Skip to main content
. 2021 Jun 15;16:4117–4146. doi: 10.2147/IJN.S315368

Table 3.

Physicochemical and Release Properties of St-Mc-DDS

St Type Nanocarrier Preparation Physicochemical and Release Properties Ref.
Particle Size (nm) Zeta Potential (mV) Encapsulation Efficiency (%) In vitro Release
Endogenous stimuli-responsive En-St-Mc-SDDS
pH Eph A10/TPP-DTX liposomes Thin-flm hydration method 131.5 ± 2.6 −16.25 ± 0.38 74.7 ± 1.7 pH 5.0: ~80% [42]
pH 7.4: ~30%
CTPP-CSOSA/celastrol micelles Dialysis method 63.5 ± 18.0 22.1 ± 0.3 92.3 ± 0.7 pH 5.0: ~0 [43]
pH 7.4: ~40%
pH 8.0: ~90%
HER-2/DOX DQAsomes Thin-flm hydration method 112.7 ± 3.3 12.7 ± 2.8 53.4 ± 3.8 pH 5.0: 73.5% [36]
pH 7.4: 53.2%
PEG-AIE-TPP micelle Solvent evaporation method ~130.0 pH 5.3: ~90% [44]
pH 6.5: ~40%
pH 7.4: ~30%
HPMA-MSN/DTX nanoparticles Stirring-centrifugation method 190.4 ± 4.9 −18.2 8.34 (LC) pH 5.0: 4.2 mV (1 h) [45]
pH 6.5: 4.2 mV (2 h)
pH 7.4: −16.4 mV
PEG-TPP-Que nanoparticles Dialysis method 93.5 ± 0.1 23.6 ± 1.5 [46]
DSPE-KLA-DMA/PTX liposomes Thin-film hydration method 155.3 ± 2.2 ~-15.0 81.8 ± 0.7 pH 4.5: 35.0 mV [47]
pH 5.5: 25.0 mV
pH 6.8: 10.0 mV
pH 7.4: ~-15.0 mV
PDPA/TPGS/DOX micelles Thin-film hydration method 57.3 ± 3.4 ~70 pH 5.5: ~70% [48]
pH 7.4: ~35%
HHG2C18 liposomes Film dispersion method −22.9 96.75 (Temsirolimus)
93.76 (Coumarin 6)
pH 4.5: 25.5 mV [49]
pH 5.5: 15.3 mV
pH 6.5: 6.3 mV
pH 7.4: −22.9 mV
Redox TPP-oHA-S-S-Cur micelles Dialysis method 122.4 ± 23.4 −26.55 ± 4.99 0 µM GSH: 32.5% [50]
10 µM GSH: 37%
2 mM GSH: 57.5%
10 mM GSH: 75.3%
PLGA/C18-PEG-TPP/DLPE-S-S-mPEG/PTX nanoparticles Singlestep nanoprecipitation strategy 178.6 ± 1.2 2.4 ± 0.8 8.3 ± 0.1 (LC) 10 µM GSH: 2.4 mV [51]
10 mM GSH: 17.2 mV
Enzyme HA/PEG/berberine derivative nanodrugs nano-precipitation method 151.2 ± 2.7 −25.8 ± 1.4 70.1 ± 2.3 HAase/pH 4.5: 13.47 mV [19]
HAase/pH 5.6: 10.39 mV
HAase/pH 7.4: slightly negative potential
Non-isocyanate polyurethane-TPP/DOX nanocapsule Inverse miniemulsion process 250~260 91~94 Esterase: 93-fold higher at emission intensity [52]
TPP-peptide nanoassemblies Self-assembly method L-1P: 121 ALP: 635 nm (L-1P) [53]
ALP: 196 nm (D-1P)
D-1P: 58
Peptide/DNA complexes Self-assembly method 130~480 −3~-35 [37]
Exogenous stimuli-responsive Ex-St-Mc-SDDS
Light Perfluorooctyl bromide/IR780 liposomes One-step emulsion strategy 268.3 92.5 Laser exposure: keep 56% of the largest absorbance when IR780 is photobleached [54]
Iridium/Fe3O4 nanozyme Magnet precipitated and separated method ~8 Temperature increment due to laser and iridium [55]
