bj

q Xi
∗ pkj, (7)

and

∑
k = 1

m
I w = wk, u = uk ∑

j = 1

sn
Bj

q Xi
∗ log pkj, (8)
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respectively, where Bj
q ⋅  is the jth B-spline basis function of order q, sn is the total number 

of functions in the B-spline basis, and pkj is the coefficient of Bj
q Xi

∗  at (wk, uk) (k = 1, … , 

m;j = 1, … , sn) in the B-spline approximation of p w, u |Xi
∗ . Details about the construction 

of the B-spline basis Bj
q ⋅ j = 1

sn
 and guidelines about the choices of q and sn can be found 

in Schumaker22 or Tao et al.19 In practice, q is typically chosen to be less than or equal to 

four, which corresponds to cubic splines, and sn is determined by the first-phase sample size 

n. We note that by the approximation theory of B-splines,22 both the log of Expression (7) 

and Expression (8) converge to logp w, u |Xi
∗  as sn ∞. We choose Expression (8) over the 

log of Expression (7) because it is easier to compute. We standardize the B-spline basis such 

that ∑j = 1
sn Bj

qp Xi
∗ =1 Consequently, pkj needs to satisfy the constraints

∑
k = 1

m
pkj = 1 and pkj ≥ 0 (k = 1, …, m; j = 1, …sn), (9)

because p w, u |Xi
∗  is a conditional probability function. Given Expressions (7) and (8), the 

observed-data log-likelihood (6) can be rewritten as

ln(θ, pkj )∑
i = 1

n
V i log pθ Y i Xi + ∑

k = 1

m
∑
j = 1

sn
I W i = wk, Ui = uk Bj

q Xi
∗ log pkj

+ ∑
i = 1

n
1 − V i log ∑

k = 1

m
pθ Y i

∗ − wk Xi
∗ − uk ∑

j = 1

sn
Bj

q Xi
∗ pkj

.

(10)

We aim to maximize Expression (10) under the two constraints in Expression (9).

It is difficult to maximize Expression (10) directly because of the intractable form of the 

second term. Following Tao et al,19 we solve this maximization problem by artificially 

creating a latent variable Z for subjects with V = 0 such that Z takes values on 1/sn,2/sn, 

… ,1 and satisfies the equations

p Z = j/sn X∗ = Bj
q X∗ ,

p W = wk, U = uk X∗, Z = j/sn = p W = wk, U = uk Z = j/sn = pkj,
p Y ∗ X∗, W , U, Z = p Y ∗ X∗, W , U = pθ Y |X .

This step is essential because it enables us to interpret ∑j = 1
sn Bj

q X∗ pkj as 

p(W = wk, U = uk |X∗) for subjects with V = 0. Hence, the second term in Expression (10) is 

equivalent to the log-likelihood of ( Y i
∗, Xi

∗), assuming that the complete data consist of 

Y i
∗, Xi

∗, W i, Ui, Zi  but with Wi, Ui, and Zi missing.
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The maximization of Expression (10) is carried out through an EM-algorithm, where (W, U, 

Z) for subjects with V = 0 are treated as missing data. The complete-data log-likelihood is

∑
i = 1

n
V i log pθ Yi Xi + ∑

k = 1

m
∑

j = 1

sn
I W i = wk, Ui = uk Bj

q Xi∗ log pkj

+ ∑
i = 1

n
1 − V i log pθ(Y i∗ − W i Xi∗ − Ui) + log p(W i, Ui Zi) + log p(Zi Xi∗)

= ∑
i = 1

n
V i log pθ(Y i Xi) + ∑

k = 1

m
∑

j = 1

sn
I(W i = wk, Ui = uk)Bj

q(Xi∗)log pkj

+ ∑
i = 1

n
1 − V i ∑

k = 1

m
I(W i = wk, Ui = uk)log pθ(Y i∗ − wk Xi∗ − uk)

+ ∑
k = 1

m
∑

j = 1

sn
I(W i = wk, Ui = uk, Zi = j/sn)log pkj + ∑

j = 1

sn
I(Zi = j/sn)log Bj

q Xi∗ .

We start with the following initial values: α 0 = 0, β 0 = 0, σ2 0
 being the sample variance 

of Y*, and pkj
0 = ∑i = 1

n V iI W i = wk, Ui = uk Bj
q Xi

∗ /∑i = 1
n V iBj

q Xi
∗ . We iterate between 

the following E-step and M-step until convergence.

