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Abstract
The review is devoted to a new and rapidly developing area related to the application of ideas and methods of nonlinear
mathematics and theoretical physics to study the internal dynamics of DNA and, in particular, the behavior of the open states
of DNA. There are two main competing approaches to this research. The first approach is based on the molecular dynamics
method, which takes into account the motions of all structural elements of the DNA molecule and all interactions between them.
The second approach is based on prior selection of the main (dominant) motions and their mathematical description using a small
number of model equations. This review describes the results of the study of the open states of DNA performed within the
framework of the second approach using the McLaughlin-Scott equation. We present the results obtained both in the case of
homogeneous sequences: poly (A), poly (T), poly (G) and poly (C), and in the inhomogeneous case when the McLaughlin-Scott
equation has been used for studying the dynamics of open states activated in the promoters A1, A2 and A3 of the bacteriophage T7
genome, in the genes IFNA17, ADRB2, NOS1 and IL-5, in the pBR322 and pTTQ18 plasmids. Particular attention is paid to the
results concerning the effect of various external fields on the behavior of open states. In the concluding part of the review, new
possibilities and prospects for the development of the considered approach and especially of the McLaughlin-Scott equation are
discussed.
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Introduction

The penetration of the ideas of theoretical physics and nonlin-
ear mathematics into various fields of science is a feature of
modern research. The McLaughlin-Scott equation and its ap-
plications for studying the internal dynamics of DNA, to which
this review is devoted, are a prime example of this trend.

Quite a long time has passed since John Scott Russel ob-
served a single wave within the Union Canal (Scott-Rassel
1844). From that moment, the history of the study of solitary

waves or solitons, propagating in nonlinear media, began.
Numerous examples of the emergence and propagation of
solitons in physical and then biological environments have
been discovered. Basic equations describing these phenomena
were obtained. The sine-Gordon equation (Rubinstein 1970),
the Koteweg-deVries equation (Jeffrey and Kakutani 1972)
and the nonlinear Schrödinger equation (Bochieri and
Loinger 1970) were among them.

In 1980, to explain experimental data on hydrogen-
deuterium exchange of DNA, Englander et al. (1980) demon-
strated the existence of transiently open states (Fig. 1a) in
DNA and synthetic polynucleotide double helices and pro-
posed to describe them by kinks being one-soliton solutions
of the nonlinear sine-Gordon equation.

The sine-Gordon equation is integrable (Ablowitz and
Segur 1980; Rajaraman 1982). However, the perturbations
to this equation associated with the effects of dissipation, ex-
ternal forces and inhomogeneities spoil its integrability, and
the equation can not be solved exactly. If perturbations are
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small, the solution can be found with the help of the perturba-
tion theory that was described in details by Keener and
McLaughlin (1977). In addition, McLaughlin and Scott
(1977) developed the perturbation analysis of the sine-
Gordon equation and applied it to study the dynamics of vor-
tices in Josephson contacts. In 1978, they (McLaughlin and
Scott 1978a, b) derived the equation that allowed calculating
the velocity of kinks being one-soliton solutions of the non-
linear sine-Gordon equation.

That time, the equation ofMcLaughlin and Scott was high-
ly appreciated by physicists as one of the most effective ap-
proaches for solving the perturbed sine-Gordon equation that
was used to explain many physical phenomena, including
propagation of fluxons in long Josephson contacts (Kulik
1967; Nitta et al. 1984; Malomed 1988; Braun and Kivshar
1998), dislocations in crystals (Frenkel and Kontorova 1939;
Braun and Kivshar 2004), nonlinear spin waves in superfluids
(Kivshar and Malomed 1989), tectonic stress transfer (Bykov
2014), nonlinear geophysical processes in the earth’s crust
(Gerus and Vikulin 2016), the decay of a breather and pinning
by a micro resistor (Gulevich and Kusmartsev 2006) and
waves in ferromagnetic and antiferromagnetic materials
(Zharnitsky et al. 1998a, b). Recent studies have shown, how-
ever, that the McLaughlin-Scott equation is a very convenient
and effective tool not only in physics but also in biophysics
related to the study of the internal dynamics of DNA.

The first works using the McLaughlin-Scott equation for
DNA appeared in 2007–2008 (Yakushevich and Krasnobaeva
2007, 2008a, b; Krasnobaeva and Shapovalov 2008). Before
that, in many publications, starting with the work of Englander
et al. (1980) as well as in the works of Yomosa (1983, 1984),
Takeno and Homma (1983), Homma and Takeno (1984),
Krumhansl and Alexander (1983); Krumhansl et al. (1985),

Fedyanin et al. (1986), Yakushevich (1987, 1989), Gaeta
(1990, 1994, 2006, 2007), Cadoni et al. (2007), in the books
and reviews (Gaeta et al. 1994; Peyrard 1995; Yakushevich
2004) and even in more recent works (Shapovalov and
Krasnobaeva 2009; Derks and Gaeta 2011; Cadoni et al. 2011;
Grinevich et al. 2015a, b; Chevizovich et al. 2020), studies of
nonlinear DNA dynamics were carried out on the basis of the
sine-Gordon equation (Scott 1969; Caudrey et al. 1975):

φττ−φξξ þ sinφ ¼ 0 ð1Þ

of its modification that took into account the effects of dissipa-
tion and the effect of external fields (Quintero and Kevrekidis
2001; Cuenda and Sanchez 2004a; Ekomasov 2009; Ivancevic
and Ivancevic 2013; Gumerov et al. 2015):

φττ−φξξ þ sinφ ¼ −αφτ þ F τð Þ ð2Þ

and of combined models which included Eq. (1) or (2) as a part
of the system of coupled nonlinear differential equations (Zhou
and Zhang 1991; Barbi et al. 2003; Barbi et al. 1999; Gaeta and
Venier 2008a, b; Cadoni et al. 2009; Drobotenko et al. 2018). In
Eqs. (1)–(2), φ(ξ, τ) is the angle of deviation of the nitrogenous
base from the equilibrium position, α is the dimensionless dissi-
pation coefficient and F(τ) is the dimensionless external field.

Equation (1) has a wide variety of solutions in the form of
nonlinear solitary waves, including one-soliton solutions
(kink and antikink), two-soliton solutions (breather, kink-
kink, kink-antikink, antikink-antikink), three-soliton solu-
tions, etc. (Scott et al. 1973). The kink solution:

φk ξ; τð Þ ¼ 4arctg exp γ ξ−vτ−ξ0ð Þ½ �f g ð3Þ
was successfully used by Englander et al. (1980) to explain
experiments on hydrogen-deuterium exchange in DNA. Here,

Fig. 1 Locally unwound regions:
a open state and b transcription
bubble that is formed at the initial
stage of the transcription
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v is the dimensionless kink velocity, ξ0 is an arbitrary constant
and γ = (1 − v2)−1/2.

Solutions of Eq. (2) have not yet been found. The approach
proposed by McLaughlin and Scott (1978a, b) is one of the
best for obtaining approximate solutions. To find the solu-
tions, McLaughlin and Scott assumed that the terms on the
right side of Eq. (2), simulating dissipation and external ac-
tion, are small, which, in turn, enabled them to use the
methods of perturbation theory. McLaughlin and Scott also
suggested that, to first approximation, the kink shape is deter-
mined by formula (3) in which, however, the velocity is no
longer a constant but a function that depends on time. The
equation for velocity v obtained by McLaughlin and Scott as
a result of all these assumptions turned out to be an ordinary
first-order differential equation (see Appendix 1 for details):

dv
dτ

¼ −αv 1−v2
� �þ π

4
F τð Þ 1−v2

� �3=2
: ð4Þ

In contrast to the modified sine-Gordon equation (2), Eq.
(4) has analytical solutions with a simple and clear interpreta-
tion, which makes it more convenient for use in applications.

Equation (4) for the kink velocity is often supplemented by
the equation for the kink coordinateξ:

dξ
dτ

¼ v: ð5Þ

Equations (4) and (5) completely define the McLaughlin-
Scott mathematical model.

In recent years, the model of McLaughlin and Scott has
been actively used to study the behavior of transcriptional
bubbles (Fig. 1b) (Shikhovtseva and Nazarov 2016;
Grinevich et al. 2015b; Grinevich and Yakushevich 2018),
which are locally unwound regions of the DNA double helix
formed at the initial stage of the transcription process as a
result of the interaction of RNA polymerase with DNA pro-
moter regions (Forth et al. 2013; Severin 2016).

In the general case, the locally unwound regions of DNA
are often named the open states. The term “open state” (or
“open complex”) was first used in 1974 by Chamberlin
(1974). Besides experiments on hydrogen-deuterium ex-
change of DNA (Englander et al. 1980), the evidence was
provided by Saucier and Wang (1972), who used a sensitive
method for detecting DNA strand separation, based on the
effect it has on supercoiling of plasmid DNA. The advent of
chemical probes such as dimethyl sulphate and KMnO4 for
monitoring DNA strand separation (Siebenlist et al. 1980;
Kirkegaard et al. 1983; Sasse-Dwight and Gralla 1989) made
it possible to determine the region of strand separation with
single bp resolution. In spite of this, there is still no consensus
on the mechanisms of the formation of open states (Karpen
and deHaseth 2015) and regulation of their movement along
the DNA.

It is assumed that open states play an important role not
only in the processes of transcription (Clark and Pazdernik
2015; He et al. 2016; Zuo and Steitz 2017) but also in repli-
cation (Bailey and Doherty 2017; Bleichert et al. 2017), dena-
turation (Sicard et al. 2015; Shi et al. 2016; Singh and Granek
2017) as well as in the transmission of structural changes and
information along the DNA molecule (Dwiputra et al. 2017).
The role of the dynamic properties of open states in the pre-
diction of bacterial promoters has been recently considered by
Ryasik et al. (2018).

In general, there are two main competing approaches to
mathematical studying internal DNA mobility including open
state dynamics. The first is based on the molecular dynamics
method that takes into account the movements of all structural
elements of a molecule and all interactions between them. The
second method is based on prior selection of the main
(dominant) motions, their mathematical description with the
help of the model equations and the analysis of the solutions
of the equations. The advantage of the first method lies in the
maximum coverage and use of available information on the
internal mobility of DNA, while the disadvantage is associat-
ed with the difficulties in interpreting the results obtained. The
advantage of the second method is in the possibility of using
not only computational but also analytical methods that sim-
plifies the analysis and interpretation of the results. The dis-
advantage of this method is in the necessity to neglect a part of
information which might be important and interesting in some
special cases.

This review describes the results of the study of the open
states of DNA performed within the framework of the second
approach using the McLaughlin-Scott equation. In the first
section of the review, we consider a homogeneous case where
the McLaughlin-Scott equation is applied to DNA sequences
consisting of identical nitrogenous bases. These are the se-
quences poly (A), poly (T), poly (G) and poly (C). The section
begins with the necessary information about the predecessor
of the McLaughlin-Scott equation—the sine-Gordon equation
written in terms of DNA, about its one-soliton solutions
(kinks), as well as data on the main dynamic characteristics
of DNA kinks. Then, the McLaughlin-Scott equation for the
kink velocity is considered directly. We present analytical and
numerical solutions of this equation obtained in the absence of
an external field, in the presence of a constant external field, a
periodic external field with a constant frequency, a periodic
external field with a slowly varying frequency and an external
field with an “on/off” mode.

In the second part of the review, an inhomogeneous case is
considered. New methods and approaches are presented that
significantly expand the capabilities of the McLaughlin-Scott
method in studies of nonlinear dynamics of DNA and in the
construction of trajectories of motion of kinks in inhomoge-
neous DNA sequences. We demonstrate these new possibili-
ties for both artificial and native sequences, in particular,
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promoter regions of the T7 bacteriophage genome, the
IFNA17, ADRB2, NOS1 and IL-5 gene sequences, and the
pBR322 and pTTQ18 plasmid sequences. In conclusion, we
discuss the prospects for using the McLaughlin-Scott model,
as well as the limits of its applicability for DNA.

McLaughlin-Scott equation for homogeneous
DNA

We begin our review with a brief description of the sine-
Gordon equation, one-soliton solutions (kinks) and the main
dynamic characteristics of the kinks written in terms of homo-
geneous DNA. These results are considered as a starting point
for deriving the McLaughlin-Scott equation for DNA.

Sine-Gordon equation as a predecessor

Canonical sine-Gordon equation (1) is dimensionless, univer-
sal and can be applied to different nonlinear dynamical sys-
tems (not only to DNA). The sine-Gordon equation rewritten
in terms of homogeneous DNA:

Iφtt−K
0
a2φzz þ Vsinφ ¼ 0 ð6Þ

and one-soliton solution in the form of the kink:

φk z; tð Þ ¼ 4arctan exp γk=dkð Þ z−υk t−z0ð Þ½ �f g ð7Þ
were first obtained by Englander et al. (1980) and later with
refined parameters by Yakushevich et al. (2005).

Equation (6) is related to the canonical sine-Gordon equa-
tion (1) by a simple linear transformation:

τ ¼ λt; ξ ¼ μz; ð8Þ
where λ = (V/I)1/2, μ = a−1(V/K′)1/2.

