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Abstract

Signal intensity measured in a mass cytometry (CyTOF) channel can often be affected by 

the neighboring channels due to technological limitations. Such signal artifacts are known as 

spillover effects and can substantially limit the accuracy of cell population clustering. Current 

approaches reduce these effects by using additional beads for normalization purposes known 

as single-stained controls. While effective in compensating for spillover effects, incorporating 

single-stained controls can be costly and require customized panel design. This is especially 

evident when executing large-scale immune profiling studies. We present a novel statistical 

method, named CytoSpill that independently quantifies and compensates the spillover effects in 

CyTOF data without requiring the use of single-stained controls. Our method utilizes knowledge­

guided modeling and statistical techniques, such as finite mixture modeling and sequential 

quadratic programming, to achieve optimal error correction. We evaluated our method using 

five publicly available CyTOF datasets obtained from human peripheral blood mononuclear cells 

(PBMCs), C57BL/6J mouse bone marrow, healthy human bone marrow, chronic lymphocytic 

leukemia patient, and healthy human cord blood samples. In the PBMCs with known ground 

truth, our method achieved comparable results to experiments that incorporated single-stained 

controls. In datasets without ground-truth, our method not only reduced spillover on likely 

affected markers, but also led to the discovery of potentially novel subpopulations expressing 

functionally meaningful, cluster-specific markers. CytoSpill (developed in R) will greatly enhance 

the execution of large-scale cellular profiling of tumor immune microenvironment, development of 
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novel immunotherapy, and the discovery of immune-specific biomarkers. The implementation of 

our method can be found at https://github.com/KChen-lab/CytoSpill.git.
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1 | INTRODUCTION

The emergence and rapid adoption of mass cytometry (CyTOF) as a more scalable 

alternative to flow cytometry has led to unprecedented fine-grained profiling of human 

cell populations. CyTOF employs metal-isotope-tagged monoclonal antibodies to measure 

the expressions of the surface proteomic markers and/or intracellular signaling molecules in 

single cells. This technology is particularly important for various biomedical fields, such as 

immunology, oncology, and stem cell research, because CyTOF allows experimentalist to 

measure between 40 and 60 parameters (channels) from around 100,000 cells in a single 

assay. CyTOF has been widely used to profile the immune system in the presence of disease 

such as the characterization of cellular heterogeneity in tumor samples [1, 2]. The advantage 

of this technology over its predecessor is the minimal amount of spectral overlap between 

channels that is more typical in flow cytometry and can lead to differing interpretations of 

cell populations [3, 4]. Despite this advantage, spillover effects similar to those in the flow 

cytometry data is still observed, since the intensity measured in a channel can be affected by 

the intensity of the neighboring channels.

Spillover effects, while generally minor, can substantially limit the accuracy of cell type 

identification. It is possible to alleviate this by selecting high purity isotopes, redesigning 

metal isotopes, or using control panel, but that approach is complicated, time-consuming, 

and costly [5]. These approaches can be even more burdensome in the context of executing a 

large-scale immune profiling study where spillover effects might not be easily compensated 

for. Given that the spillovers have an approximately linear relationship with respect to the 

original signal [5], error reduction can be achieved by transforming the data using a properly 

estimated spillover matrix without necessitating any changes to study design or materials.

Here, we present a novel computational method, CytoSpill, that can independently 

compensate the spillover effects in CyTOF data without using any single-stained controls. 

Our method utilizes knowledge-guided modeling and statistical algorithms to infer the 

optimal spillover matrix and perform correction. We utilize the knowledge about spillover 

sources to constrain the estimation of the spillover matrix. The underlying assumption of 

our method is that the spillover component can be separated from the signal component in 

affected channels using a mixture distribution model.