In the E-step of the (t +1)th iteration, we calculate the conditional expectations of I(Wi = wk, 

Ui = uk, Zi = j∕sn) and I(Wi = wk, Ui = uk) given ( (Y i
∗, Xi

∗), (w1, u1), …, (wm, um), evaluated at 

θ t , p11
t , …, pmsn

t  denoted as ψkji
t + 1  and qik

t + 1 , respectively. That is,

ψkji
t + 1 =

pθ t (Y i∗ − wk Xi∗ − uk)Bj
q Xi∗ pkj

t

∑k′ = 1
n pθ t (Y i∗ − wk′ Xi∗ − uk′)∑j′ = 1

sn Bj′
q Xi∗ pk′j′

t , V i = 0,

qik
t + 1 =

I(W i = wk, Ui = uk), V i = 1,

pθ t (Y i∗ − wk Xi∗ − uk)∑j′ = 1
sn Bj′

q Xi∗ pkj′
t

∑k′ = 1
m pθ t (Y i∗ − wk′ Xi∗ − uk′)∑j′ = 1

sn Bj′
q Xi∗ pk′j′

t , V i = 0.

In the M-step of the (t+1)th iteration, we update θ t + 1  by maximizing

∑
i = 1

n
∑
k = 1

m
q ik

t + 1 log pθ(Y i
∗ − wk Xi

∗ − uk), (11)

such that
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α t + 1

β t + 1 = ∑
i = 1

n
∑

k = 1

m
qik

t + 1 1 Xi∗ − uk
T

Xi∗ − uk Xi∗ − uk Xi∗ − uk
T

−1

⋅ ∑
i = 1

n
∑

k = 1

m
qik

t + 1 Yi∗ − wk

Xi∗ − uk Yi∗ − wk
,

σ2 t + 1
= n−1 ∑

i = 1

n
∑

k = 1

m
qik

t + 1 Yi∗ − wk − α t + 1 − (β t + 1 )T(Xi∗ − uk)
2

.

Then, we update pkj
t + 1 (k = 1, …, m; j = 1, …, sn) by maximizing

∑
i = 1

n
∑

k = 1

m
∑

j = 1

sn
V iqik

t + 1 Bj
q Xi∗ + 1 − V i ψkji

t + 1 logpkj,

such that

pkj
t + 1 =

∑i = 1
n V iqik

t + 1 Bj
q Xi∗ + 1 − V i ψkji

t + 1

∑k′ = 1
m ∑i = 1

n V iqik
t + 1 Bj

q Xi∗ + 1 − V i ψk′ji
t + 1 .

We observe that pkj
t + 1  satisfies the two constraints in Expression (9).

At convergence, we obtain the SMLEs θ  and pkj k = 1, …, m; j = 1, …, sn . It follows from 

theorems S.1 and S.2 of Tao et al19 that θ  is consistent, asymptotically normal, and 

asymptotically efficient as n →∞ and n2/n →Pr(V = 1)>0. To see this, we can redefine Y* 

and X* as the “outcome of interest” and “inexpensive covariates,” respectively, which are 

available for all subjects in the first phase, and (W, U) as the “expensive covariates,” which 

are available for subjects selected in the second phase only. Then, maximizing Expression 

(6) is equivalent to maximizing Expression (1) of Tao et al19 under the constraints that the 

regression coefficient for W is fixed at one, and the regression coefficients for U and X* are 

opposite to each other.

To obtain the variance estimate of θ, we use the profile likelihood method proposed by 

Murphy and van der Vaart.23 By verifying the smoothness conditions of theorem 1 in 

Murphy and van der Vaart,23 it can be shown that the negative inverse of the Hessian matrix 

of the profile likelihood function pl θ = max pkj ln θ, pkj  is a consistent estimator for the 

limiting covariance matrix of n1/2 θ − θ . In practice, we obtain the value of pl(θ) by holding 

θ fixed in the EM algorithm and obtaining the value of ln(θ,{pkj}) at convergence. We 

estimate the covariance matrix of θ by the negative inverse of the matrix whose (k, l)th 

element is ℎn
−2 pl θ + ekℎn + elℎn − pl θ + ekℎn − pl θ + elℎn + pl θ  where ek is the kth 

canonical vector, and hn is a constant of the order n−1/2.
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3 | SIMULATION STUDIES

We conducted extensive simulation studies to compare the performance of the SMLE, MBE, 

and CCE mimicking the settings in Shepherd and Yu.12 In the first set of studies, we set X to 

be standard normal, and generated the outcome from the linear model: Y = 0.3 + 0.4X + ϵ, 

where ϵ is a standard normal random variable independent of X. We generated (W, U)T from 

a mixture distribution of a point mass at (0,0)T and a bivariate normal distribution, that is,

W
U

0, 0 Twith probability 1 − p,

N 0
0 , 1 r

r 1 with probability p,

where p is a parameter controlling the proportion of subjects with measurement errors in Y* 

and X*, and r is a parameter controlling the correlation between W and U when both are not 

equal to zero. We varied p and r from 0.1 to 1 and −0.5 to 0.5, respectively. We generated Y* 

and X* from Equations (1) and (2), respectively. We set n = 1000 and selected n2 = 400 

subjects randomly in the second phase. For subjects selected in the second phase, the data 

consist of (Y, X, Y*, X*, W, U); for those not selected in the second phase, the data consist 

of (Y*, X*). When implementing the SMLE method, we estimated p(W, U|X*) using cubic 

splines. We partitioned the domain of X* using evenly-spaced quantiles and varied sn from 

15 to 25 to assess its effects on model-fitting. The results with different sn are very similar; 

the maximum difference in the coverage probability of the 95% confidence interval for β  is 

only 0.6%. Therefore, we only report the results for sn = 20. We estimated the covariance 

matrix of θ  by the profile likelihood method with step size of 0.1n−1/2.