In formulas (6)–(8) υk is the kink velocity, γk ¼
1−υ2

k=C
2

� �−1=2
is the Lorentz factor, C = (K ′ a2/I)1/2 is the

sound velocity in DNA, d = (K ′ a2/V)1/2 is the kink size, I =
mR2 is the moment of inertia of the base, m is mass of the
base, R is the distance between the center of mass of the base
and the nearest sugar-phosphate chain, V is the parameter that
characterizes interaction between nitrogenous bases in pairs,
K′ = KR2 is the coefficient of torsion rigidity of the sugar-
phosphate chain, K is the stretch rigidity and a is the distance
between the nearest base pairs.

Usually, considering the case of homogeneous (synthetic)
DNA, many researchers are limited to only one set of param-
eters. In fact, there should be four such sets. One is for the
sequence poly (A), the second for poly (T), the third for poly
(G) and finally the fourth for poly (C). The values of all four
parameter sets for different types of homogeneous DNA se-
quences were first gathered and estimated from experimental

data by Yakushevich et al. (2005) and then refined by
Yakushevich and Krasnobaeva (2016). The refined values
are presented in Table 1.

In addition to the velocity, the total kink energy and rest
energy:

E ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffi
1−

υ2k
C2

r ; ð9Þ

E0 ¼ 8
ffiffiffiffiffiffiffiffi
K 0V

p
; ð10Þ

are also important dynamic characteristics of the DNA kinks
(Yakushevich and Ryasik 2012).Within the sine-Gordonmodel,
both the total energy E and the velocity of the kink υk are con-
stants. There is one limitation on the velocity of the kink that is
necessary to ensure the stability of the solution (7): υk<C.

In the case υk < <C, formula (9) takes the form:

E ¼ E0 þ 8
ffiffiffiffiffiffiffiffi
K

0
V

p

C2

υ2k
2
; ð11Þ

whence follows the formula for the rest mass of a kink m0:

m0 ¼ 8
ffiffiffiffiffiffiffiffi
K

0
V

p

C2 : ð12Þ

Formulas (11)–(12) indicate that, in the first approxima-
tion, the DNA kink can be considered as a quasiparticle with
definite mass, velocity and rest energy.

Using formulas (10) and (12) and the parameter values
from Table 1, the values of the kink rest energy, mass and size
were obtained for four homogeneous DNA sequences: poly
(A), poly (T), poly (G) and poly (C) (see Table 2).

McLaughlin-Scott equation for DNA kink velocity.
Solution in the absence of external field

The McLaughlin-Scott equation in transformed parameters
was obtained from the modified sine-Gordon equation having
the following form (Yakushevich and Krasnobaeva 2007;
Yakushevich et al. 2012; Zakiryanov and Yakushevich 2013):

Iφtt−K
0
a2φzz þ Vsinφ ¼ −βφt þM tð Þ: ð13Þ

Table 1 Dynamic parameters of homogeneous DNA (Yakushevich and
Krasnobaeva 2016)

Sequence I (10−44 kg∙m2) K′(10−18 N∙m) V (10−20 J) a (10−10 m)

poly (А) 7.61 2.35 2.09 3.4

poly (Т) 4.86 1.61 1.43 3.4

poly (G) 8.22 2.27 3.12 3.4

poly (C) 4.11 1.54 2.12 3.4
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There are two additional terms on the right side of this
equation. The first term describes the effects of dissipation
that is the energy loss due to resistance of the surrounding.
The second term describes the action of an external field. It
can be a constant torsion moment (for example, DNA torque)
or periodic field (for example, terahertz field) (Swanson 2011;
Bergues-Pupo et al. 2013).

Equation (13) is related to the dimensionless canonical
equation (2) by linear transformation (8), β = α(IV)1/2,
M(t) =VF((V/I)1/2t).

When obtaining the McLaughlin-Scott equation, it was as-
sumed that the solution to Eq. (13) had the form of kink:

φk z; tð Þ ¼ 4arctg exp γk tð Þ=dkð Þ z−υk tð Þ⋅t−z0ð Þ½ �f g; ð14Þ

that was moving with the velocity υk(t) along the DNA
molecule.

It was shown that the time dependence of the velocity was
determined by the equation:

dυ0 tð Þ
dt

¼ −
β
I
υ0 tð Þ 1−υ02 tð Þ

� �
þ М tð Þπ

4
ffiffiffiffiffi
IV

p 1−υ02 tð Þ
� �3=2

: ð15Þ

Here, υ0 tð Þ ¼ υk tð Þ
C is the relative kink velocity, γ(t) = (1

− υ′2(t))−1/2.
In the absence of an external force, Eq. (15) takes on a

simpler form:

dυ0 tð Þ
dt

¼ −
β
I
υ0 tð Þ 1−υ02 tð Þ

� �
: ð16Þ

The solution of Eq. (16) was obtained by Yakushevich and
Krasnobaeva (2007) by the method of direct integration:

υ
0
tð Þ ¼

С
0
exp −

β
I

t−t0ð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ С

0 2
exp −2

β
I

t−t0ð Þ
� �s ; ð17Þ

where С′ is an arbitrary constant. The value of this constant
was found then from the initial condition:

υ
0
t ¼ 0ð Þ ¼ υ0

С
; ð18Þ

where υ0 is the kink initial velocity. Taking into account Eq.
(18), the final formula for the kink velocityυk(t) was obtained:

υk tð Þ ¼
υ0γ0exp −

β
I

t−t0ð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ0

C γ0
� �2exp −2

β
I

t−t0ð Þ
� �s ; ð19Þ

where γ0 ¼ 1− υ20
С2

� �−1=2
.

In 2014, the McLaughlin-Scott approach received a new
impetus for further development due to the fact that an ana-
lytical solution for the kink coordinate was found
(Yakushevich et al. 2014):

zk tð Þ ¼ z01−C
I
β
arcsinh

υ0
C
γ0exp −

β
I

t−t0ð Þ
� �� �

þ C
I
β
arcsinh

υ0
C
γ0

� �
; ð20Þ

where z01 is the kink coordinate at the initial moment of time
t0. The kink coordinate zk(t) is determined by formula:

υk tð Þ ¼ dzk tð Þ
dt .

Formulas (19) and (20) made it possible to obtain the time
dependence of the kink velocity and coordinate (Fig. 2a, b), as
well as to draw the kink trajectories on the phase plane {υk,
zk} (Fig. 2c) and in 3D space {υk, zk, t} (Fig. 2d)
(Yakushevich and Krasnobaeva 2019). The graphs were con-
structed for the sequences poly (A), poly (T), poly (G) and poly
(C). When constructing them, the numerical values of the
dissipation coefficients (βpoly(A) = 4.25 × 10−34 (J s), βpoly(T)
= 2.91 × 10−34 (J s), βpoly(G) = 4.10 × 10−34 (J s), βpoly(C)= 2.79
× 10−34 (J s)) obtained by Yakushevich et al. (2011) were
taken into account. Themodel value of the kink initial velocity
υ0 was chosen to be equal to 189 m/s, which was one-tenth of
the sound velocity in poly (A).

In Fig. 2a, the velocity of the kinks decreases with time that
is explained by the influence of dissipation effects, and the
decrease occurs more sharply in the case of poly (T) and poly
(C) sequences and more smoothly in the case of poly (G) and
poly (A) sequences.

Later, Krasnobaeva and Yakushevich (2015) obtained an
analytical formula determining the length of the path that the
kink could travel to a complete stop:

s ¼ IС
β

ln
υ0γ0
C

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ20γ

2
0

C2

s24 35: ð21Þ

Using this formula and the parameter values from Table 1,
it became possible to obtain the kink path lengths for four
homogeneous DNA sequences: poly (A), poly (T), poly (G)
and poly (C) (see Table 3).

From Table 3, it follows that the maximum kink path
length is observed in the case of poly (G), and the minimum
length, in the case of poly (C).

Table 2 Rest energy, mass and size of the DNA kinks activated in
homogeneous DNA (Krasnobaeva and Yakushevich 2020)

Sequence Е0 (10
−20∙J) m0 (10

−27∙kg) d (10−10∙m)

poly (А) 177.13 495.88 36.09

poly (Т) 121.32 316.97 36.09

poly (G) 212.88 666.56 29.00

poly (C) 144.74 333.14 29.00
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Solution in the presence of constant external field

It is believed that DNA torsion moment (DNA torque) can
act as a mechanical regulator for many biological process-
es, including transcription and replication (Forth et al.
2013). However, the mechanisms of the influence of the
torsion moment on the functional properties of the DNA
molecule are still not clear enough, despite extensive dis-
cussion of this issue in the scientific literature (Derks and
Gaeta 2011; Forth et al. 2013; Ma et al. 2013). This issue
could be clarified with the help of new technologies for
conducting experiments with single DNA, for example,
using the methods of an optical torque wrench or an
angle-dependent optical trap (AOT) (Porta and Wang
2004; Manoranjan et al. 2018), as well as the method of
magnetic tweezers (Harada et al. 2001; Klaue and Seidel
2009; Lipfert et al. 2010), which allow direct investigation
of the influence of such applied torque on the dynamic
properties of the DNA molecule.

The solution of the McLaughlin-Scott equation in the case
of constant torque M0 was obtained analytically by
Yakushevich and Krasnobaeva (2007) and numerically in

the work of Yakushevich et al. (2013, 2016). In this case,
the McLaughlin-Scott equation has the form:

dυ0 tð Þ
dt

¼ −
β
I
υ0 tð Þ 1−υ02 tð Þ

� �
þ М 0π

4
ffiffiffiffiffi
IV

p 1−υ02 tð Þ
� �3=2

; ð22Þ

and the analytical solution for the kink velocity is determined by:

υk tð Þ ¼
υ0γ0−

CM 0π

4β

ffiffiffiffi
I
V

r !
exp −

β

I
t

� �
þ CM 0π

4β

ffiffiffiffi
I
V

r" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ0

C γ0−
M 0π
4β

ffiffiffi
I
V

q� �
exp − β

I t
� �þ M0π

4β

ffiffiffi
I
V

qh i2r : ð23Þ

Fig. 2 Time dependence of the kink velocity (a) and coordinate (b), as
well as the kink trajectories on the phase plane {υk, zk} (c) and in 3D
space {υk, zk, t} (d). The graphs are constructed for four homogeneous

sequences poly (A), poly (T), poly (G) and poly (C) and for the case of the
absence of any external field. The initial velocity of the kinks is υ0 = 189
(m/s)

Table 3 Kink path
lengths in homogeneous
sequences

Sequence s (10−7 m)

poly (А) 0.339

poly (Т) 0.317

poly (G) 0.380

poly (C) 0.279
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In Fig. 3, the graphs of the time dependence of the kink
velocity and coordinate, as well as 2D and 3D kink trajecto-
ries, are shown. These graphs were calculated for the se-
quences poly (A), poly (T), poly (G) and poly (C) using the
data of Table 1, as well as model valuesM0 = 2.85 × 10−23 (J)
and υ0 = 189 (m/s). The reasons for this choice of model
values are as follows. As mentioned above, there is one im-
portant requirement for kink velocity: υk < C .Taking into
account that the velocity of sound in DNA is equal to 1890
m/s, the initial value of the kink veocity was chosen equal to
189 m/s, which is 10 times less than C. The chosen model
valueM0 coincides in order of magnitude with the data of Lui
and Wang (1987) and Nelson (1999).

In the work of Yakushevich and Krasnobaeva (2007), it
was shown that for each type of homogeneous DNA, it is
possible to find a value of the constant external field М0

crit,
for which the velocity of the kink movement remained con-
stant and equal to the initial value. To prove this, it was
enough to assume that the derivative in Eq. (22) was equal
to zero. Then, the McLaughlin-Scott equation transformed to:

β
I
υ0 tð Þ 1−υ02 tð Þ

� �
¼ М 0π

4
ffiffiffiffiffi
IV

p 1−υ02 tð Þ
� �3=2

; ð24Þ

whence the formula for М0
crit was found

M crit
0 ¼ 4β

π
υ0γ0
C

ffiffiffiffi
V
I

r
; ð25Þ

where

γ0 ¼ 1− υ0=Cð Þ2
� �−1=2

: ð26Þ

Numerical estimates of М0
crit that we calculated for four

types of homogeneous polynucleotide chains are presented in
the second column of Table 4.

Another important feature in the DNA kink behavior was
noted in the computer experiments: after a short initial period,
the kink velocity always reached a constant (stationary) value

Fig. 3 Time dependence of the kink velocity (a) and coordinate (b), as
well as the kink trajectories on the phase plane {υk, zk} (c) and in 3D
space {υk, zk, t} (d). The graphs are constructed for four homogeneous

sequences poly (A), poly (T), poly (G) and poly (C) and in the presence of
a constant external field. The initial velocity of the kinks is υ0 = 189 (m/s)

Table 4 Critical values
of М0

crit in the case υ0 =
189 (m/s) and stationary
kink velocity calculated
in the case of constant
external field M0 = 2.85
× 10−23 (J)

Sequence М0
crit (10−23 J) υst (m/s)

poly (А) 2.85 189.05

poly (Т) 1.95 274.68

poly (G) 3.43 157.49

poly (C) 2.33 231.10
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(Yakushevich and Krasnobaeva 2007; Yakushevich et al.
2016). It was shown that the stationary velocity did not de-
pend on the value of the initial velocity. This was confirmed
via development of an analytical formula which permitted the
calculations of values of the stationary kink velocity for dif-
ferent types of homogeneous polynucleotide chains:

υst ¼ С 1þ 16Vβ2

π2IM2
0

	 
−1=2
: ð27Þ

The calculation results for four types of homogeneous poly-
nucleotide chains are presented in the third column of Table 4.