2 | MATERIALS AND METHODS

2.1 | Datasets

We examined our method using five CyTOF datasets, obtained from peripheral blood 

mononuclear cells (PBMCs) with a 36-antibody panel [5], C57BL/6J mouse bone marrow 
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with a 38-antibody panel [6], healthy human bone marrow with a 32-antibody panel [7], 

chronic lymphocytic leukemia patient blood with a 46-antibody panel and healthy human 

cord blood sample with a 44-antibody panel. Table 1 presented the details of the datasets we 

used. All the datasets used were deposited in flow repository with ID: FR-FCM-Z2KW and 

on https://github.com/KChen-lab/CytoSpill.

2.2 | Spillover compensation problem

In CyTOF data, spillover usually comes from three sources: abundance sensitivity, isotopic 

impurity and oxidization [8]. The information on these three sources can be obtained based 

on the isotopes used in the experiment panel. If an isotope used in one channel has a similar 

mass to the isotope used in another channel, for example, differed by 1 atomic mass, these 

channels will affect each other (abundance sensitivity). Channels using isotopes with the 

same metal will affect each other (isotopic impurity). If the atomic mass of the isotope in 

a channel is larger than that in another channel by 16, the atomic mass of an oxygen atom, 

it will potentially be affected by this other channel through oxidation, since the metal may 

get oxidized incidentally during the experiment. In CyTOF experiments, cells expressing 

a marker will have positive readings while cells that do not express a marker will have 

zero readings. However, if a channel is affected by spillover, these cells may acquire some 

level of intensity readings, resulting from spillover effects. The signal artifacts resulting 

from spillover effects are usually smaller than the true biological signals, thus adding a 

low background modal to the marker expression density. We assume that the density of a 

marker affected by spillover follows a multimodal distribution, where the lowest intensity 

component corresponds to the spillover noise and the other components correspond to true 

expression levels.

The spillover compensation problem in CyTOF data is similar to the complete compensation 

problem defined in flow cytometry literate [9]. Let

DN × M = TN × MSM × M,

where DN × M is the matrix of observed signals, TN × M is the matrix of true signals and 

SM × M is the spillover matrix whose diagonal elements are all 1’s. N is the number of cells 

and M is the number of channels (refer to Table 2 for commonly used notations in this 

article). To model the spillover noise, we define the noise components as YN × M that Thus, 

we have

Y N × M = DN × M − TN × M .

Thus, we have

Y = T (S − I) .

Since all diagonal elements of S are 1’s, (S − I) is a matrix contains only the off diagonal 

elements of S with I being an identity matrix. If we can estimate S, we can perform 

compensation via T = DS−1. S can be usually estimated by employing single-stained 
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controls [5], which can be time-consuming and costly. Here, our goal is to derive S through 

modeling of Y. The mathematical problem is that only D is observed and that Y and T, both 

having high dimensions, will need to be determined simultaneously from their relationship 

to D. We hypothesize that it is possible to achieve this by making appropriate assumptions 

on Y and constraining the structure as well as the parameters in S using prior knowledge 

about the spillover structures. Based on our assumption that the noise component Y in each 

channel forms a lower modal in that channel’s intensity density distribution, we can model 

channel intensities using mixture probability distributions and segregate the noise modals 

from the mixed signals.

2.3 | Cutoff derivation

In order to separate the noise component from the true signal component, we derived a 

cutoff value for each channel in each CyTOF dataset. We assume that the intensity observed 

in each channel follows a mixture of Gaussian distributions where the Gaussian with the 

lowest mean represents the spillover noise. We fit the intensity distribution in a channel j (j = 

1, 2, … M) by a finite mixture model using function initFlexmix from R package FlexMix, 

assuming there are K (K = 1, 2…5) components [10]. The cells with zero intensity were 

excluded from the model. It does not have a principal limit on the number of components. 

We set a limit of 5 for limiting the computation cost for this procedure. The observed marker 

expression level in channel j follows a multi-normal distribution:

dj ∼ ∑k = 1
K αkjFkj

We choose the model with the lowest integrated completed likelihood value. If the model 

suggests more than one component (K > 1), we will derive a cutoff value c assuming a type 

1 error a = 0.05. K = 2 suggests that the channel has a bimodal distribution and the lower 

modal is the noise component. The cutoff value c is then derived as the probability of c 

belonging to the lower modal:

P c ∈ F1 =
α1F1(c)

α1F1(c) + α2F2(c) = 1 − a = 0.95.