The results for the first set of simulations are shown in Table 1. The SMLE, MBE, and CCE 

were virtually unbiased. Their variance estimators reflected the true variations, and their 

corresponding confidence intervals had reasonable coverage probabilities. The SMLE was 

more efficient than the CCE, which tended to be more efficient than the MBE. The 

efficiency gain of the SMLE over MBE and CCE increased and decreased, respectively, as 

the proportion of subjects with measurement errors in Y* and X* increased. The efficiency 

gain was larger when the correlation between W and U was negative as compared to that 

when the correlation was positive. For benchmark comparison, we also used standard linear 

regression based on least squares estimation (LSE) to analyze the validation sample only. 

The results are summarized in Table S1 of the Supporting Information. The LSE was less 

efficient than the CCE or SMLE, although it was more efficient than the MBE in cases with 

a large proportion of subjects having measurement errors. For p = 0.6 and r = 0.3, we also 

considered smaller n2 and reported the results in Table S2. The SMLE, MBE, and CCE 

performed reasonably well when n2 ≥ 50, but tended to underestimate the variance when n2 

= 25.

In a second set of simulations, we considered both error-prone and error-free covariates. 

Specifically, we set Xa and Xb to be standard normal and Bern(0.25), respectively. We 

generated the outcome from the linear model: Y = 0.3 + 0.4Xa + 0.5Xb + ϵ, where ϵ is a 
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standard normal random variable independent of (Xa, Xb). We generated (W, Ua)T from the 

following mixture distribution

W
Ua

when Xb = 0
0, 0 Twith probability 0.4,

N 0
0 , 0.5 1 0.3

0.3 1 with probability 0.6,

when Xb = 1
0, 0 Twith probability 1 − p,

N 0
0 , τ 1 r

r 1 with probability p,

where τ is a parameter controlling the magnitude of the measurement errors when Xb = 1. 

We varied p, r, and τ from 0.6 to 1, 0.3 to 0.5, and 0.5 to 1, respectively. We generated Y* 

and Xa
∗ from Equation (1) and the linear model Xa

∗ = Xa + Ua, respectively. We set n = 1000 

and considered two sampling strategies in the second phase: simple random sampling selects 

400 subjects randomly; stratified simple random sampling selects 200 subjects from each 

stratum of Xb randomly. When implementing the SMLE method, we estimated 

p W , Ua |Xa
∗, Xb = 0  and p W , Ua |Xa

∗, Xb = 1  using separate cubic splines. The results under 

simple random sampling and stratified simple random sampling are shown in Tables S3 and 

S4 of the Supporting Information, respectively. Under simple random sampling, the SMLE 

was more efficient than the MBE and CCE for Xa. The efficiency gain was larger when the 

proportion of subjects with measurement errors or the magnitude of errors were 

heterogeneous across the strata as compared to when they were homogeneous. The MBE 

and CCE were as efficient as the SMLE for Xb. Under stratified simple random sampling, 

the SMLE and MBE continued to perform well. The variance estimator of CCE 

underestimated the true variation, and its confidence interval undercovered.

To assess the performance of the SMLE and the robustness of the MBE and CCE under 

biased errors that are not centered around zero, we generated (W, U) from the bivariate 

normal distribution

W
U N

μW
μU

, 1 r
r 1 ,

where μW and μU denote the mean of W and U, respectively. We varied μW and μU from 0 to 

0.5. We generated (Y, X, Y*, X*) in the same manner as in the first set of simulations. The 

results are summarized in Table 2. The SMLE and CCE performed well in all scenarios. The 

MBE performed well only when at most one of W or U was not centered around zero, but 

was severely biased when both W and U were not centered around zero. These conclusions 

held no matter whether W and U were correlated or not.

To assess the performance of the SMLE and the robustness of the MBE and CCE under 

multiplicative errors in X*, we generated X* from the model: X* = X{1 + exp(−U)}−1. We 

generated (Y, X, Y*, W, U) in the same manner as in the first set of simulations. The results 

are summarized in Table 3. The SMLE and CCE continued to perform well. The MBE was 
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severely biased even when the proportion of subjects with measurement errors was as low as 

10%.