Solution in the presence of periodic external field
with constant frequency

The action of periodic fields on living systems is a frequently
encountered problem in modern biophysics. This is due to the
growing number and variety of electronic devices and their
influence on the basic fundamental life processes and, there-
fore, on human health. It has been suggested that external
periodic fields with a frequency of the terahertz range can

cause a change in the physicochemical property of DNA
(Alexandrov et al. 2010a, b).

The McLaughlin-Scott equation gives a possibility to dem-
onstrate one of the mechanisms of the influence of this field on
the dynamics of open states in DNA. In the case of a periodic
external field with a constant frequency Ω, the McLaughlin-
Scott equation has the form (Yakushevich et al. 2012):

dυ
0
tð Þ

dt
¼ −

β
I
υ

0
tð Þ 1−υ

02
tð Þ

� �
þ M 0cos Ωtð Þπ

4
ffiffiffiffiffi
IV

p 1−υ
02

tð Þ
� �3=2

: ð28Þ

An analytical solution of Eq. (28) was found by
Krasnobaeva and Shapovalov (2009):

υk tð Þ ¼
υ0γ0−

C0bh

h2 þ Ω2

� �
exp −htð Þ þ C0b

h2 þ Ω2 hcosΩt þ ΩsinΩtð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ0

C0
γ0− bh

h2þΩ2

� �
exp −htð Þ þ b

h2þΩ2 hcosΩt þ ΩsinΩtð Þ
n o2

r ;

ð29Þ

where b¼ M0π
4
ffiffiffiffi
IV

p , h ¼ β
I .

Fig. 4 Time dependence of the kink velocity (a) and coordinate (b), as
well as the kink trajectories on the phase plane {υk, zk} (c) and in 3D
space {υk, zk, t} (d). The graphs are constructed for four homogeneous

sequences poly (A), poly (T), poly (G) and poly (C) and in the presence of
a periodic external field with constant frequency. The initial velocity of
the kinks is υ0 = 189 (m/s)
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In Fig. 4, the graphs of the time dependence of the kink
velocity and coordinate, as well as 2D and 3D kink trajectories,
are shown. These graphs were calculated for the homogeneous
sequences poly (A), poly (T), poly (G) and poly (C) using the data
in Table 1, as well as model valuesM0 = 2.85 × 10−23 (J), υ0=
189 (m/s) and Ω = 0.4 × 1012 (s−1). Due to the lack of experi-
mental data, the obtained results on the influence of this periodic
field on the dynamics of open states are so far only predictive.

Solution in the presence of periodic external field
with a slowly varying frequency

The case of periodic external field with a slowly vary-
ing frequency was considered by Yakushevich et al.
(2012, 2013). The McLaughlin-Scott equation takes in
this case the following form:

dυ0 tð Þ
dt

¼ −
β
I
υ0 tð Þ 1−υ02 tð Þ

� �
þ π

4
ffiffiffiffiffi
IV

p М0cos Ωt−αt2=2
� �

1−υ02 tð Þ
� �3=2

: ð30Þ

Here, M0 and Ω are the amplitude and frequency of the
external field, and α is the coefficient characterizing
the velocity of decrease (or increase) of the frequency.

An analytical solution of Eq. (30) has not yet been found.
Numerical solutions for the velocity, coordinates and phase
trajectory of the kink were obtained in the works of
Krasnobaeva and Yakushevich (2015) and Yakushevich
et al. (2013). Figure 5 shows the results obtained using the
revised values of the DNA dynamic parameters from Table 1,
the initial kink velocity (m/s), as well as model values charac-
terizing the external field: M0 = 2.85 × 10−19 (J), Ω = 0.4 ×
1012 (s−1) and α = 1 × 1021 (s−2) (Yakushevich et al. 2013).

Solution in the presence of on/off external field

In the case of an on/off external field, the McLaughlin-Scott
equation has the form (Yakushevich et al. 2018a, b):

dυ0 tð Þ
dt

¼ −
β
I
υ

0
tð Þ 1−υ

02
tð Þ

� �
þ π

4
ffiffiffiffiffi
IV

p M0 1−υ
02

tð Þ
� �3=2

1

1þ exp t1−tð Þ=σ
� � − 1

1þ exp t2−tð Þ=σ
� �

0@ 1Aþþ π

4
ffiffiffiffiffi
IV

p M1cos Ωtð Þ

1

1þ exp t3−tð Þ=σ
� � − 1

1þ exp t4−tð Þ=σ
� �

0@ 1A 1−υ
02

tð Þ
� �3=2

ð31Þ

Fig. 5 Time dependence of the kink velocity (a) and coordinate (b), as
well as the kink trajectories on the phase plane {υk, zk} (c) and in 3D
space {υk, zk, t} (d). The graphs are constructed for four homogeneous

sequences poly (A), poly (T), poly (G) and poly (C) and in the presence of
a slowly varying periodic external field: М0 cos (Ωt −αt2/2). The initial
kink velocity is υ0 = 189 (m/s)
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Here, M0 denotes a constant external field, M1cos(Ωt)
models a periodic external field, σ ¼ eσ ffiffiffiffiffiffiffiffiffi

V=I
p

, and eσ is the
parameter characterizing the slope of the sigmoid function.

Numerical solutions of Eq. (31) for the velocity and coor-
dinates of the kink, as well as two-dimensional and three-
dimensional trajectories of the kink, are shown in Fig. 6.
The results presented correspond to the case when initially
the constant external field is switched on/off, and after a pause,
the periodic external field is switched on/off. The time inter-
vals during which the external fields are turned on are indicat-
ed by stripes. The results presented in Fig. 6 were obtained
using the values of the dynamic parameters of DNA from
Table 1 and model values υ0 = 0, M0 = 2.85 × 10−23 (J), M1

= 2.85 × 10−23 (J) and eσ ¼ 5.

McLaughlin-Scott equation
for inhomogeneous DNA

Natural DNA is inhomogeneous (Watson and Crick 1953;
Crick andWatson 1954). It contains four types of nitrogenous
bases: adenine (A), thymine (T), guanine (G) and cytosine

(C), arranged in a certain order, unique for each living organ-
ism. Therefore, when modeling the internal dynamics of in-
homogeneous DNA, it is necessary to take into account that
the values of the dynamic parameters are not constant but
depend on the location of nitrogenous bases in the sequence.

This approach was used for simulation of bubble dynamics
in artificial inhomogeneous (random, periodic, aperiodic) se-
quences (Dominguez-Adame et al. 1995; Yakushevich et al.
2002) and natural DNA sequences such as the sequence of the
A1 promoter of bacteriophage T7 (Salerno 1991), sequences
of the A3 and D promoter of bacteriophage T7 (Salerno 1992),
the promoter sequence of the pBR322 plasmid (Salerno
1995), the complete genome of the bacteriophage T7
(Lennholm and Hornquist 2003), some regions of the human
genome (coding region 114 000–115 000 and non-coding
region 50000–51000) (Cuenda and Sanchez 2004a, b). In
these works, different modifications of the sine-Gordon equa-
tion were used.

Sine-Gordon equations for inhomogeneous DNA

One of the first modifications of the sine-Gordon equation,
taking into account DNA inhomogeneity, was proposed by

Fig. 6 Time dependence of the kink velocity (a) and coordinate (b), as
well as the kink trajectories on the phase plane {υk, zk} (c) and in 3D
space {υk, zk, t} (d). The graphs are constructed for four homogeneous

sequences poly (A), poly (T), poly (G) and poly (C) and in the presence of
an on/off external field. The initial kink velocity is υ0 = 189 (m/s)
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Salerno (1991). For this purpose, a discrete version of Eq. (5)
was used:

In
d2φn

dt2
−K

0
n φnþ1−2φn þ φn−1
� �þ Vnsinφn ¼ 0; ð32Þ

where the first two coefficients (In and K
0
n ) were assumed to

be constants, and the third coefficient (Vn), characterizing the
interaction between complementary bases within pairs, was
replaced by:

Vn ¼ λnη
2

; ð33Þ

where λn = 2 in the case of an AT base pair, and λn = 3 in the
case of a GC base pair.

Salerno solved the problems (32)–(33) numerically and
used the solutions (kinks) to simulate the movement of the
DNA open states in a small (168 base pairs) fragment of the
T7 bacteriophage sequence:

ttgtctttattaatacaactcactataagg
agagacaacttaaagagacttaaaagatta
atttaaaatttatcaaaaagagtattgact
taaagtctaacctataggatacttacagcc
atcgagagggacacggcgaatagccatccc
aatcgacaccggggtcaa

The bacteriophage T7 genome is one of the most studied
genomes. It is also one of the first genomes to be fully

sequenced (Dunn et al. 1983, Genome of bacteriophage T7,
n.d.). An important area of application of bacteriophages is
antibacterial therapy, as well as genetic engineering. Salerno
and Kivshar Yu (1994) suggested that the kinklike solutions
of Eq. (32) can be thought of as quasiparticles moving in the
effective potential of the T7 bacteriophage.

It seemed quite natural that further development of this
direction would follow the path of a simple generalization of
the Salerno model, and that for this it would be sufficient to
take into account the dependence of all three coefficients from
the sequence of bases. However, Grinevich et al. (2013)
showed that a model generalized in this way led to contradic-
tory results. The reason for these contradictions was explained
later (Grinevich et al. 2015a, b). It was shown that the more
accurate derivation of the sine-Gordon equation for an inho-
mogeneous DNA led to the following model equation:

In
d2φn

dt2
−KRn Rnþ1φnþ1−2Rnφn þ Rn−1φn−1

� �
þ Vnsinφn

¼ 0; ð34Þ

which in the continuum limit took the form:

I zð Þ ∂
2φ
∂t2

−KR zð Þ ∂
2 R zð Þφð Þ
∂z2

þ V zð Þsinφn ¼ 0: ð35Þ

Table 5 Coefficients of the McLaughlin-Scott equation for the IFNA17 gene and the kink dynamic characteristics (Krasnobaeva and Yakushevich
2015)

Sequence Coefficients of the McLaughlin-Scott equation Dynamic characteristics of kinks

IFNA17
I
(10−44 kg∙m2)

K
!0

(10−18 N∙m)

V
(10−20 J)

α
(10

−34 J s)
E0

(10−20 J)
m0

(10−27 kg)
d
(10−10 m)

6.11 1.93 2.08 3.49 1.60 438.78 32.75

Fig. 7 Time dependence of the velocity of kinks activated in the IFNA17
gene and in homogeneous chains. The graphs were constructed forM0 =
2.85 × 10−23 (J), υ0 = 189 (m/s)

Fig. 8 Schematic representation of the pTTQ18 plasmid containing four
functional regions: promoter (Pr), terminator (Term) and two coding re-
gions (CDS-1 and CDS-2)
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Problem (35) has not yet been solved analytically. However,
Yakushevich and Krasnobaeva (2008a, b) proposed an approx-
imate method, called the method of concentrations method,
which made it possible to reduce the inhomogeneous problem
(35) to a quasi-homogeneous one and thus to solve it using the
methods applied for solving homogeneous problems.

Method of concentrations

In the method of concentrations, the idea of Dominguez-
Adame et al. (1995) was used whereby they proposed replac-
ing the coefficient V(z) in Eq. (35) by a linear function of the
concentrations of AT and GC base pairs in the double poly-
nucleotide chain:

V→V CAT ;CGCð Þ ¼ CATVAT þ CGCVGC ; ð36Þ
whereCAT andCGC are the concentrations of AT and GC base
pairs, respectively. VAT and VGC are the values of the
coefficient V in the double strand consisting of only AT
base pairs and of only GC base pairs, respectively. This
idea was developed by Yakushevich and Krasnobaeva
(2008a). They suggested that three coefficients (I, K′

and V) of the inhomogeneous sine-Gordon equation
depended on the concentrations of A-, T-, G- and T-
bases (CA, CT, CG and CC) in the DNA sequence:

I ¼ IACA þ ITCT þ IGCG þ ICCC;

K
0
¼ K

0
ACA þ K

0
TCT þ K

0
GCG þ K

0
CCC;

V ¼ VACA þ VTCT þ VGCG þ VCCC:

ð37Þ

Here IA, IT, IG and IC are the moments of inertia of adenine,
thymine, guanine and cytosine, respectively; K′A, K′T, K′G and
K′C are the torsion rigidity constants in homogeneous DNA;
VA, VT, VG and VC are the constants that characterize interac-
tion between nitrogenous bases in pairs AT, TA, GC and CG.
Concentrations are determined by formulas:

CA ¼ NA

N
;CT ¼ NT

N
;CG ¼ NG

N
;CC ¼ NC

N
; ð38Þ

CA þ CT þ CG þ CC ¼ 1; ð39Þ
where NA, NT, NG, NC are the number of adenines, thymines,
guanines and cytosines, respectively; N is the total number of
the bases in the sequence.