If K > 2, it suggests that the channel has a multimodal distribution. In that case, we will 

take the lowest modal and the highest modal to calculate c, assuming that the highest modal 

corresponds to the true signal. If the returned model only has one component, we will 

select an empirical cutoff at 10% quantile of the channel intensity. This is an important 

step in our method which defined the error components contributed by spillover effects on 

negative cells of the markers. These error components will be further utilized in next steps 

for estimating the spillover coefficients. Given the derived cutoff values C = {c1, c2, c3…. 
cM}, the noise component Y is defined as

Yi, j =
Di, j if Dij < cj

0 otherwise
.
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2.4 | Estimation of the spillover matrix

S quantifies the effect of spillover between the channels in the panel. The off-diagonal 

values represent the fraction of the signal in channel A that gets added into channel 

B. We attempted two methods to estimate the spillover matrix S: (1) sequential 

quadratic programming (SQP) with channel-specific constraints and (2) non-negative matrix 

factorization (NMF). The prior knowledge of error sources, that is, abundance sensitivity, 

isotopic impurity and oxidization are utilized as constraints for model optimization.

2.4.1 | Method 1: SQP with channel-specific constraints—We define a channel 

interaction matrix ZM × M from the prior knowledge described above. Z consists of the 

off-diagonal elements of S that S = Z + I. The external information passed in via Z matrix 

reflects an intrinsic property of the CyTOF assay, (e.g., which channels [antibodies] are 

tagged by isotopes of similar mass). These physical–chemical properties lead to spillover in 

three sources: abundance sensitivity, isotopic impurity and oxidization. For a new dataset, 

the structure of Z is determined based on the design of the assay (i.e., the physical–chemical 

properties of the isotopes and the technology). To facilitate this, we implemented a function 

in our R package that recognizes the isotope information that the users provide in the 

CyTOF data and generates a Z matrix that reflects the expected spillover patterns. Zi,j 

is greater than 0 only when channel i can potentially affect channel j and 0 otherwise. 

Because spillover has strict additive effect [5], Zi,j is not allowed to have negative values. 

Furthermore, previous studies indicated that the spillover effects are generally less than 10% 

[5]. Thus, we apply a boundary constraint: Zi,j ≤ 0.1 to the estimation. We estimate the 

channel interaction matrix using a SQP algorithm [11] as follows:

min
Z

∥ Y − DZ ∥2F ,

where Z satisfies 0 ≤ Zi,j ≤ 0.1 when channel i can potentially affect channel j and Zi,j = 

0 otherwise. Here, ∥·∥2
F denotes the Frobenius norm of a matrix. The spillover matrix S is 

calculated as S = Z + I.

2.4.2 | Method 2: NMF—Since D = TS where T and S are both non-negative by 

definition, we can also formulate the task of spillover matrix estimation as a masked NMF 

problem [12–14]. We incorporate the cutoffs we derived and the prior knowledge into the 

NMF model using binary masks. With the derived cutoff values C, we generate a binary 

matrix BN × M that masks non-noise component defined by the cutoff value in D that

Bi, j =
1 if Dij < cj
0 otherwise

.

Given the channel interaction matrix Z defined above, we have:

D = T S,
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D = T (Z + I),

B ⋅ D = B ⋅ (T (Z + I)) .

The noise mask B ensures that only the error component selected by our derived cutoffs 

can affect the optimization. We assuming the error component is normally distributed under 

our assumption. The resulting method performs NMF by solving the following optimization 

problem:

min
T ≥ 0, 0 ≤ Z ≤ 0.1

∥ B ⋅ D − B ⋅ (T (Z + I)) ∥2F .

The optimization is performed using gradient decent algorithm in Tensorflow [15].

2.5 | Compensation

Given the estimated spillover matrix S, we can obtain the real (compensated) data T via the 

following optimizing problem:

min
T

∥ D − T S ∥2F s.t. T ≥ 0,

using a non-negative least squares algorithm [5, 16]. The T ≥ 0 since CyTOF data does not 

contain negative values.