To assess the robustness of the SMLE, MBE, and CCE to the normality assumption, we 

generated data in the same manner as in the first set of studies but let ϵ follow t-distributions 

with 3 to 30 degrees of freedom or the Uniform(−c, c) distribution, where c = 1 or 2. We 

fixed p and r at 0.6 and 0.3, respectively. The results are summarized in Table S5 of the 

Supporting Information. The SMLE, MBE, and CCE performed well in these situations.

Next, we considered residual-dependent sampling rather than simple or stratified simple 

random sampling in the second phase. We generated (Y, X, Y*, X*, W, U) for 1000 subjects 

in the same manner as in the first set of studies. We calculated the residuals from the linear 

model relating Y* to X* for all subjects. We then selected 200 subjects with the highest and 

200 subjects with the lowest values of residuals in the second phase. The results are 

summarized in Tables 4 and S6 of the Supporting Information. The SMLE continued to 

perform well under residual-dependent sampling. The LSE, MBE, and CCE incorrectly 

applied to this setting were severely biased, yielding poor coverage probabilities for their 

confidence intervals. The bias of the LSE and CCE tended to be larger than that of the MBE. 

We observe from the last column of Table 4 that residual-dependent sampling could be more 

efficient than simple random sampling for two-phase studies with measurement errors.

Finally, we evaluated the performance of the SMLE with more than one error-prone 

covariate. Specifically, we set X = (X1, X2), where X1 and X2 are standard normal. We 

generated the outcome from the linear model: Y = 0.3 + 0.4X1 + 0.4X2 + ϵ, where ϵ is a 

standard normal random variable independent of X. We generated (W, U)T from a mixture 

distribution of a point mass at (0,0,0)T and a trivariate normal distribution, that is,

W
U

0, 0, 0 Twith probability 1 − p,

N
0
0
0

,
1 r r
r 1 r
r r 1

with probability p .

We varied p and r from 0.1 to 1 and 0 to 0.5, respectively. We generated Y* and X* from 

Equations (1) and (2), respectively. We set n = 1000 and selected n2 = 400 subjects randomly 

in the second phase. When implementing the SMLE method, we estimated p(W, U|X*) 

using the tensor product of two one-dimensional cubic-spline bases for X1 and X2, each with 

six evenly spaced interior knots. Simulation results are shown in Table S7. The SMLE 

continued to perform well, with bias close to zero and coverage near the nominal level for 

regression coefficients for both covariates.

4 | CCASANET STUDY

CCASAnet is a multi-site cohort designed to address questions about the HIV epidemic in 

Latin America using existing clinical databases. CCASAnet data include patient 

characteristics, date of HIV diagnosis, dates of clinic visits, longitudinal laboratory 

measurements, ART medications and dates, clinical events, follow-up information, and vital 
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status. Study sites submit datasets to the CCASAnet data coordinating center at Vanderbilt 

University, which then merges the data for analyses. The CCASAnet data coordinating 

center periodically performs data audits, where auditors visit the study site and compare data 

sent to the coordinating center with data in the patients’ clinical charts. Detailed descriptions 

of the CCASAnet cohort and data audit procedures are given by McGowan et al7 and Duda 

et al,6 respectively.

Shepherd and Yu12 illustrated the MBE method with CCASAnet data, evaluating the 

association between ART initiation date and CD4 at ART initiation. Here we apply our new 

SMLE method to the exact same CCASAnet data to contrast methods. A total of 2815 HIV-

positive patients starting ART from 1996 to 2007 at sites in Argentina, Brazil, Chile, 

Honduras, Mexico, and Peru were included in this analysis. To preserve anonymity, sites 

were randomly labeled as Sites A-F. The data coordinating center audited a total of 234 

patients, randomly sampled at each study site, between April 2007 and March 2008. CD4 

count at ART initiation was defined as the CD4 measurement taken closest to, but no more 

than seven days after or 180 days before, the ART initiation date.

The data audits found that 16% of the ART initiation dates in the CCASAnet databases were 

different from those in the clinical charts. Although CD4 count was generally correct, when 

the ART initiation date was incorrect in the database, the CD4 count at the incorrect date 

was sometimes not the same as that at the true ART initiation date. Consequently, 4.3% of 

the CD4 counts at ART initiation were incorrect, and some of the differences between 

unvalidated and validated CD4 were quite large (as big as 12.4 (cells/mm3)1/2); see table 3 

and figure 1 of Shepherd and Yu12 for more details, including a scatterplot of the errors. 

Square-root transformed CD4 count at ART initiation and ART initiation date were the 

outcome and covariate of interest, respectively. In addition, we included gender and study 

site as error-free covariates. There appeared to be no correlation between gender and the 

errors in CD4 count or ART initiation date conditioning on study site. On the other hand, the 

error rates and magnitude of CD4 count and ART initiation date varied across the study 

sites; see Table 3 of Shepherd and Yu.12 When implementing the SMLE method, we used 

separate linear splines for the study sites. We chose Site F as the reference site and used two, 

two, five, zero, and three evenly spaced interior knots for Sites A, B, C, D, and E, 

respectively. We used more interior knots for Site C because it had the largest number of 

errors (ie, 16). We did not use any interior knots for Site D because the data audits identified 

only one erroneous record. In this situation, the B-spline basis reduces to a constant 

function.