Then, Eq. (35) takes the following form:

Iφtt−K
0
a2φzz þ Vsinφ ¼ 0; ð40Þ

and the complex inhomogeneous problem (35) is reduced to
the simpler homogeneous problem (39) with renormalized
coefficients.

After taking into account the effects of dissipation and ex-
ternal field, Eq. (39) transforms to:

Iφtt−K
0
a2φzz þ Vsinφ ¼ −βφt þM tð Þ; ð41Þ

where β ¼ βA CA þ βT CT þ βG CG þ βC CC . The one-
soliton solution of Eq. (41) has the form:

φk z; tð Þ ¼ 4arctg exp γk tð Þ=dkð Þ z−υk tð Þ � t−z0ð Þ½ �f g: ð42Þ

Table 6 Coefficients of the McLaughlin-Scott equation for the pTTQ18 plasmid and the kink dynamic characteristics (Yakushevich et al. 2018a)

Sequence Coefficients of the McLaughlin-Scott equation Dynamic characteristics of kinks

pTTQ18
I
(10−44

kg∙m2)

K
0�!

(10−18

N∙m)

V
(10−20

J)

α
(10

−34
J s)

E0

(10−20

J)

m0

(10−27 kg)
d
(10−10

m)

6.21 1.95 2.21 3.51 1.66 457.87 31.91

Fig. 9 Time dependence of the velocity of kinks activated in the pTTQ18
plasmid. Curve 1 corresponds toM01 = 5.37 × 10−23 (J), curve 2—M02 =
2.67 × 10−23 (J), curve 3—M03 = 2.77 × 10−24 (J). υ0 = 189 (m/s)

Table 7 Details of the structure of the ADRB2, NOS1 and IL-5 gene
sequences

Sequence NA NT NG NC N

ADRB2 466 529 498 520 2013

NOS1 3028 2833 3135 3295 12,291

IL-5 589 584 419 460 2052
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Here, γ tð Þ ¼ 1−υ02 tð Þ
� �−1=2

, C ¼ K 0a2=Ið Þ1=2, d ¼ K 0a2=Vð Þ1=2.
Within this approach, the total kink energy is determined as:

E tð Þ ¼ E0γ tð Þ; ð43Þ

where E0 ¼ 8
ffiffiffiffiffiffiffiffi
K 0V

p
is the rest energy. The rest mass is deter-

mined as:

m0 ¼ 8

ffiffiffiffiffiffiffiffiffi
K

0
V

q
C

2 : ð44Þ

Solution of the McLaughlin-Scott equation for the
IFNA17 gene by the method of concentrations

The McLaughlin-Scott equation derived from the sine-
Gordon equation (41) has the form:

dυ0 tð Þ
dt

¼ −
β

I
υ0 tð Þ 1−υ02 tð Þ

� �
þ М tð Þπ

4

ffiffiffiffiffiffiffi
I V

q 1−υ02 tð Þ
� �3=2

: ð45Þ

where υ0 tð Þ ¼ υk tð Þ
C

is the relative kink velocity.

One of the first examples of the application of the
method of concentrations for solving the McLaughlin-
Scott equation in the case of inhomogeneous DNA
was presented in the work of Krasnobaeva and
Yakushevich (2015). An analytical solution was obtain-
ed there for the IFNA17 gene coding interferon alpha
17 (human), which is known in medicine as an antiviral
and antitumor drug (Dubois et al. 2009; Bychkov et al.
2011). The IFNA17 gene was identified by Lawn et al.
(1983). The sequence of nucleotides in this gene (Homo
sapiens interferon alpha 17 (IFNA17) n.d.) is the
following:

The sequence contains 282 adenines, 303 thymines,
181 guanines and 214 cytosines. The total number of
bases in the IFNA17 gene sequence is equal to 980.
With the help of formula (37), the coefficients of the
McLaughlin-Scott equation were obtained. Using formu-
las (43) and (44), the values of the main dynamic

characteristics of the kink propagating in the IFNA17
gene were obtained. The results of these calculations
are presented in Table 5.

Then, with the help of formula (23), the model valuesM0 =
2.85 × 10−23 (J) and υ0 = 189 (m/s), the dependence of the
kink velocity on time was constructed (Fig. 7)

Table 8 Coefficients of the McLaughlin-Scott equation for the ADRB2, NOS1 and IL-5 genes and the kink dynamic characteristics (Krasnobaeva
et al. 2012)

Sequence Coefficients of the McLaughlin-Scott equation Dynamic characteristics of kinks

I
(10−44 kg∙m2)

K
0�!

(10−18 N∙m)

V
(10−20 J)

α
(10

−34
J s)

E0

(10−20 J)

m0

(10−27 kg)
d
(10−10 m)

ADRB2 6.13 1.93 2.18 3.49 163.91 451.09 31.99

NOS1 6.19 1.94 2.21 3.51 165.67 456.69 31.90

IL-5 6.17 1.94 2.12 3.51 162.25 445.51 32.56

1 gttcaaggtt acccatctca agtagcctag caacatttgc aacatcccaa tggccctgtc
61 cttttcttta ctgatggccg tgctggtgct cagctacaaa tccatctgtt ctctaggctg

121 tgatctgcct cagacccaca gcctgggtaa taggagggcc ttgatactcc tggcacaaat
181 gggaagaatc tctcctttct cctgcctgaa ggacagacat gactttggac ttccccagga
241 ggagtttgat ggcaaccagt tccagaagac tcaagccatc tctgtcctcc atgagatgat
301 ccagcagacc ttcaatctct tcagcacaga ggactcatct gctgcttggg aacagagcct
361 cctagaaaaa ttttccactg aactttacca gcaactgaat aacctggaag catgtgtgat
421 acaggaggtt gggatggaag agactcccct gatgaatgag gactccatcc tggctgtgag
481 gaaatacttc caaagaatca ctctttatct aacagagaag aaatacagcc cttgtgcctg
541 ggaggttgtc agagcagaaa tcatgagatc tctctctttt tcaacaaact tgcaaaaaat
601 attaaggagg aaggattgaa aactggttca acatggcaat gatcctgatt gactaataca
661 ttatctcaca ctttcatgag ttcctccatt tcaaagactc acttctataa ccaccacgag
721 ttgaatcaaa attttcaaat gttttcagca gtgtaaagaa gcgtcgtgta tacctgtgca
781 ggcactagta ctttacagat gaccatgctg atgtctctgt tcatctattt atttaaatat
841 ttatttaatt atttttaaga tttaaattat ttttttatgt aatatcatgt gtacctttac
901 attgtggtga atgtaacaat atatgttctt catatttagc caatatatta atttcctttt
961 tcattaaatt tttactatac
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Figure 7 shows that the velocity of the kink activated in the
IFNA17 gene (solid line) first increases and then reaches a
stationary value υst = 208.65 m/s. The increase of the velocity
at the initial stage is explained by the fact that the model value
of the constant external fieldM0 = 2.85 × 10−23 (J) exceeds the
critical value M0

crit = 2.58 × 10−23 (J). Curves calculated for
homogeneous sequences poly (T) and poly (C) behave in a
similar way. However, in the case of poly (A), the velocity
curve remains straight, and in the case of poly (G), it
decreases.

Solution of the McLaughlin-Scott equation for the
pTTQ18 plasmid by the method of concentrations

The method of concentrations was applied by Yakushevich
et al. (2018a) to solve the McLaughlin-Scott equation for the
case of a small circular DNA molecule, the pTTQ18 plasmid
(Stark 1987) (Fig. 8). This plasmid was originally intended for
the expression of cloned genes in Escherichia coli under the
control of the tac promoter (Amann et al. 1983). It is widely
used now in genetic engineering for genetic information trans-
fer and for genetic manipulations (Bishop et al. 2003). The
sequence length of the plasmid is 4563 bases (Plasmid
pTTQ18, complete sequence, n.d.). Of these, 1105 are ade-
nines, 1090 are thymines, 1193 are guanines and 1175 are
cytosines (see Appendix 2).

The coefficients of the McLaughlin-Scott equation, calcu-
lated with the help of Eq. (37), as well as the dynamic char-
acteristics of the kink (rest energy, mass and size), obtained
using formulas (43)–(44), are presented in Table 6. The curves
of the kink velocity versus time, calculated for three different
values of the external field, are shown in Fig. 9.

Figure 9 shows the time dependence of the kink velocity
for three different values of constant external field. In the case
M01 = 5.37 × 10−23 (m /s) >M0

crit, the kink velocity increases
and reaches a stationary value υst = 369.08 (m/s) (curve 1). At
М02 = M0

crit = 2.70 × 10−23 (J), the kink velocity practically
does not change and remains equal to υst = 187.37 (m/s)
(curve 2). At М03 = 2.67 × 10−24 (m/s) < M0

crit, the kink
velocity decreases and goes to the stationary value υst =
18.83 (m/s) (curve 3).

Solution of the McLaughlin-Scott equation for the
ADRB2, NOS1 and IL-5 genes by the method of
concentrations

Krasnobaeva et al. (2012) used the method of concentrations
to solve the McLaughlin-Scott equation for three genes: the
ADRB2, NOS1 and IL-5 genes of the human genome with an
established effect on the course of bronchial asthma (Lammers
et al. 1992). The ADRB2 gene encodes a beta-2-adrenergic
receptor that is an ionic protein channel built into the cytoplas-
mic membrane of a cell, which has a high affinity for adren-
aline and provides an increase or decrease in the activity of an
innervated tissue or organ (Israel et al. 2000; Bengtsson et al.
2001; Dallongeville et al. 2003; Contopoulos-Ioannidis et al.
2005). The NOS1 gene encodes nitric oxide synthase, which
in turn catalyzes the production of nitric oxide (NO). The latter
plays an important role in the body of mammals, participating
in neurotransmission, regulation of blood circulation and the
development of lung pathology (Grasemann et al. 1999;
Alderton et al. 2001; Shinkai et al. 2002; Reif et al. 2006).
The IL-5 gene encoding interleukin-5 (IL-5) belongs to an
extensive family of cytokines that are information molecules
secreted by cells of the immune system (Stark et al. 2007). In
turn, cytokines mediate intercellular and intersystem interac-
tions, regulating cell survival, stimulation or suppression of
their growth, differentiation, functional activity and apoptosis,
ensuring the coordination of the action of the immune, endo-
crine and nervous systems (Mordvinov and Furman 2009).

Fig. 10 Time dependence of the velocity of kinks activated in the genes
ADRB2, NOS1 and IL-5

Table 9 Stationary kink
velocities in the genes
ADRB2, NOS1 and IL-5
(Krasnobaeva et al.
2012)

Sequence υst (m/s)

ADRB2 204.16

NOS1 206.23

IL-5 202.01

Table 10 Details of the structure of A1, A2 and A3 promoters

Sequence NA NT NG NC N

А1 25 19 7 9 60

А2 27 11 12 10 60

А3 26 9 13 12 60
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The sequences of these genes (Homo sapiens adrenoceptor
beta 2 (ADRB2) n.d.; Homo sapiens nitric oxide synthase 1
(NOS1) n.d.; Homo sapiens interleukin 5 (IL5) n.d.) are pre-
sented in Appendixes 3–5. After calculating the number of A-,
T-, G- and C-bases in these sequences (see Table 7) and ap-
plying formula (37), the values of the coefficients of the
McLaughlin-Scott equation were obtained (see Table 9).

With the help of formulas (37), (43) and (44), the coeffi-
cients of the McLaughlin-Scott equation and the main dynam-
ic characteristics of the kinks propagating in the ADRB2,
NOS1 and IL-5 genes were obtained (see Table 8).

Table 8 shows that the kink activated in the IL-5 gene has
the lowest rest energy, and the kink activated in the NOS1
gene has the highest rest energy. The difference is 3.42 J.
Thus, it can be argued that from an energetic point of view,
it is easiest to excite a kink in the IL-5 gene, and most difficult

in the NOS1 gene. Note also that the mass of the kink activat-
ed in the NOS1 gene is the largest, and the size is the smallest.

With the help of formula (23), parameters presented in
Table 8, the model values of the external field M0 = 2.85 ×
10−23 (J) and the initial velocity υ0 = 189 (m/s), the time
dependence of the kink velocity was constructed (Fig. 10).

Figure 10 shows that the velocity of the kink for each
sequence reaches a stationary value. Numerical estimates of
the values of stationary velocities are presented in Table 9.

Solution of the McLaughlin-Scott equation for three
promoters of bacteriophage T7 by the method of
concentrations

Yakushevich and Krasnobaeva (2008b) solved the McLaughlin-
Scott equation for three promoters: A1, A2 and A3:

which produce early mRNAs and are located near the left
end of the T7 bacteriophage sequence (Genome of
bacteriophage T7, n.d.) (Table 10).

With the help of formulas (37), (43) and (44), the values of
the coefficients of the McLaughlin-Scott equation and the
main dynamic characteristics of the kinks propagating in the
A1, A2 and A3 promoters were obtained (see Table 11).

Table 11 shows that the rest energy of the kink activated in
the promoter A1 is less than the rest energy of the kink acti-
vated in the promoters A2 and A3. Thus, it is more energeti-
cally advantageous to activate kink in the A1 promoter than in
the A2 and A3 promoters. This conclusion is consistent with
the fact that the A1 promoter is a “strong” promoter, while the
A2 and A3 promoters are weak.