2.6 | Evaluation

To evaluate our method, we compared the compensated data using the spillover matrix 

generated by our method with the compensated data using the single-stained controls. We 

also compared the uncompensated data with compensated data using four other datasets that 

do not have single-stained controls. We examined the data clustering results using t-SNE 

plots generated with Rtsne package followed by PhenoGraph clustering [7, 17, 18].

2.7 | Simulation

We first used simulation to test the ability of SQP and NMF to estimate the spillover 

matrix in our model. We simulated true signals T with 20 channels and 100,000 cells. We 

simulated 80 cell populations each with 1250 cells in the data. For each population, there 

are 15 channels with positive expressions and 5 channels with 0 expressions as negative 

channels. For each positive channel in each population, the expression values followed a 

normal distribution with mean randomly drawing from a uniform distribution U(100, 600) 

and SD equal to mean/5.

Based on our assumptions on error sources, we obtained the structure of the simulated 

spillover matrix. In each of the simulated spillover matrix SM × M where M = 20, there 

are 105 off diagonal elements of spillover coefficients that need to be simulated. Moreover, 
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the spillover coefficients were simulated based on a uniform distribution U(0, 0.1). We first 

simulated 20 spillover matrices. We then applied these spillover matrices to the simulated 

true signal T to generate the simulated CyTOF data Dsimu with spillover effects in it: Dsimu 

= TSsimu. We then performed estimation on Ssimu using our approaches and compared the 

estimated spillover matrices with the known simulated spillover matrices.

3 | RESULTS

In order to compensate CyTOF data without using single-stained controls, we made 

assumptions that spillover noise contributes as a new modal at the lower end of the affected 

channel expression density. We derived a cutoff for each channel of the data to separate the 

noise modal from observed signal modal. We then assumed that the spillover effects come 

from three main sources which will constrain the spillover matrix structure that needs to be 

estimated. Both sequential quadratic programming with channel-specific constraints (cSQP) 

and NMF were applied to estimate the spillover matrix using the cutoff separated spillover 

noise component. Finally, the CyTOF data can be compensated using the obtained spillover 

matrix. Figure 1A shows the workflow of our compensation method and Figure 1B describes 

the assumptions of our method.

3.1 | Simulation results

We applied two approaches, cSQP and NMF, to 20 different sets of simulated data. 

NMF did not reach final convergence, therefore, we took the results after 5000 iterations 

for evaluation purposes. In our simulation analysis, we compared both cSQP and NMF 

estimated spillover matrix to the simulated ground truths. We found that cSQP estimated 

results were better aligned to the ground truth than NMF. From the scatter plots it can be 

seen that most data points aligned on the diagonal in cSQP results which suggest that cSQP 

estimated similar spillover matrix as the simulated ground truths while the majority of NMF 

estimated spillover coefficients lied on the boundary of 0 and 0.1 (Figure 2A,B). The cSQP 

approach achieved R2 = 0.78 compared to the NMF approach which achieved R2 = 0.02. 

Since the cSQP approach can estimate spillover coefficients much more accurately than the 

NMF approach, we chose the cSQP approach for our downstream assessments.

The spillover effect is a property of the metal labels and the instrument and does not 

depend on biological markers or samples. We further demonstrated that the spillover effect 

is not affected by relative abundance of markers using simulation. We simulated data with 

different level of signals and obtained spillover effects that are independent of the level of 

signals (Figure S1). The detailed description of the simulation can be found in Supporting 

Information 1.