Table 5 shows the results for the SMLE and MBE methods, a naive analysis that ignored the 

database errors, and the LSE method using validation data only. The estimates of the LSE 

method appeared to be quite different from the other methods, with its 95% confidence 

intervals much wider because of the small validation sample size. The SMLE and MBE 

methods yielded similar effect size estimates for ART initiation date, which were larger than 

the naive estimate. The corresponding 95% confidence intervals of the SMLE and MBE did 

not include zero, while that of the naive estimate did. The 95% confidence interval of the 

SMLE for ART initiation date was 27.2% narrower than that of the MBE. These results were 

consistent with the theoretical and simulation results. The positive association between ART 
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initiation date and CD4 count suggested that the HIV-positive patients in CCASAnet started 

their medications in less advanced stages of HIV-disease in later years of the study. This 

trend was consistent with guidelines encouraging patients to initiate ART at higher CD4 

counts.24 We did not apply the CCE method here because the selection of audited records 

was stratified by study site, which violated the assumption that the second-phase validation 

sample is a simple random sample from the first-phase sample.

5 | DISCUSSION

We have developed valid and efficient semiparametric inference procedures for general two-

phase studies with an error-prone quantitative outcome and error-prone covariates. The 

proposed method requires minimal assumptions for the error models. It can be applied to 

any two-phase design in which, conditional on the first phase data, the second-phase sample 

selection is independent of the true values of the outcome and covariates. Therefore, the 

SMLE approach can be applied to efficient designs that existing methods cannot address (eg, 

outcome-dependent sampling and residual-dependent sampling). Even with simple random 

sampling, however, the efficiency gains of the SMLE over the LSE, the MBE of Shepherd 

and Yu,12 and CCE of Chen and Chen13 are substantial. The proposed EM algorithm is 

numerically stable and not sensitive to the choice of initial values (results not shown). In our 

simulation studies, the algorithm converged in all replicates in each scenario.

As mentioned in Section 1, the proposed SMLE approach is a novel extension of the method 

of Tao et al,19 which was developed for two-phase studies with expensive covariates. The 

method of Tao et al19 assumes that Y is observed for everyone; therefore, it cannot 

accommodate outcome measurement error. The proposed method can simultaneously 

accommodate outcome and covariate errors. The EM algorithm presented in Section 2.2, and 

the corresponding software implementation are all novel developments.

In our simulation studies, the number of B-spline basis functions sn had little impact on the 

parameter estimates. In principle, one could use the Akaike information criterion or 

Bayesian information criterion to select the “optimal” sn. Alternatively, one could choose sn 

through cross-validation.

In our sieve approximation to p(W, U|X*), X* cannot contain too many continuous 

components. This is because the multivariate B-spline basis is built by the tensor-product of 

one-dimensional B-spline bases.19,22 Consequently, it suffers from the curse of 

dimensionality. If there is prior knowledge that W and U are independent of some error-free 

covariates, then these covariates can be omitted from X* when estimating p(W, U|X*). 

Alternatively, one could assume a parametric transformation ℎ : ℝd ℝd1, where d is the 

dimension of X*, and d1 < d, such that W and U depend on X* only through h(X*). There 

are numerous choices for h (eg, the top components in a principal component analysis), each 

with potentially different robustness properties that warrant further study.

We considered classical measurement error models (1) and (2), where the observed value in 

the database equals the true value plus measurement error. Alternatively, one may consider 

Berkson measurement error models, where the true value equals the observed value plus 
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measurement error, that is, Y = Y* + W, and X = X* +U.25 Practical guidance on 

determining whether the data follow classical or Berkson measurement error models can be 

found in Carroll et al.9 Our framework can be easily modified to accommodate Berkson 

errors, where W and U are independent of X* and ϵ. In this situation, p(W, U|X*) = p(W, U), 

where p(W, U) is the joint distribution of W and U. We can estimate p(W, U) by a discrete 

probability function on the distinct observed values of (W, U). Consequently, Equation (10) 

can be rewritten as

ln θ, rk = ∑
i = 1

n
V i logpθ Yi Xi + ∑

k = 1

m
I W i = wk, Ui = uk log rk

+ ∑
i = 1

n
1 − V i log ∑

k = 1

m
pθ Yi∗ + wk Xi∗ + uk rk ,

where rk = Pr(W = wk, U = uk). The maximization of ln(θ,{rk}) is simpler than that of ln(θ,

{pkj}) because the former does not involve B-spline sieves.