Yakushevich and Krasnobaeva (2008a) were limited
themselves to consideration of A1, A2 and A3

promoters. However, the methods described above make
it possible to consider a wider class of sequences hav-
ing the same values of the coefficients of the
McLaughlin-Scott equation as in the case of promoters
A1, A2 and A3.

Let us call such sequences the promoter-like sequences and

denote them as A1, A2 and A3. Figure 11 shows the time
dependence of the velocity and coordinates of the kinks mov-
ing under the action of a constant external fieldM0, as well as
the kink trajectories on the phase plane {υ, z}, calculated using
the dynamic parameters from Table 11 and the model M0 =
2.85 × 10−23 (J) and υ0 = 189 (m/s).

Figure 11a shows that the kink velocity calculated for
each promoter-like sequence reaches a stationary value.
Numerical estimates of the stationary velocities are pre-
sented in Table 12.

Table 11 Coefficients of the McLaughlin-Scott equation and the kink dynamic characteristics, calculated for A1, A2 and A3 promoters (Yakushevich
and Krasnobaeva 2008b)

Sequence Coefficients of the McLaughlin-Scott equation Dynamic characteristics of kinks

I
(10−44 kg∙m2)

K
0�!

(10−18 N∙m)

V
(10−20

J)

α
(10

−34

J s)

E0

(10−20

J)

m0

(10−27

kg)

d
(10−10

m)

А1 6.28 1.99 2.00 3.59 159.56 436.82 33.85

А2 6.64 2.06 2.18 3.73 169.61 472.16 33.10

А3 6.63 2.06 2.22 3.73 171.03 475.84 32.77

А1: tttaaaatttatcaaaaagagtattgacttaaagtctaacctataggatacttacagcca
A2: taagtcgcacgaaaaacaggtattgacaacatgaagtaacatgcagtaagatacaaatcg
A3: gcacataaggtgaaacaaaacggttgacaacatgaagtaaacacggtacgatgtaccaca
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Method of blocks

In contrast to the method of concentrations, the method of
blocks proposed by Grinevich et al. (2015a) makes it possible
to take into account inhomogeneity of the DNA molecule.

According to this method, an inhomogeneous DNA se-
quence is first divided into several regions or blocks.
Usually, such blocks are functionally significant regions and
areas between them. Secondly, for each of the blocks, the
solutions of the McLaughlin-Scott equation are found with

the help of the method of concentrations. Then, these solutions
are stitched at the boundaries between the blocks.

This approach allows calculating the energy profile of the
sequence and constructing the trajectories of kinks moving in
a potential field with such a profile.

Solution of the McLaughlin-Scott equation for the
IFNA17 gene by the method of blocks

The solution of the McLaughlin-Scott equation for the
IFNA17 gene has been obtained by Yakushevich and
Krasnobaeva (2017) using the method of blocks. In contrast
to the method of concentrations, the method of blocks takes
into account the internal structure of the sequence, which,
according to the GenBank data (Homo sapiens interferon
alpha 17 (IFNA17) n.d.) contains three blocks: one CDS re-
gion (50..619) and two regions (1..49) and (620..980) with
unknown functional properties (Fig. 12).

The details of the gene structure are presented in Table 13.
There, Nj is the total number of nitrogenous bases in the j-th
block, Nj,A, Nj,T, Nj,G and Nj,C are the numbers of adenines,
thymines, guanines and cytosines in the j-th block, j = 1, 2, 3.

Fig. 11 Time dependence of the kink velocity (a) and coordinate (b), as
well as the kink trajectories on the phase plane {υk, zk} (c) and in 3D
space{υk, zk, t} (d). The graphs are constructed for promoter-like

sequences A1, A2 and A3 in the presence of a constant external field М0

= 2.85 × 10−23 (J). The initial velocity of the kinks is υ0 = 189 (m/s)

Table 12 Stationary kink velocities calculated for promoter-like se-
quences (Yakushevich and Krasnobaeva 2008a)

Sequence υst (m/s)

A1
209.67

A2
197.35

A3
195.74
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The coefficients of the McLaughlin-Scott equation and the
kink rest energy averaged over the length of each of the three
blocks are presented in Table 14.

Using the data of Table 14, the energy profile of the
IFNA17 gene was constructed (Fig. 13). It turned out that
the profile contained one barrier corresponding to the CDS
region.

The solution of the McLaughlin-Scott equation in the first
block has the following form (Yakushevich and Krasnobaeva
2017):

υ1;k tð Þ ¼
υ01eγ01� �

exp −
eβ1eI1 t

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ01eC01

eγ01
 !

exp −
eβ1eI1 t

 !" #2vuut ; ð46Þ

where υ01 is the initial kink velocity, eI1 is the moment of

inertia averaged over the first block, eC01 is the sound velocity

in the first block, eγ01 ¼ 1− υ01=eC01

� ��
2Þ−1=2 and eβ1 is the

coefficient of dissipation.
In the second and third blocks, the kink velocity is determined

by similar formulas (Yakushevich and Krasnobaeva 2017):

υ2;k tð Þ ¼
υ02eγ02� �

exp −
eβ2eI2 t−t1ð Þ

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ02eC02

eγ02
 !

exp −
eβ2eI2 t−t1ð Þ

 !" #2vuut ð47Þ

υ3;k tð Þ ¼
υ03eγ03� �

exp −
eβ3eI3 t−t2ð Þ

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ03eC03

eγ03
 !

exp −
eβ3eI3 t−t2ð Þ

 !" #2vuut ð48Þ

where υ02 and υ03 are the initial velocities of the DNA kink in
the second and the third blocks, eI2 and eI3 are the moments of

inertia of nitrogenous bases averaged over the second and
third blocks, respectively, eC02 and eC03 are the sound velocities
in the second and in the third blocks, eγ02 ¼ 1− υ02=eC02

� ��
2Þ−1=2, eγ03 ¼ 1− υ03=eC03

� ��
2Þ−1=2, eβ2 and eβ3 are the coef-

ficients of dissipation, t1 and t2 are the times of crossing the
boundaries between the first and second blocks and between
the second and third blocks, respectively.

Defining the kink coordinate in the i-th block by formula:

υki tð Þ ¼ dzki tð Þ
dt , the formulas for time dependence of the kink

coordinate for each of the blocks were found:

z1;k tð Þ ¼ ∫
t

0
υ1;k τð Þdτ : ð49Þ

z2;k tð Þ ¼ ∫
t

t1
υ2;k τð Þdτ ð50Þ

z3;k tð Þ ¼ ∫
t

t2
υ3;k τð Þdτ ð51Þ

With the help of formulas (49)–(51) and of the data of
Table 14, the kink trajectories in the plane {t, z} for different
values of the initial velocity υ01 were constructed (Fig. 14).

Figure 14 shows that in the first case (curve (1)) the initial
total energy of the DNA kink is not large enough to overcome
the energy barrier. Therefore, when reaching the first bound-
ary, the kink is reflected from the boundary and begins to
move to the left end of the gene. After reaching the left end,
the kink is reflected from the left end, which is possible only if
the rest kink energy in the left neighboring region to the left is
greater than the total energy of the kink. Just this scenario is
shown in Fig. 14. After a few zig-zag motions, the kink even-
tually stops in the first block.

In the second case (curve (2)), the kink can overcome the
right boundary of the first block and enter the second block
(CDS). However, the kink does not reach the end of the sec-
ond block and stops inside this block.

In the third case (curve (3), the kink passes the entire sec-
ond block (CDS), continues moving in the third block and
stops before reaching the right end of the gene.

Solution of the McLaughlin-Scott equation for the
pBR322 plasmid by the method of blocks

Yakushevich and Krasnobaeva (2019) used the method of
blocks to solve the McLaughlin-Scott equation for the
pBR322 plasmid (Fig. 15a). This plasmid is widely used in
gene research, and its components are applied to create new
instrumental plasmids (Watson 1988). The sequence of the
pBR322 plasmid consists of 4361 bases (Cloning vector
pBR322, complete sequence, n.d.) (Appendix 6).

A linear version of the scheme (Fig. 15a), obtained by
cutting circular DNA at the point S, is shown in Fig. 15b. It
is known that the main chain of the plasmid contains two

Fig. 12 Three blocks in the IFNA17 gene sequence

Table 13 Details of the structure of the IFNA17 gene sequence

Block Coordinates Nj,A Nj,T Nj,G Nj,C Nj

1 1..49 15 12 7 15 49

2 (CDS) 50..619 157 145 130 138 570

3 620.980 110 146 44 61 361
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coding regions CDS-1 and CDS-2 with coordinates (86 ...
1276) and (1915 ... 2106), respectively, and the complemen-
tary chain contains one coding region CDS-3 with coordinates
(3293 ... 4153).

Yakushevich and Krasnobaeva (2019) divided the se-
quence of the pBR322 plasmid into five blocks: two coding
regions CDS-1 and CDS-2, as well as three intermediate re-
gions with coordinates (1..85), (1277..1914) and (2107 ..
4361). For convenience, they were renumbered as shown in
Fig. 16. The block structure of the sequence is shown in
Table 15.

.
The coefficients of the McLaughlin-Scott equation and the

kink rest energy are presented in Table 16.
When constructing the energy profile of the plasmid, the

authors took into account the ring form of the plasmid. The
result of the construction is presented in Fig. 17. The vertical
axis shows the values of the kink rest energy. The horizontal
axis shows the coordinates of the nitrogenous bases in the
units of base pairs (bp), 1 bp = 3.4 × 10−10 m.

The energy profile contains two barriers that correspond to
the coding regions CDS-1 and CDS-2. Because the kink be-
havior in many respects is similar to the behavior of a quasi-
particle, the authors suggest that the behavior of the pBR322
kink is determined by whether the kink can overcome the

barriers or not, and the latter depends on the initial kink
velocity.

To construct 3D trajectories of kinks in the pBR322 plas-
mid, the authors used two coupled ordinary differential equa-
tions for each block (one equation for the kink velocity and the
other for the kink coordinate):

dez ið Þ
k tð Þ
dt

¼ eυ ið Þ
k tð Þ; ð52Þ

deυ ið Þ
k tð Þ
dt

¼ −
eβ ið Þ

eI ið Þ eυ ið Þ
k tð Þ 1−

eυ ið Þ
k tð ÞeC ið Þ

0@ 1A2
264

375; i ¼ 1; 2:::5: ð53Þ

The solutions of the equations are presented in the form of
trajectories in the space {v, z, t} (Fig. 18).

Table 14 Coefficients of the McLaughlin-Scott equation and kink rest energy calculated for each of the IFNA17 gene blocks (Yakushevich and
Krasnobaeva 2017)

Block Coefficients of the McLaughlin-Scott equation Kink rest energy

eI (10−44 kg∙m2) K
0�!
(10−18 N∙m)

eV (10−20 J) eα (10
−34

J s) eE0 (10
−20 J)

1 5.95 1.91 2.08 3.45 159.56

2 (CDS) 6.20 1.95 2.16 3.52 169.61

3 5.98 1.90 1.95 3.44 171.03

Fig. 13 Energy profile of the IFNA17 gene

Fig. 14 Kink trajectories in the IFNA17 gene. Calculations were made
for three values of the initial velocity: (1) υ01 = 500 m/s, (2) υ01 = 800 m/s
and (3) υ01 = 1500 m/s
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Discussion and perspectives

We have reviewed the use of the McLaughlin-Scott equation
and related methods as potential tools for studying the

dynamics of DNA open states which were considered here
as nonlinear conformation excitations—kinks. We described
how this equation has been used in the case of homogeneous
DNA. The results on the dependence of the velocity and co-
ordinate of the kink on time and the trajectory of the kink
obtained in the absence and in the presence of external fields
of various types were described. Four sets of DNA parameters
were used to demonstrate the results: one set for the poly (A)
sequence, one for the poly (T) sequence and two for the poly
(G) and poly (C) sequences. This allowed us to compare the
results obtained for each of the four cases.

In the second part of the review, it was shown how the
McLaughlin-Scott equation could be applied to inhomoge-
neous DNA. Two approaches were described in detail. The
first was based on the quasi-homogeneous approximation.
The second was a combination of two methods: the quasi-
homogeneous approximation and the block method. We illus-
trated how these approaches were used to study the dynamics
of DNA open states in the IFNA17, ADRB2, NOS1 and IL-5
genes, in the A1, A2 and A3 promoter sequences of the

Fig. 15 Plasmid pBR32 (a) and its linear version (b). S is a cut point. The
main and complementary chains are shown. Coding regions CDS-1 and
CDS-2 are in the main polynucleotide chain, and CDS-3 is located in the
complementary chain

Table 15 Details of the blocks structure in the pBR322 sequence
(Yakushevich and Krasnobaeva 2019)

Block Coordinates NA NT NG NC N

1 1..85 597 584 573 586 2340

2 (CDS-1) 86..1276 190 268 353 380 1191

3 1277..1914 142 145 160 191 638

4 (CDS-2) 1915..2106 54 37 48 53 192

5 2107..4361 597 584 573 586 2340

Fig. 16 The numbering of blocks in the main chain of the pBR322
plasmid

Table 16 Coefficients of the McLaughlin-Scott equation and the rest energy of kinks calculated for each of the pBR322 plasmid blocks (Yakushevich
and Krasnobaeva 2019)

Block Coefficients of the McLaughlin-Scott equation Kink rest energy

eI (10−44 kg∙m2) K
0�!
(10−18 N∙m)

eV (10−20 J) eα (10
−34

J s) eE0 (10
−20 J)

1 6.19 1.94 2.18 3.51 1.65

2 (CDS-1) 6.05 1.90 2.26 3.44 1.66

3 6.09 1.92 2.21 3.47 1.65

4 (CDS-2) 6.26 1.96 2.23 3.55 1.67

5 6.19 1.94 2.18 3.51 1.65

Fig. 17 Energy profile of the pBR322 plasmid
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bacteriophage T7 genome, as well as in the pTTQ18 and
pBR322 plasmids (Fig. 19).