3.2 | Comparison with single-stained controls dependent compensation

We analyzed a PBMCs dataset stained using a 36-antibody panel with single-stained 

controls to compare the accuracy of the spillover matrices obtained using CytoSpill with 

those obtained using single-stained controls. In Figure 3A, we show the t-SNE plot of 

this data before compensation and it has 20 PhenoGraph clusters. The panel used for this 

data was developed for immune cell type identification, and some of the proteins on this 
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panel were conjugated with two different metal labels. In Figure 3B, we can observe the 

spillover intuitively by comparing the expression of the two metal labels on the same 

protein using expressing plots. The different expression between the two metals used for 

CD8, CD3 and HLA-DR suggested that there are spillovers in 174Yb-conjugated CD8, 

173Yb-conjugated CD3 and 171Yb-conjugated HLA-DR. After compensation performed 

by CATALYST using single-stained controls, the same protein conjugated with different 

metals has almost identical expression profiles by comparing the expression plot. After 

compensation performed using CytoSpill generated spillover matrix, our method also 

removed the spillover effects and achieved similar results as using single-stained controls 

without requiring their use.

In Figure 3C, the heatmap of marker expressions in different clusters of uncompensated, 

single-stained controls compensated and CytoSpill compensated data can be seen. We 

annotated the clusters with cell types based on the marker expressions. We found 

that 173Yb-conjugated CD3 has expression in non-T cells clusters compared to 147Sm­

conjugated CD3. The 174Yb-conjugated CD8 marker were observed to have expression in 

the non-CD8 T cells clusters compared to 139La-conjugated CD8. The 171Yb-conjugated 

HLA-DR had expressions in clusters besides the Macrophage/Monocytes and B cells 

clusters, while 175Lu-conjugated HLA-DR did not. The expression pattern in these clusters 

should be negative but were both removed using single-stained controls in CATALYST and 

ab initio in CytoSpill. This confirms that CytoSpill can effectively remove the true spillover 

in the CyTOF data without using single-stained controls.

3.3 | Applying CytoSpill on four immune datasets

Moreover, we also applied CytoSpill on four additional immune related datasets, including 

samples from human bone marrow, mouse bone marrow, human peripheral blood and human 

cord blood. We checked the marker expression before and after compensation. Also, t-SNE 

plots were generated and PhenoGraph was applied for clustering analysis [7, 17, 18]. We 

observed that some markers in these datasets have a high expression in certain clusters, 

while they also have some amount of intermediate expressions in other clusters. These 

intermediate expressions were lowered or removed after running CytoSpill.

For example, the CD8 markers in the leukemia patient peripheral blood data and the healthy 

human cord blood data were strongly affected by spillover (Figures 4 and 5). Figure 4A 

shows the t-SNE plot of uncompensated leukemia patient peripheral blood data, which is 

labeled by manually gated cell populations. We found that CD8 marker has an intermediate 

level in the B cells and CD4 T cells clusters, which may be caused by spillover. After 

performing CytoSpill compensation, these spillover signals were removed (Figure 4B,D). 

Figure 4C shows the histogram of the uncompensated and compensated arcsinh transformed 

CD8 expression with the dotted line representing the derived cutoff value for this channel. 

The noise component below the cutoff was substantially lowered after compensation with 

more cells having a level close to 0 and the positive population above the cutoff remained 

unchanged.

In the healthy human cord blood data, the CD8 marker has a high expression on the mucosal 

associated invariant T cell and the CD8 T cell clusters (Figure 5A,B). CD8 also expressed 
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on some of the NK cells. However, we found it also has intermediate levels on other 

clusters which should be negative for the CD8 marker. After performing compensation, the 

spillover caused signals were removed on these clusters (Figure 5B,D). Figure 5C showed 

the histogram compared the CD8 expression density before and after compensation. Noise 

component below the derived cutoff were lowered after compensation and the positive 

population above the cutoff remained.