We have focused on linear regression models with quantitative measurement errors. Our 

framework can be extended to generalized linear models with categorical data subject to 

classification errors or proportional hazards models with time-to-event errors. In our EM 

algorithm, the E-step and the M-step for updating pkj (k = 1, … , m;j = 1, … ,sn) are generic 

for any regression model. The M-step for updating θ involves the maximization of 

Expression (11), which is a weighted sum of the log-likelihood functions for the regression 

model. Consequently, we can use existing algorithms for weighted regression to maximize 

Expression (11). We are currently working on these extensions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TABLE 1

Simulation results under additive errors in Y* and X* when simple random sampling is used in the second 

phase

MBE CCE SMLE

r p Bias SE SEE CP RE Bias SE SEE CP RE Bias SE SEE CP

−0.5 0.1 0.001 0.041 0.040 0.950 0.748 −0.002 0.039 0.038 0.942 0.839 −0.002 0.035 0.035 0.946

0.3 0.002 0.051 0.051 0.952 0.559 −0.001 0.043 0.043 0.948 0.806 −0.004 0.038 0.038 0.945

0.6 0.004 0.062 0.062 0.950 0.451 0.000 0.045 0.045 0.946 0.856 −0.007 0.042 0.042 0.946

1.0 0.004 0.072 0.072 0.951 0.393 0.001 0.046 0.046 0.949 0.958 −0.008 0.045 0.044 0.943

−0.3 0.1 0.000 0.039 0.039 0.949 0.800 −0.001 0.038 0.038 0.944 0.869 −0.002 0.035 0.035 0.946

0.3 0.001 0.050 0.049 0.952 0.610 −0.001 0.042 0.042 0.947 0.833 −0.003 0.039 0.038 0.946

0.6 0.002 0.061 0.060 0.950 0.484 0.000 0.045 0.045 0.947 0.879 −0.005 0.042 0.042 0.947

1.0 0.002 0.072 0.071 0.950 0.410 0.001 0.046 0.046 0.949 0.984 −0.006 0.046 0.044 0.942

0.0 0.1 −0.001 0.038 0.038 0.949 0.871 −0.001 0.037 0.037 0.949 0.913 −0.001 0.035 0.035 0.942

0.3 0.000 0.047 0.047 0.949 0.676 0.000 0.042 0.041 0.947 0.864 −0.002 0.039 0.038 0.947

0.6 0.000 0.058 0.058 0.948 0.547 0.000 0.045 0.044 0.944 0.914 −0.002 0.043 0.042 0.946

1.0 0.000 0.070 0.069 0.948 0.440 0.001 0.046 0.046 0.947 1.004 −0.003 0.046 0.045 0.940

0.3 0.1 −0.002 0.037 0.036 0.946 0.901 0.000 0.036 0.036 0.951 0.928 0.000 0.035 0.034 0.944

0.3 −0.001 0.045 0.045 0.950 0.741 0.000 0.041 0.041 0.948 0.882 0.000 0.039 0.038 0.946

0.6 −0.001 0.054 0.055 0.952 0.618 0.000 0.044 0.044 0.945 0.913 0.000 0.042 0.042 0.947

1.0 −0.001 0.067 0.066 0.946 0.475 0.001 0.046 0.046 0.949 0.996 −0.001 0.046 0.045 0.943

0.5 0.1 −0.002 0.036 0.036 0.947 0.913 0.000 0.036 0.036 0.952 0.935 0.000 0.035 0.034 0.946

0.3 −0.002 0.044 0.043 0.950 0.769 0.000 0.041 0.040 0.948 0.883 0.001 0.038 0.038 0.944

0.6 −0.002 0.052 0.052 0.952 0.650 0.000 0.044 0.043 0.944 0.908 0.001 0.042 0.041 0.948

1.0 −0.002 0.064 0.063 0.946 0.507 0.001 0.046 0.045 0.948 0.986 0.001 0.045 0.044 0.943

Notes: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE is the empirical mean of the standard 
error estimator; CP is the coverage probability of the 95% confidence interval; RE is the efficiency relative to that of the SMLE. Each entry is based 
on 10 000 replicates.
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TABLE 2

Simulation results under errors in Y* and X* that are not centered around zero

MBE CCE SMLE

r μU μW Bias SE SEE CP Bias SE SEE CP RE Bias SE SEE CP

−0.5 0.0 0.0 0.004 0.072 0.072 0.951 0.001 0.046 0.046 0.949 0.958 −0.008 0.045 0.044 0.943

0.5 0.003 0.077 0.076 0.949 0.001 0.046 0.046 0.949 0.958 −0.008 0.045 0.044 0.943

0.5 0.0 0.004 0.076 0.076 0.952 0.001 0.046 0.046 0.949 0.958 −0.008 0.045 0.044 0.943

0.5 −0.250 0.074 0.074 0.088 0.001 0.046 0.046 0.949 0.958 −0.008 0.045 0.044 0.943