We should note, however, that in all works described
above, the authors use the DNA dynamic models that take
into account the mobility of nitrogenous bases in only one of
the two polynucleotide DNA chains. In this case, the second
chain is modeled only as an average field.

Another limitation is associated with the choice of angular
displacements of nitrogenous bases as dominants. It is assumed
that they make the main contribution to the DNA open states

formation. However, there are other approaches where the trans-
verse displacements of the bases are chosen as dominants. The
well-known Peyrard-Bishop model (Peyrard and Bishop 1989;
Dauxois et al. 1993) takes into account just such motions.

Certain restrictions are also imposed by the use of the block
method in which the dynamic characteristics of native DNA
sequences are replaced by approximate ones, obtained by di-
viding the real sequence into several blocks and averaging the
dynamic parameters within each block.

The question of the correctness of applying the results ob-
tained for open states to the study of the dynamics of the
transcriptional bubble still remains open, since the latter is a
part of a more complex and multicomponent system
(Shimamoto 2013; Shimamoto and Imashimizu 2021) and
its dynamics is largely limited by biochemical processes in-
volved into the transcription process.

Despite all these limitations, the approach based on the
McLaughlin-Scott equation can be regarded as promising be-
cause of its reliability, simplicity and convenience, especially
when modeling the behavior of the open states of DNA, and
when predicting their behavior under the action of various
external fields. We believe that the McLaughlin-Scott ap-
proach can be useful for further studies of the relationship
between the dynamic and functional properties of DNA and
opens up new possibilities for the application of analytical
methods of theoretical physics and nonlinear mathematics in-
vestigations of both DNA and other biological molecules.

Fig. 18 3D trajectories of the kinks in the pBR322 plasmid. The curves 1,
2 and 3 correspond to initial kink velocities 150 m/s, 1650 m/s and 1879
m/s, respectively

Fig. 19 The diagram presents the living systems considered in the review. They are arranged in a circle around the DNA open state

334 Biophys Rev (2021) 13:315–338



Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12551-021-00801-0.

References

Ablowitz MJ, Segur H (1980) Solitons and inverse spectral transform.
SIAM, Philadelphia

Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases:
structure, function and inhibition. Biochem J 357:593–615. https://
doi.org/10.1042/0264-6021:3570593

Alexandrov BS, Gelev V, Bishop AR et al (2010a) DNA breathing dy-
namics in the presence of a terahertz field. Phys Lett 374:1214–
1217. https://doi.org/10.1016/j.physleta.2009.12.077

Alexandrov BS, Gelev V, Yoo SW et al (2010b) DNA dynamics play a
role as a basal transcription factor in the positioning and regulation
of gene transcription initiation. Nucleic Acids Res 38:1790–1795.
https://doi.org/10.1093/nar/gkp1084

Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybrid trp-lac
promoter useful for regulated expression of cloned genes in
Escherichia coli. Gene 25:167–178. https://doi.org/10.1016/0378-
1119(83)90222-6

Bailey LJ, Doherty AJ (2017) Mitochondrial DNA replication: a PrimPol
perspective. Biochem Soc Trans 45:513–529. https://doi.org/10.
1042/BST20160162

Barbi M, Cocco S, Peyrard M et al (1999) A twist opening model for
DNA. J Biol Phys 24:97–114. https://doi.org/10.1023/A:
1005139326775

Barbi M, Lepri S, Peyrard M, Theodorakopolous N (2003) Thermal de-
naturation of a helicoidal DNA model. Phys Rev E 68:061909.
https://doi.org/10.1103/PhysRevE.68.061909

Bengtsson K, Orho-Melander M, Melander O et al (2001) Beta (2)-ad-
renergic receptor gene variation and hypertension in subjects with
type 2 diabetes. Hypertension 37:1303–1308. https://doi.org/10.
1161/01.hyp.37.5.1303

Bergues-Pupo AE, Bergues JM, Falo F (2013) Modeling the interaction
of DNA with alternating fields. Phys Rev E Stat Nonlinear Soft
Matter Phys 87:022703. https://doi.org/10.1103/PhysRevE.87.
022703

Bishop AI, Nieminen TA, Heckenberg NR et al (2003) Optical applica-
tion and measurement of torque on microparticles of isotropic
nonabsorbing material. Phys Rev A 68:033802. https://doi.org/10.
1103/PhysRevA.68.033802

Bleichert F, Botchan MR, Berger JM (2017) Mechanisms for initiating
cellular DNA replication. Science 355:215–222. https://doi.org/10.
1126/science.aah6317

Bochieri P, Loinger A (1970) A conjecture concerning the classical the-
ory of blackbody radiation. Lett. Nuovo Cimento 4:310–312

Braun OM, Kivshar YS (1998) Nonlinear dynamics of the Frenkel-
Kontorova model. Phys Rep 306:1–108

Braun OM, Kivshar YS (2004) The Frenkel-Kontorova model. Springer
Verlag, New York

Bychkov VA, Ryazantseva NV, Novitsky VV (2011) Analysis of the
combined effect of polymorphisms interferon genes OAS1, OAS3,
PKR, IFNA17 and IFNG in susceptibility to chronic viral hepatitis
C. Bull Siber Med 10:19–23. https://doi.org/10.20538/1682-0363-
2011-3-19-23

Bykov VG (2014) Sine-Gordon equation and its application to tectonic
stress transfer. J Seismol 18:497–510. https://doi.org/10.1007/
s10950-014-9422-7

Cadoni M, De Leo R, Demelio S (2011) Soliton propagation in homoge-
neous and inhomogeneous models for DNA torsion dynamics. J

Nonlinear Math Phys 18:287–319. https://doi.org/10.1142/
S1402925111001544

Cadoni M, De Leo R, Demelio S, Gaeta G (2009) Twist solitons in
complex macromolecules: from DNA to polyethylene. Int J
Nonlin Mech 43:1094–1107. https://doi.org/10.1016/j.ijnonlinmec.
2008.03.010

Cadoni M, De Leo R, Gaeta G (2007) Composite model for DNA torsion
dynamics. Phys Rev E 75:021919. https://doi.org/10.1103/
PhysRevE.75.021919

Caudrey PJ, Eilbeck JC, Gibbon JD (1975) The sine-Gordon equation as
a model classical field theory. Nuov Cim B 25:497–512. https://doi.
org/10.1007/BF02724733

Chamberlin MJ (1974) The selectivity of transcription. Annu Rev
Biochem 43:721–775

Chevizovich D, Michieletto D, Mvogo A, Zakiryanov F, Zdravković S
(2020) A review on nonlinear DNA physics. R Soc Open Sci 7:
200774. https://doi.org/10.1098/rsos.200774

Clark D, Pazdernik N (2015) Biotechnology, 2nd edn. Academic Cell,
Amsterdam

Cloning vector pBR322, complete sequence. http://www.ncbi.nlm.nih.
gov/nuccore/J01749.1

Contopoulos-Ioannidis DG, Manoli EN, Ioannidis JP (2005) Meta-
analysis of the association of beta2-adrenergic receptor polymor-
phisms with asthma phenotypes. J Allergy Clin Immunol 115:
963–972. https://doi.org/10.1016/j.jaci.2004.12.1119

Crick FHC, Watson JD (1954) The complementary structure of deoxyri-
bonucleic acid. Proc Royal Soc A 223:80–96. https://doi.org/10.
1098/rspa.1954.0101

Cuenda S, Sanchez A (2004a) Disorder and fluctuations in nonlinear
excitations in DNA. Fluctuat Noise Lett 4:L491–L504. https://doi.
org/10.1142/S0219477504002099

Cuenda S, Sanchez A (2004b) Nonlinear excitations in DNA: aperiodic
models versus actual genome sequences. Phys Rev E 70:051903.
https://doi.org/10.1103/physreve.70.051903

Dallongeville J, Helbecque N, Cottel D et al (2003) The gly16-arg16 and
gln27-glu27 polymorphisms of beta-2-adrenergic receptor are asso-
ciated with metabolic syndrome in men. J Clin Endocrinol Metabol
88:4862–4866. https://doi.org/10.1210/jc.2003-030173

Dauxois T, Peyrard M, Bishop AR (1993) Dynamics and thermodynam-
ics of a nonlinear model for DNA denaturation. Phys Rev E 47:684.
https://doi.org/10.1103/PhysRevE.47.684

Derks G, Gaeta G (2011) A minimal model of DNA dynamics in inter-
action with RNA-polymerase. Physica D: Nonlinear Phenom 240:
1805–1817. https://doi.org/10.1017/S0956792511000301

Dominguez-Adame F, Sanchez A, Kivshar YS (1995) Soliton pinning by
long-range order in aperiodic systems. Phys Rev E 52:2183. https://
doi.org/10.1103/PhysRevE.52.R2183

Drobotenko MI, Dzhimak SS, Svidlov AA et al (2018) A mathematical
model for base pair opening in a DNA double helix. Biophysics 63:
177–182. https://doi.org/10.1134/S0006350918020069

Dubois A, Francois C, Descamps V et al (2009) Enhanced anti-HCV
activity of interferon alpha 17 subtype. Virol J 6:70. https://doi.
org/10.1186/1743-422X-6-70

Dunn JJ, Studier FW, Gottesman M (1983) Complete nucleotide se-
quence of bacteriophage T7 DNA and the locations of T7 genetic
elements. J Mol Biol 166:477–535. https://doi.org/10.1016/S0022-
2836(83)80282-4

Dwiputra D, Hidayat W, Zen FP (2017) Nonlinear dynamics of DNA
bubble induced by site specific DNA-protein interaction. J Phys
Conf Ser 856:012005–012009. https://doi.org/10.1088/1742-6596/
856/1/011001

Ekomasov EG (2009) Solitons of the modified sine-Gordon equation.
Bashkir State University, Ufa http://matem.anrb.ru/bsuconf/2009/
Ekomasov.pdf

Englander W, Kallenbach NR, Heeger AJ et al (1980) Nature of the open
state in long polynucleotide double helices: possibility of soliton

335Biophys Rev (2021) 13:315–338

https://doi.org/10.1007/s12551-021-00801-0
https://doi.org/10.1042/0264-6021:3570593
https://doi.org/10.1042/0264-6021:3570593
https://doi.org/10.1016/j.physleta.2009.12.077
https://doi.org/10.1093/nar/gkp1084
https://doi.org/10.1016/0378-1119(83)90222-6
https://doi.org/10.1016/0378-1119(83)90222-6
https://doi.org/10.1042/BST20160162
https://doi.org/10.1042/BST20160162
https://doi.org/10.1023/A:1005139326775
https://doi.org/10.1023/A:1005139326775
https://doi.org/10.1103/PhysRevE.68.061909
https://doi.org/10.1161/01.hyp.37.5.1303
https://doi.org/10.1161/01.hyp.37.5.1303
https://doi.org/10.1103/PhysRevE.87.022703
https://doi.org/10.1103/PhysRevE.87.022703
https://doi.org/10.1103/PhysRevA.68.033802
https://doi.org/10.1103/PhysRevA.68.033802
https://doi.org/10.1126/science.aah6317
https://doi.org/10.1126/science.aah6317
https://doi.org/10.20538/1682-0363-2011-3-19-23
https://doi.org/10.20538/1682-0363-2011-3-19-23
https://doi.org/10.1007/s10950-014-9422-7
https://doi.org/10.1007/s10950-014-9422-7
https://doi.org/10.1142/S1402925111001544
https://doi.org/10.1142/S1402925111001544
https://doi.org/10.1016/j.ijnonlinmec.2008.03.010
https://doi.org/10.1016/j.ijnonlinmec.2008.03.010
https://doi.org/10.1103/PhysRevE.75.021919
https://doi.org/10.1103/PhysRevE.75.021919
https://doi.org/10.1007/BF02724733
https://doi.org/10.1007/BF02724733
https://doi.org/10.1098/rsos.200774
http://www.ncbi.nlm.nih.gov/nuccore/J01749.1
http://www.ncbi.nlm.nih.gov/nuccore/J01749.1
https://doi.org/10.1016/j.jaci.2004.12.1119
https://doi.org/10.1098/rspa.1954.0101
https://doi.org/10.1098/rspa.1954.0101
https://doi.org/10.1142/S0219477504002099
https://doi.org/10.1142/S0219477504002099
https://doi.org/10.1103/physreve.70.051903
https://doi.org/10.1210/jc.2003-030173
https://doi.org/10.1103/PhysRevE.47.684
https://doi.org/10.1017/S0956792511000301
https://doi.org/10.1103/PhysRevE.52.R2183
https://doi.org/10.1103/PhysRevE.52.R2183
https://doi.org/10.1134/S0006350918020069
https://doi.org/10.1186/1743-422X-6-70
https://doi.org/10.1186/1743-422X-6-70
https://doi.org/10.1016/S0022-2836(83)80282-4
https://doi.org/10.1016/S0022-2836(83)80282-4
https://doi.org/10.1088/1742-6596/856/1/011001
https://doi.org/10.1088/1742-6596/856/1/011001
http://matem.anrb.ru/bsuconf/2009/Ekomasov.pdf
http://matem.anrb.ru/bsuconf/2009/Ekomasov.pdf


excitations. Proc Natl Acad Sci U S A 77:7222–7226. https://doi.
org/10.1073/pnas.77.12.7222