3.4 | Discovering novel clusters

In terms of PhenoGraph clustering results, we found that the PhenoGraph clusters number 

increased from 22 to 23 after performing compensation on the healthy human bone marrow 

data, from 20 to 21 on the mouse bone marrow data and from 26 to 29 on the leukemia 

patient peripheral blood data. The increased number of clusters suggests that performing 

compensation may lead to discovery of novel cell clusters. In the healthy human bone 

marrow data, we found that two new clusters of T cells were revealed after compensation 

(Figure 6). Figure 6A–D shows the t-SNE plots for the clustering results obtained before 

and after compensation. Based on the t-SNE plots and PhenoGraph clustering results, two 

new clusters 2 and 4 from CD4 T cells and CD8 T cells respectively were formed after 

compensation (Figure 6C,D). By checking the expression signature of these two clusters we 

found that they are T cells with low CD44 expression which were not revealed as clusters 

before compensation (Figure 6E,F). CD44 is an activation marker which distinguishes naïve 

T cells from memory and effector T cells [19, 20]. These two novel clusters we found 

are thus likely naïve T cells clusters, which were masked by the spillover effects in the 

uncompensated data.

Identifying novel, meaningful clusters after performing compensation indicate that our 

compensation method can led to more precise cell-type clustering, in conjunction with the 

application of the t-SNE and the PhenoGraph algorithms.

4 | DISCUSSION

In immunology research, CyTOF was widely used to dissect the heterogeneity of immune 

cell populations. It is well accepted that the spillover effects in CyTOF data could led 

to inaccurate population dissection. In this article, we presented a new method that could 

alleviate spillover effects in CyTOF data without relying on additional control data such 

as single-stained controls. In our method, we used finite mixture model to derive the 

cutoffs that separates the noise and signal for each channel. We then use a constrained 

SQP approach to infer the spillover matrix that optimally quantifies the spillover effects. 

We performed simulation studies to demonstrate the ability of our method to deconvolve 

spillover effects on multiple published datasets and unpublished datasets. We observed 

markers affected by spillover effects and removed the noise after performing compensation. 

The compensation also led to increased number of PhenoGraph clusters in multiple datasets. 

In the healthy human bone marrow, our method discovered novel and meaningful cell 

subpopulations that would have been buried in the uncompensated data. To our knowledge 

this is the first method that can compensate spillover effects in CyTOF data without 

requiring single-stained controls.
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We have considered two different approaches, cSQP and masked NMF, to integrate prior 

knowledge into our model and derive the spillover matrix. In our simulation study, we 

demonstrated that the cSQP approach had better performance than the NMF approach. 

NMF was not able to converge under our constraints. Since our spillover matrix is sparse 

under our assumption, some kind of sparsity constraint is required to be implemented in 

the optimization of NMF. There are several prior studies implement NMF based method 

on spectral unmixing, these studies have used sparsity constraints [21–23]. However, the 

spillover matrix structure was pre-defined based on prior knowledge in our study. To 

implement these prior knowledges in NMF, we used masked NMF [12–14]. Our constraint 

on the spillover matrix was too strict, leading to the undesirable performance of the masked 

NMF in our study.

Our method assumed that the spillover effects are caused by three main sources that are 

considered to be relatively mild (being a small fraction of the observed signals). Besides 

spillover effects, the noise in CyTOF data could also come from contaminations from other 

samples in the lab or external environment [8, 24]. However, these could be controlled 

based on rigorous experimental protocols [8]. Our method assumed the noise in the data 

come primarily from spillover. On datasets where these assumptions are violated (e.g., errors 

constitute a large fraction of the observed signal), the performance of our method may be 

impaired.

The current version of our method performed well on channels with high-intensity signals 

but worse on channels with low-intensity signals. Although this caveat may not affect the 

overall characterization results, which depend mainly on the high-intensity channels, users 

should be careful at interpreting coefficients estimated from low-intensity channels. In our 

future studies, we will investigate if the caveat can be addressed by performing further 

regularization or shrinkage that are inversely proportional to the intensity of the channels.

Our assumptions on spillover sources were based specifically on the CyTOF technology, 

which is different from the flow cytometry technology. Our method also assumed non­

negativity of CyTOF data, while data from flow cytometry could have negative values due to 

background subtraction [25]. Thus, our method is effective for CyTOF data analysis and will 

not be applicable to flow cytometry data.

For the future work of our method, we would like to explore whether our proposed 

compensation method can lead to improvement in predicting clinical outcome and 

discovering novel disease mechanisms.