0.0 0.0 0.0 0.000 0.070 0.069 0.948 0.001 0.046 0.046 0.947 1.004 −0.003 0.046 0.045 0.940

0.5 0.000 0.074 0.074 0.951 0.001 0.046 0.046 0.947 1.004 −0.003 0.046 0.045 0.940

0.5 0.0 0.001 0.074 0.074 0.946 0.001 0.046 0.046 0.947 1.004 −0.003 0.046 0.045 0.940

0.5 −0.252 0.078 0.075 0.087 0.001 0.046 0.046 0.947 1.004 −0.003 0.046 0.045 0.940

0.5 0.0 0.0 −0.002 0.064 0.063 0.946 0.001 0.046 0.045 0.948 0.986 0.001 0.045 0.044 0.943

0.5 −0.002 0.068 0.067 0.947 0.001 0.046 0.045 0.948 0.986 0.001 0.045 0.044 0.943

0.5 0.0 −0.001 0.069 0.068 0.946 0.001 0.046 0.045 0.948 0.986 0.001 0.045 0.044 0.943

0.5 −0.254 0.080 0.071 0.062 0.001 0.046 0.045 0.948 0.986 0.001 0.045 0.044 0.943

Notes: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE is the empirical mean of the standard 
error estimator; CP is the coverage probability of the 95% confidence interval; RE is the efficiency relative to that of the SMLE. Each entry is based 
on 10 000 replicates.
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TABLE 3

Simulation results under multiplicative errors in X* and additive errors in Y*

MBE CCE SMLE

r p Bias SE SEE CP Bias SE SEE CP RE Bias SE SEE CP

−0.5 0.1 0.587 0.086 0.085 0.000 0.000 0.034 0.034 0.947 0.991 0.004 0.034 0.034 0.947

0.3 0.562 0.097 0.096 0.000 0.000 0.038 0.038 0.948 0.945 0.003 0.037 0.036 0.947

0.6 0.524 0.109 0.108 0.002 0.000 0.041 0.041 0.947 0.917 0.002 0.040 0.039 0.950

1.0 0.482 0.122 0.121 0.018 0.000 0.043 0.043 0.950 0.992 0.001 0.043 0.042 0.943

−0.3 0.1 0.587 0.086 0.085 0.000 0.000 0.034 0.034 0.948 0.995 0.004 0.034 0.034 0.946

0.3 0.562 0.097 0.096 0.000 0.000 0.038 0.038 0.949 0.958 0.003 0.037 0.037 0.946

0.6 0.524 0.109 0.108 0.002 0.000 0.041 0.041 0.945 0.936 0.002 0.040 0.040 0.950

1.0 0.482 0.121 0.121 0.018 0.000 0.043 0.043 0.949 1.016 0.001 0.044 0.042 0.943

0.0 0.1 0.587 0.086 0.085 0.000 0.000 0.034 0.034 0.947 0.991 0.003 0.034 0.034 0.946

0.3 0.562 0.097 0.096 0.000 0.000 0.038 0.038 0.945 0.943 0.003 0.037 0.037 0.946

0.6 0.526 0.108 0.108 0.002 0.000 0.041 0.041 0.943 0.940 0.002 0.040 0.040 0.949

1.0 0.482 0.120 0.121 0.018 0.000 0.043 0.043 0.947 1.005 0.001 0.043 0.043 0.942

0.3 0.1 0.587 0.086 0.085 0.000 0.000 0.034 0.034 0.950 0.985 0.003 0.034 0.034 0.947

0.3 0.562 0.096 0.096 0.000 0.000 0.038 0.038 0.947 0.921 0.003 0.037 0.037 0.948

0.6 0.527 0.108 0.108 0.001 0.000 0.041 0.041 0.947 0.936 0.002 0.040 0.040 0.946

1.0 0.483 0.121 0.121 0.020 0.001 0.043 0.043 0.948 1.010 0.001 0.043 0.042 0.941

0.5 0.1 0.587 0.086 0.085 0.000 0.000 0.034 0.034 0.949 0.976 0.003 0.034 0.034 0.947

0.3 0.561 0.096 0.096 0.000 0.000 0.038 0.038 0.947 0.907 0.003 0.037 0.036 0.949

0.6 0.527 0.108 0.109 0.002 0.000 0.042 0.041 0.948 0.917 0.002 0.040 0.039 0.945

1.0 0.483 0.121 0.121 0.021 0.000 0.043 0.043 0.948 0.989 0.001 0.043 0.042 0.941

Notes: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE is the empirical mean of the standard 
error estimator; CP is the coverage probability of the 95% confidence interval; RE is the efficiency relative to that of the SMLE. Each entry is based 
on 10 000 replicates.