IR-780/DSPE-PEG2K-TPP liposomes Film-hydration and sonication method 125.0 ± 63.4 23.5 ± 3.1 83.6 37 °C: 34.1% [56]
43 °C: 74.9%
NIR: 78.2%
mPEG-CHO-PAIE-TPP nanoparticles Synthetic method ~200 2.96 ± 0.2 pH 5.4: hydrolysis [57]
pH 6.8: hydrolysis
pH 7.4: mPEG-CHO is undetectable
AuNS-KLA-TPP/HA/DOX nanoparticles Stirring-centrifugation method 94.6 −13.1 pH 6.8 + HAase + NIR: 75% [58]
TPP/Ce6/PEG-/FA-PEG-Pt@Au nanoparticles Ultrasound-stirring-centrifugation method 21.5 −42 [59]
Au-dcHSA-PEO-TAT-TPP nanoparticles Synthetic method 85.2 10.67 Stable in phosphate buffer, glucose, NaCl, pH 3.9, pH 10 and protease/trypsin solutions [60]
PPa-NGO-mAb nanodrug Synthetic method 100~400 Stable in water, PBS, DMEM, serum and different pH solutions [64]
Yb/Tm/TiO2 nanoparticles Thermal decomposition reaction ~100 [65]
TPP-coumarin-Fe3O4 nanoparticles Synthetic method ~15 [66]
Cyt c aptamer-mesoporous silica-Au nanorods Synthetic method ~20 7.3 (LC) NIR (no): 5% [67]
NIR (first time): 17%
NIR (second time): 7%
SWNT-PEG nanotubes Synthetic method [68]
Magnetic field DNA/PK-CP-SPION complexes Grignard reagent reaction method 49.7 32.7 [69,79]
Fe3O4@mSiO2-TPP/CDs nanoparticles Liquid-solid-solid synthetic route 82.30 16.33 [70]
AMB-1-Cyt c aptamer bacterial magnetic nanoparticles Originating from Magnetospirillum sp. AMB-1 50 [71,80]
Multi-responsive St-Mc-SDDS
pH/light Catalase@SiO2/Ce6-CTPP/DPEG nanoparticles Synthetic method ~100 −18 Protease K: 70% (remained activity) [20]
Fe3O4@DMSA/DOX nanoparticles Synthetic method 102.02 ± 0.6 >90 pH 5.0: 80.3% [72]
pH 7.4: 19.2%
pH 5.0+NIR: 98.5%
pH 7.4+NIR: 30.0%
Redox/light/magnetic field DOX/Fe3O4/TPP-PDA-s-s-mPEG nanoparticles Synthetic method 165 4 41 (LC) pH 7.4+ GSH: 18 mV [73]
pH 5.0: ~35%
pH 7.4: ~15%
pH 5.0+NIR: ~65%
pH 7.4+NIR: ~40%
Magnetic field/light Fe3O4@PDA@mSiO2-TPP/-PEG nanoparticles Synthetic method 275 −5.2 [74]
pH/redox/temperature MBA-PDA-PEG-PNiPMA/Pc 4 nanogel Synthetic method 108.1 ± 11.1 −5.62 ± 1.40 pH 7.4: 108 nm, 13.6% [75]
pH 5.0: 360 nm, 30.3%
DTT/EDTA: 1200 nm
Temperature>39 °C: particle size: increase
Redox/light TPP-PPA micelles Modified oil-in-water emulsion-based self-assembly method 176.3 ± 12.3 3.1 ± 0.2 (LC) Low ROS: 30 μg/cm2 [76]
High ROS: 50 μg/cm2
Redox/enzyme Glucose-PEG-peptide-TPP-PAMAM-PTX conjugates Synthetic method 42.5 ± 18.4 2.9 ± 1.1 0 µM GSH: 26% [78]
10 µM GSH: 52%
10 mM GSH: 79%

Notes: The bold texts refer to the Mc-targeting components in St-Mc-DDSs. These components include an Mc group or an Mc molecule (lipophilic cation, peptide or aptamer), and a material. Abbreviation: LC, loading capacity.