CytoSpill is implemented in R and the source code is released on GitHub: https://

github.com/KChen-lab/CytoSpill. We expect that our method will significantly benefit the 

cancer and immunology research community in studying tumor microenvironment and 

developing novel immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(A) Workflows of our compensation method. Based on our assumptions, we derived cutoffs 

based on uncompensated mass cytometry (CyTOF) data to identify the spillovers and 

estimate the spillover matrix using constrained sequential quadratic programming with prior 

knowledge. Non-negative least squares were used for compensation. (B) Assumptions of 

our methods. We assumed that a spillover affected channel will have a lower modal which 

contributed by spillover effects. We assumed the spillover was from three sources: Isotope 

impurities, neighboring channel abundance sensitivity and oxidization
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FIGURE 2. 
Comparison of simulated spillover effects and estimated spillover effects. X-axis represented 

the estimated spillover effects using our methods. Y-axis represented the simulated true 

spillover effects. Each dot in the figure represented an entry in a spillover matrix of our 

simulation study. (A) Scatter plot shows the result of sequential quadratic programming 

estimation and the R2 = 0.78. (B) Scatter plot shows the result of non-negative matrix 

factorization and the R2 = 0.02
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FIGURE 3. 
Comparison of CytoSpill generated spillover matrix compensated data with single-stained 

controls generated spillover matrix compensated data. (A) The t-SNE plot of uncompensated 

data labeled with PhenoGraph clusters. (B) Marker expressions based on the t-SNE 

projection by uncompensated data. Expression values were normalized between 0 and 

1. Spillovers were observed in 174Yb-stained CD8, 173Yb-stained CD3 and 171Yb­

stained HLA-DR. CytoSpill achieved comparable results with single-stained controls on 

compensating these markers. (C) Heatmaps showed compensation results on PhenoGraph 

clusters based on uncompensated data. Expression values were arcsinh transformed. Clusters 

were annotated with cell types
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FIGURE 4. 
CD8 marker spillover in leukemia patient blood data were compensated using CytoSpill. 

(A) The t-SNE plot generated with uncompensated data and labeled by manually gated 

populations. (B) The normalized expression plot of the 194Pt-conjugated CD8 marker 

before compensation. Spillover was observed outside NK cells and CD8 T cells. (C) 

Histograms showed the CD8 marker expression density before and after compensation. The 

dotted line represents the derived cutoff value. The noise component below the cutoff was 

lowered after compensation. (D) The normalized expression plot of the 194Pt-conjugated 

CD8 marker after compensation. We observed that spillover was lowered after compensation
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FIGURE 5. 
CD8 marker spillover in healthy human cord blood data were compensated using CytoSpill. 

(A) The t-SNE plot generated with uncompensated data and labeled by manually gated 

populations. (B) The normalized expression plot of the 194Pt-conjugated CD8 marker 

before compensation. Spillover was observed outside CD8 T cells, NK cells and Mait cells. 

(C) Histograms showed the CD8 marker expression density before and after compensation. 

The dotted line represents the derived cutoff value. The noise component below the 

cutoff was lowered after compensation. (D) The normalized expression plot of the 194Pt­

conjugated CD8 marker after compensation. We observed that the spillover was lowered 

after compensation
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FIGURE 6. 
Novel clusters discovered after compensation in healthy human bone marrow data. (A, B) 

Showed the t-SNE plots generated based on uncompensated and compensated data labeled 

by cell populations. (C, D) Showed the t-SNE plots labeled by compensated data generated 

PhenoGraph clusters. Two new clusters 2 and 4 were found after compensation. These 

two clusters of cells were originally scattered in CD4 T cells and CD8 T cells before 

compensation. (E, F) Showed the CD44 expression level before and after compensation. The 

newly found clusters have lower CD44 expression
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TABLE 2

Commonly used notations in this article

Notations Definition

D Matrix of observed signals

T Matrix of true signals

S Spillover matrix

Y Noise component in the matrix of observed signals

Z Channel interaction matrix

I Identity matrix

N Number of cells

M Number of channels

‖·‖2F Frobenius norm of a matrix
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