Fedyanin VK, Gochev I, Lisy V (1986) Nonlinear dynamics of bases in
continual model of DNA double helices. Stud Biophys 116:59–64

Forth S, Sheinin MY, Inman J et al (2013) Torque measurement at the
single-molecule level. Annu Rev Biophys 42:583–604. https://doi.
org/10.1146/annurev-biophys-083012-130412

Frenkel YI, Kontorova T (1939) On the theory of plastic deformation and
twinning. Izv Akad Nauk Ser Fiz 1:137–149

Gaeta G, Reiss C, Peyrard M, Dauxois T (1994) Simple models of non-
linear DNA dynamics. La Rivista Nuovo Cimento 17:1–48. https://
doi.org/10.1007/BF02724511

Gaeta G, Venier L (2008a) Solitary waves in twistopening models of
DNA dynamics. Phys Rev E 78:011901. https://doi.org/10.1103/
PhysRevE.78.011901

Gaeta G, Venier L (2008b) Solitary waves in helicoidal models of DNA
dynamics. J Nonlinear Math Phys 15:186–204. https://doi.org/10.
2991/jnmp.2008.15.2.6

Gaeta G (1990) On a model of DNA torsion dynamics. Phys Lett A 143:
227–232. https://doi.org/10.1016/0375-9601(90)90744-9

Gaeta G (1994) A realistic version of the Ymodel for DNA dynamics and
selection of soliton speed. Phys Lett A 190:301–308. https://doi.org/
10.1016/0375-9601(94)90759-5

Gaeta G (2007) Solitons in Yakushevich-like models of DNA dynamics
with improved intrapair potential. J Nonlinear Math Phys 14:57–81.
https://doi.org/10.2991/jnmp.2007.14.1.6

Gaeta G (2006) Solitons in the Yakushevich model of DNA beyond the
contact approximation. Phys Rev E 74:021921. https://doi.org/10.
1103/PhysRevE.74.021921

Genome of bacteriophage T7. https://www.ncbi.nlm.nih.gov/nuccore/
V01146

Gerus AI, Vikulin AV (2016) Rotational model of a block
geoenvironment: mathematical aspects and numerical results. In:
Materials of the regional scientific conference “Volcanism and re-
lated processes” dedicated to the Volcanologist's Day, March 30 -
April 1, 2015. IViS FEBRAS, Petropavlovsk-Kamchatsky, pp 116–
121

Grasemann H, Yandava CN, Drazen JM (1999) Neuronal NO synthase
(NOS1) is a major candidate gene for asthma. Clin Exp Allergy 29:
39–41

Grinevich AA, Ryasik AA, Yakushevich LV (2015a) Modeling the DNA
bubbles dynamics. J Biomol Struct Dyn 33:84. https://doi.org/10.
1080/07391102.2015.1032763

Grinevich AA, Ryasik AA, Yakushevich LV (2015b) Trajectories of
DNA bubbles. Chaos, Solitons Fractals 75:62–75. https://doi.org/
10.1016/j.chaos.2015.02.009

Grinevich AA, Ryasik AA, Yakushevich LV (2013) The dynamics of
polynucleotide chain consisting of two different homogeneous se-
quences, divided by interface. Comput Res Model 5:241–253.
https://doi.org/10.20537/2076-7633-2013-5-2-241-253

Grinevich AA, Yakushevich LV (2018) The influence of the DNA torque
on the dynamics of transcription bubbles in plasmid PTTQ18. J
Theor Biol 453:68–77. https://doi.org/10.1016/j.jtbi.2018.04.036

Gulevich DR, Kusmartsev FV (2006) Perturbation theory for localized
solutions of sine-Gordon equation: decay of a breather and pinning
by microresistorю. Phys Rev B 74:214303. https://doi.org/10.1103/
PhysRevB.74.214303

Gumerov AM, Ekomasov EG, Murtazin RR et al (2015) Transformation
of sine-Gordon solitons in models with variable coefficients and
damping. Comput Math Math Phys 55:628–637. https://doi.org/
10.7868/S0044466915040031

Harada Y, Ohara O, Takatsuki A et al (2001) Direct observation of DNA
rotation during transcription by Escherichia coli RNA polymerase.
Nature 409:113. https://doi.org/10.1038/35051126

He Y, Yan C, Fang J et al (2016) Near-atomic resolution visualization of
human transcription promoter opening. Nature 533:359–365.
https://doi.org/10.1038/nature17970

Hien DL, Nhan NT, Ngo VT et al (2007) Simple combined model for
nonlinear excitations in DNA. Phys Rev E 76:021921. https://doi.
org/10.1103/PhysRevE.76.021921

Homma S, Takeno S (1984) A coupled base-rotator model for structure
and dynamics of DNA. Prog Theor Phys 72:679–693. https://doi.
org/10.1143/PTP.72.679

Homo sapiens adrenoceptor beta 2 (ADRB2) https://www.ncbi.nlm.nih.
gov/nuccore/NG_016421.1

Homo sapiens interferon alpha 17 (IFNA17). https://www.ncbi.nlm.nih.
gov/nuccore/NM_021268.2

Homo sapiens interleukin 5 (IL5). https://www.ncbi.nlm.nih.gov/
gene3567

Homo sapiens nitric oxide synthase 1 (NOS1) https://www.ncbi.nlm.nih.
gov/nuccore/NM_001204218.1

Israel E, Drazen JM, Liggett SB et al (2000) The effect of polymorphisms
of the beta(2)-adrenergic receptor on the response to regular use of
albuterol in asthma. Am J Respir Crit Care Med 162:75–80. https://
doi.org/10.1164/ajrccm.162.1.9907092

Ivancevic VG, Ivancevic TT (2013) Sine-Gordon solitons, kinks and
breathers as physical models of nonlinear excitations in living cel-
lular structures. J Geometr Symmetr Phys 31:1–56. https://doi.org/
10.7546/jgsp-31-2013-1-56

Jeffrey A, Kakutani T (1972) Weak nonlinear dispersive waves: a discus-
sion centered around the Korteveg-deVries equation. SIAMRev 14:
582–643

Karpen ME, deHaseth PL (2015) Base flipping in open complex forma-
tion at bacterial promoters. Biomolecules 5:668–678. https://doi.
org/10.3390/biom5020668

Keener JP, McLaughlin DW (1977) Solitons under perturbations. Phys
Rev A 16:777. https://doi.org/10.1103/PhysRevA.16.777

Kirkegaard K, Buc H, Spassky A, Wang JC (1983) Mapping of single-
stranded regions in duplex DNA at the sequence level: single-strand-
specific cytosine methylation in RNA polymerase-promoter com-
plexes. Proc Natl Acad Sci U S A 80:2544–2548

Kivshar YS, Malomed BA (1989) Dynamics of solitons in nearly inte-
grable systems. Rev Mod Phys 61:763–915. https://doi.org/10.
1103/RevModPhys.61.763

Klaue D, Seidel R (2009) Torsional stiffness of single superparamagnetic
microspheres in an external magnetic field. Phys Rev Lett 102:
028302. https://doi.org/10.1103/PhysRevLett.102.028302

Krasnobaeva LA, Shapovalov AV (2008) Kink velocity in nonstationary
external fields for the sine-Gordon model with allowance for dissi-
pation effects. Russ Phys J 51:77–84. https://doi.org/10.1007/
s11182-008-9020-7

Krasnobaeva LA, Shapovalov AV (2009) Kink motion by ac external
force and dissipation. Comput Res Model 1:263–271. https://doi.
org/10.20537/2076-7633-2009-1-3-263-271

Krasnobaeva LA, Volkov IA, Yakushevich LV (2012) Dynamics of
kinks activated in the genes ADRB2, NOS1 and IL-5. Comput
Res Model 4:391–399. https://doi.org/10.20537/2076-7633-2012-
4-2-391-399

Krasnobaeva LA, Yakushevich LV (2015) Rotational dynamics of bases
in the gene coding interferon alpha 17 (IFNA17). J Bioinforma
Comput Bio l 13 :1540002 . h t t p s : / / do i . o rg /10 .1142 /
S0219720015400028

Krasnobaeva LA, Yakushevich LV (2020) The dynamic and statistical
properties of DNA kinks. Biophysics 65:24–29. https://doi.org/10.
1134/S0006350920010091

Krumhansl JA, Alexander DM (1983) Nonlinear dynamics and confor-
mational excitations in biomolecular materials. In: Clementi E,
Sarma RH (eds) Structure and dynamics: nucleic acids and proteins.
Adenine Press, New York, pp 61–80

336 Biophys Rev (2021) 13:315–338

https://doi.org/10.1073/pnas.77.12.7222
https://doi.org/10.1073/pnas.77.12.7222
https://doi.org/10.1146/annurev-biophys-083012-130412
https://doi.org/10.1146/annurev-biophys-083012-130412
https://doi.org/10.1007/BF02724511
https://doi.org/10.1007/BF02724511
https://doi.org/10.1103/PhysRevE.78.011901
https://doi.org/10.1103/PhysRevE.78.011901
https://doi.org/10.2991/jnmp.2008.15.2.6
https://doi.org/10.2991/jnmp.2008.15.2.6
https://doi.org/10.1016/0375-9601(90)90744-9
https://doi.org/10.1016/0375-9601(94)90759-5
https://doi.org/10.1016/0375-9601(94)90759-5
https://doi.org/10.2991/jnmp.2007.14.1.6
https://doi.org/10.1103/PhysRevE.74.021921
https://doi.org/10.1103/PhysRevE.74.021921
https://www.ncbi.nlm.nih.gov/nuccore/V01146
https://www.ncbi.nlm.nih.gov/nuccore/V01146
https://doi.org/10.1080/07391102.2015.1032763
https://doi.org/10.1080/07391102.2015.1032763
https://doi.org/10.1016/j.chaos.2015.02.009
https://doi.org/10.1016/j.chaos.2015.02.009
https://doi.org/10.20537/2076-7633-2013-5-2-241-253
https://doi.org/10.1016/j.jtbi.2018.04.036
https://doi.org/10.1103/PhysRevB.74.214303
https://doi.org/10.1103/PhysRevB.74.214303
https://doi.org/10.7868/S0044466915040031
https://doi.org/10.7868/S0044466915040031
https://doi.org/10.1038/35051126
https://doi.org/10.1038/nature17970
https://doi.org/10.1103/PhysRevE.76.021921
https://doi.org/10.1103/PhysRevE.76.021921
https://doi.org/10.1143/PTP.72.679
https://doi.org/10.1143/PTP.72.679
https://www.ncbi.nlm.nih.gov/nuccore/NG_016421.1
https://www.ncbi.nlm.nih.gov/nuccore/NG_016421.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_021268.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_021268.2
https://www.ncbi.nlm.nih.gov/gene3567
https://www.ncbi.nlm.nih.gov/gene3567
https://www.ncbi.nlm.nih.gov/nuccore/NM_001204218.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001204218.1
https://doi.org/10.1164/ajrccm.162.1.9907092
https://doi.org/10.1164/ajrccm.162.1.9907092
https://doi.org/10.7546/jgsp-31-2013-1-56
https://doi.org/10.7546/jgsp-31-2013-1-56
https://doi.org/10.3390/biom5020668
https://doi.org/10.3390/biom5020668
https://doi.org/10.1103/PhysRevA.16.777
https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1103/PhysRevLett.102.028302
https://doi.org/10.1007/s11182-008-9020-7
https://doi.org/10.1007/s11182-008-9020-7
https://doi.org/10.20537/2076-7633-2009-1-3-263-271
https://doi.org/10.20537/2076-7633-2009-1-3-263-271
https://doi.org/10.20537/2076-7633-2012-4-2-391-399
https://doi.org/10.20537/2076-7633-2012-4-2-391-399
https://doi.org/10.1142/S0219720015400028
https://doi.org/10.1142/S0219720015400028
https://doi.org/10.1134/S0006350920010091
https://doi.org/10.1134/S0006350920010091


Krumhansl JA, Wysin GM, Alexander DM et al (1985) Further theoret-
ical studies of nonlinear conformational motions in double-helix
DNA. In: Clementi E, Corongiu G, Sarma MH, Sarma RH (eds)
Structure and motion: membranes, nucleic acids and proteins.
Adenine Press, New York, pp 407–415

Kulik IO (1967) Wave propagation in a Josephson tunnel junction in the
presence of vortices and the electrodynamics of weak superconduc-
tivity. JETP 24:1307