Stat Med. Author manuscript; available in PMC 2022 February 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tao et al. Page 20

TABLE 4

Simulation results under additive errors in Y* and X* when residual-dependent sampling is used in the second 

phase

MBE CCE SMLE

r p Bias SE SEE CP Bias SE SEE CP Bias SE SEE CP RE

−0.5 0.1 0.083 0.045 0.042 0.499 0.102 0.045 0.055 0.568 −0.002 0.032 0.032 0.951 1.089

0.3 0.170 0.057 0.050 0.089 0.205 0.050 0.055 0.026 −0.007 0.035 0.035 0.946 1.096

0.6 0.198 0.065 0.055 0.065 0.242 0.050 0.052 0.003 −0.012 0.040 0.040 0.938 1.039

1.0 0.170 0.071 0.058 0.202 0.222 0.049 0.049 0.007 −0.014 0.046 0.046 0.939 0.977

−0.3 0.1 0.063 0.043 0.040 0.660 0.080 0.044 0.055 0.746 −0.001 0.032 0.032 0.952 1.089

0.3 0.136 0.055 0.049 0.216 0.166 0.051 0.057 0.138 −0.006 0.035 0.035 0.948 1.117

0.6 0.174 0.065 0.055 0.142 0.200 0.051 0.054 0.033 −0.010 0.039 0.040 0.943 1.071

1.0 0.166 0.073 0.060 0.241 0.180 0.051 0.052 0.062 −0.011 0.046 0.046 0.945 0.994

0.0 0.1 0.033 0.040 0.038 0.859 0.047 0.043 0.054 0.923 −0.001 0.032 0.032 0.949 1.091

0.3 0.077 0.052 0.047 0.616 0.099 0.051 0.057 0.614 −0.003 0.034 0.034 0.949 1.135

0.6 0.107 0.062 0.054 0.503 0.124 0.053 0.057 0.408 −0.006 0.038 0.038 0.949 1.129

1.0 0.112 0.073 0.061 0.542 0.111 0.053 0.054 0.466 −0.007 0.046 0.046 0.950 1.010

0.3 0.1 0.006 0.038 0.037 0.939 0.012 0.041 0.053 0.986 0.000 0.032 0.032 0.952 1.084

0.3 0.017 0.048 0.044 0.913 0.026 0.050 0.058 0.956 0.000 0.034 0.034 0.952 1.150

0.6 0.025 0.059 0.052 0.887 0.033 0.054 0.058 0.931 −0.002 0.037 0.037 0.950 1.142

1.0 0.027 0.070 0.059 0.879 0.030 0.054 0.056 0.926 −0.003 0.044 0.044 0.951 1.043

0.5 0.1 −0.009 0.037 0.036 0.933 −0.011 0.041 0.052 0.986 0.001 0.032 0.032 0.952 1.077

0.3 −0.018 0.046 0.043 0.908 −0.025 0.049 0.057 0.958 0.002 0.033 0.034 0.952 1.142

0.6 −0.025 0.056 0.050 0.888 −0.034 0.053 0.058 0.928 0.002 0.037 0.037 0.952 1.145

1.0 −0.028 0.066 0.055 0.875 −0.034 0.054 0.057 0.919 0.001 0.042 0.043 0.953 1.068

Notes: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE is the empirical mean of the standard 
error estimator; CP is the coverage probability of the 95% confidence interval; RE is the empirical variance of the SMLE under simple random 
sampling over that under residual-dependent sampling. Each entry is based on 10 000 replicates.
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TABLE 5

Effect size estimates and 95% confidence intervals from the analysis of the CCASAnet data

LSE Naive MBE SMLE

Covariate Est (95% CI) Est (95% CI) Est (95% CI) Est (95% CI)

ART initiation date (per 
year)

−0.248 (−0.688, 0.191) 0.117 (−0.009, 0.243) 0.187 (0.006, 0.368) 0.174 (0.042, 0.305)

Male 0.177 (−1.513, 1.867) −0.736 (−1.182, −0.290) −0.740 (−1.192, −0.288) −0.725 (−1.17, −0.280)

Site A −0.093 (−2.695, 2.509) 1.281 (0.540, 2.021) 1.310 (0.663, 1.956) 1.110 (0.341, 1.879)

Site B −1.340 (−3.904, 1.224) 0.932 (0.268, 1.597) 1.063 (0.393, 1.734) 0.904 (0.231, 1.577)

Site C 2.452 (0.102, 4.803) 2.759 (2.203, 3.315) 2.821 (2.232, 3.411) 2.434 (1.835, 3.032)

Site D 1.209 (−2.445, 4.862) 2.389 (1.602, 3.176) 2.614 (1.736, 3.491) 2.494 (1.710, 3.278)

Site E 0.705 (−1.686, 3.095) 0.576 (−0.075, 1.227) 0.636 (0.003, 1.269) 0.627 (−0.035, 1.289)

Notes: Est and CI stand for effect size estimate and confidence interval, respectively.
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