Lammers JW, Barnes PJ, Chung KF (1992) Non-adrenergic, non-
cholinergic airway inhibitory nerves. Eur Respir J 5:239–246

Lawn RM, Adelman J, Dul TJ et al (1983) DNA sequence of two closely
linked human leukocyte interferon genes. Science 212:1159–1162.
https://doi.org/10.1126/science.6165082

LennholmE,HornquistM (2003) Revisiting Salerno’s sine-Gordonmod-
el of DNA: active regions and robustness. Physica D 177:233–241.
https://doi.org/10.1016/S0167-2789(02)00769-8

Lipfert J, Kerssemakers JWJ, Jager T et al (2010) Magnetic torque twee-
zers: measuring torsional stiffness in DNA and RecA-DNA fila-
ments. Nat Methods 7:977–980. https://doi.org/10.1038/nmeth.
1520

Lui LF, Wang JC (1987) Supercoiling of the DNA template during tran-
scription. Proc Natl Acad Sci U S A 84:7024–7027. https://doi.org/
10.1073/pnas.84.20.7024

Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340:
1580–1583. https://doi.org/10.1126/science.1235441

Malomed BA (1988) Interaction of a soliton with an impurity in the sine-
Gordon model of a commensurate charge-density-wave system. J
Phys C Solid State Phys 21:5163–5181

Manoranjan JJ, BishopVS, Rasmussen AR et al (2018) Allostery through
protein-induced DNA bubbles. Sci Rep 5:9037–9043. https://doi.
org/10.1038/srep09037

McLaughlin DW, Scott AC (1977) Fluxon interactions. Appl Phys Lett
30:545. https://doi.org/10.1063/1.89229

McLaughlin DW, Scott AC (1978a) Perturbation analysis of fluxon dy-
namics. Phys Rev A 18:1652. https://doi.org/10.1103/PhysRevA.
18.1652

McLaughlin DW, Scott AC (1978b) A multisoliton perturbation theory.
In: Lonngren K, Scott A (eds) Solitons in action. Academic Press,
New York, pp 201–256

Mordvinov VA, Furman DP (2009) Cytokines: biological properties and
regulation of human interleukin-5 gene expression. Vestnik VOGiS
(Inform Bull Vavilov Soc Genet Breed Sci) 13:53–67

Nelson P (1999) Transport of torsional stress in DNA. Proc Natl Acad Sci
U S A 96:14342–14347. https://doi.org/10.1073/pnas.96.25.14342

Nitta J, Matsuda A, Kawakami T (1984) Propagation properties of
fluxons in a well-damped Josephson transmission line. J Appl
Phys 55:2758–2762 http://hdl.handle.net/10097/51948

Peyrard M (ed) (1995) Nonlinear excitations in biomolecules. Springer,
Berlin

Peyrard M, Bishop AR (1989) Statistical mechanics of a nonlinear model
for DNA denaturation. Phys Rev Lett 62:2755–2758. https://doi.
org/10.1103/PhysRevLett.62.2755

Plasmid pTTQ18, complete sequence. https://www.addgene.org/69122/
sequences

Porta AL, Wang MD (2004) Optical torque wrench: angular trapping,
rotation, and torque detection of quartz microparticles. Phys Rev
Lett 92:190801. https://doi.org/10.1103/PhysRevLett.92.190801

Quintero NR,Kevrekidis PG (2001) Nonequivalence of phononmodes in
the sine-Gordon equation. Phys Rev E 64:056608. https://doi.org/
10.1103/PhysRevE.64.056608

Rajaraman R (1982) Solitons and instantons: an introduction to solitons
and instantons in quantum field theory. Amsterdam, Oxford, North-
Holland

Reif A, Herterich S, Strobel A (2006) A neuronal nitric oxide synthase
(NOS-I) haplotype associated with schizophrenia modifies

prefrontal cortex function. Mol Psychiatry 11:286–300. https://doi.
org/10.1038/sj.mp.4001779

Rubinstein J (1970) Sine-Gordon equation. J Math Phys 11:258–266
Ryasik A, Orlov M, Zykova E et al (2018) Bacterial promoter prediction:

selection of dynamic and static physical properties of DNA for reli-
able sequence classification. J Bioinforma Comput Biol 16:
1840003. https://doi.org/10.1142/S0219720018400036

Salerno M (1991) Discrete model for DNA-promoter dynamics. Phys
Rev A 44:5292–5297. https://doi.org/10.1103/PhysRevA.44.5292

Salerno M (1992) Dynamical properties of DNA promoters. Phys Lett A
167:49–53. https://doi.org/10.1016/0375-9601(92)90624-U

SalernoM (1995) Nonlinear dynamics of plasmid pBR322 promoters. In:
Peyrard M (ed) Nonlinear excitations in biomolecules. Springer,
New York, pp 147–153

Salerno M, Kivshar Yu S (1994) DNA promoters and nonlinear dynam-
ics. Phys Lett A 193:263–266. https://doi.org/10.1016/0375-
9601(94)90594-0

Sasse-Dwight S, Gralla JD (1989) KMnO4 as a probe for lac promoter
DNAmelting andmechanism in vivo. J Biol Chem 264:8074–8081.
https://doi.org/10.1016/S0021-9258(18)83152-0

Saucier JM, Wang JC (1972) Angular alteration of the DNA helix by E.
coli RNA polymerase. Nat New Biol 239:167–170. https://doi.org/
10.1038/newbio239167a0

Scott AC (1969) A nonlinear Klein-Gordon equation. Am J Phys 37:52–
61. https://doi.org/10.1119/1.1975404

Scott AC, Chu FYF, McLaughlin DW (1973) The soliton: a new concept
in applied science. Proc IEEE 61:1443–1483. https://doi.org/10.
1109/PROC.1973.9296

Scott-Rassel J (1844) Report onwaves. Proc Roy Soc Edinburgh 319-320
Severin ES (2016) Biochemistry. GEOTAR–Media, Moscow
Shapovalov AV, Krasnobaeva LA (2009) Solitons of the sine-Gordon

equation. TGU, Tomsk
Shi C, Shang F, Zhou M et al (2016) Triggered isothermal PCR by

denaturation bubble-mediated strand exchange amplification.
Chem Commun 52:11551–11554. https://doi.org/10.1039/
C6CC05906F

Shikhovtseva ES, Nazarov VN (2016) Non-linear longitudinal compres-
sion effect on dynamics of the transcription bubble in DAN.
Biophys Chem 214–215:47–53. https://doi.org/10.1016/j.bpc.
2016.05.005

Shimamoto N (2013) Nanobiology of RNA polymerase: biological con-
sequence of inhomogeneity in reactant. Chem Rev 113:8400–8422.
https://doi.org/10.1021/cr400006b

Shimamoto N, Imashimizu M (2021) RNA polymerase and transcription
mechanisms: the forefront of physicochemical studies of chemical
reactions. Biomolecules 11:32. https://doi.org/10.3390/
biom11010032

Shinkai T, Ohmori O, Hori H (2002) Allelic association of the neuronal
nitric oxide synthase (NOS1) gene with schizophrenia. Mol
Psychiatry 7:560–563. https://doi.org/10.1038/sj.mp.4001041

Sicard F, Destainville N, Manghi M (2015) DNA denaturation bubbles:
free-energy landscape and nucleation/closure rates. J Chem Phys
142:903–910. https://doi.org/10.1063/1.4905668

Siebenlist U, Simpson RB, Gilbert W (1980) E. coli RNA polymerase
interacts homologously with two different promoters. Cell 20:269–
281. https://doi.org/10.1016/0092-8674(80)90613-3

Singh AR, Granek R (2017)Manipulation of double-stranded DNAmelt-
ing by force. Phys Rev E 96:032417–032422. https://doi.org/10.
1103/PhysRevE.96.032417

Stark J, Chan C, George AJ (2007) Oscillations in the immune system.
Immunol Rev 216:213–231. https://doi.org/10.1111/j.1600-065X.
2007.00501.x

Stark MJ (1987) Multicopy expression vectors carrying the lac repressor
gene for regulated high-level expression of genes in Escherichia
coli. Gene 51:255–267. https://doi.org/10.1016/0378-1119(87)
90314-3

337Biophys Rev (2021) 13:315–338

https://doi.org/10.1126/science.6165082
https://doi.org/10.1016/S0167-2789(02)00769-8
https://doi.org/10.1038/nmeth.1520
https://doi.org/10.1038/nmeth.1520
https://doi.org/10.1073/pnas.84.20.7024
https://doi.org/10.1073/pnas.84.20.7024
https://doi.org/10.1126/science.1235441
https://doi.org/10.1038/srep09037
https://doi.org/10.1038/srep09037
https://doi.org/10.1063/1.89229
https://doi.org/10.1103/PhysRevA.18.1652
https://doi.org/10.1103/PhysRevA.18.1652
https://doi.org/10.1073/pnas.96.25.14342
http://hdl.handle.net/10097/51948
https://doi.org/10.1103/PhysRevLett.62.2755
https://doi.org/10.1103/PhysRevLett.62.2755
https://www.addgene.org/69122/sequences
https://www.addgene.org/69122/sequences
https://doi.org/10.1103/PhysRevLett.92.190801
https://doi.org/10.1103/PhysRevE.64.056608
https://doi.org/10.1103/PhysRevE.64.056608
https://doi.org/10.1038/sj.mp.4001779
https://doi.org/10.1038/sj.mp.4001779
https://doi.org/10.1142/S0219720018400036
https://doi.org/10.1103/PhysRevA.44.5292
https://doi.org/10.1016/0375-9601(92)90624-U
https://doi.org/10.1016/0375-9601(94)90594-0
https://doi.org/10.1016/0375-9601(94)90594-0
https://doi.org/10.1016/S0021-9258(18)83152-0
https://doi.org/10.1038/newbio239167a0
https://doi.org/10.1038/newbio239167a0
https://doi.org/10.1119/1.1975404
https://doi.org/10.1109/PROC.1973.9296
https://doi.org/10.1109/PROC.1973.9296
https://doi.org/10.1039/C6CC05906F
https://doi.org/10.1039/C6CC05906F
https://doi.org/10.1016/j.bpc.2016.05.005
https://doi.org/10.1016/j.bpc.2016.05.005
https://doi.org/10.1021/cr400006b
https://doi.org/10.3390/biom11010032
https://doi.org/10.3390/biom11010032
https://doi.org/10.1038/sj.mp.4001041
https://doi.org/10.1063/1.4905668
https://doi.org/10.1016/0092-8674(80)90613-3
https://doi.org/10.1103/PhysRevE.96.032417
https://doi.org/10.1103/PhysRevE.96.032417
https://doi.org/10.1111/j.1600-065X.2007.00501.x
https://doi.org/10.1111/j.1600-065X.2007.00501.x
https://doi.org/10.1016/0378-1119(87)90314-3
https://doi.org/10.1016/0378-1119(87)90314-3


Swanson E (2011) Swanson modeling DNA response to terahertz radia-
tion. Phys Rev E Stat Nonlinear Soft Matter Phys 83:040901.
https://doi.org/10.1103/PhysRevE.83.040901

Takeno S, Homma S (1983) Topological solitons and modulated struc-
ture of bases in DNA double helices. Prog Theor Phys 70:308–311.
https://doi.org/10.1143/PTP.70.308

Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a
structure for deoxyribose nucleic acid. Nature 171:737–738. https://
doi.org/10.1038/171737a0

Watson N (1988) A new revision of the sequence of plasmid pBR322.
Gene 70:399–403. https://doi.org/10.1016/0378-1119(88)90212-0

Yakushevich LV (1987) The effect of damping, external fields and inho-
mogeneity on the nonlinear dynamics of biopolymers. Stud Biophys
121:201–207

Yakushevich LV (1989) Nonlinear DNA dynamics: a new model. Phys
Lett A 136:413–417. https://doi.org/10.1016/0375-9601(89)90425-
8

Yakushevich LV (2004) Nonlinear physics of DNA. Wiley, Weinheim
Yakushevich LV, Balashova VN, Zakiryanov FK (2016) On the DNA

kink motion under the action of constant torque. Math Biol
Bioinform 11:81–90. https://doi.org/10.17537/2016.11.81

Yakushevich LV, Balashova VN, Zakiryanov FK (2018a) Is it possible to
govern the movement of the transcription bubbles of DNA by con-
stant and periodic external fields? Biometr Biostat Int J 7:218–224.
https://doi.org/10.15406/bbij.2018.07.00212

Yakushevich LV, Balashova VN, Zakiryanov FK (2018b) Features of the
DNA kink motion in the asynchronous switching on and off of the
constant and periodic fields. Comput Res Model 10:545–558.
https://doi.org/10.20537/2076-7633-2018-10-4-545-558

Yakushevich LV, Gapa S, Awrejcewicz J (2011) Rotational oscillations
of bases in the DNA short fragments. In: Awrejcewicz J,
Kazmierczak M, Olejnik P, Mrozowski J (eds) Dynamical
systems—theory and applications. Left Grupa, Lodz, pp 269–274

Yakushevich LV, Grinevich AA, Ryasik AA (2014) Simulation of a kink
movement in homogeneous and heterogeneous DNA sequences tak-
ing into account the dissipation. Russ J Numer AnalMathModel 29:
197–204. https://doi.org/10.1515/rnam-2014-0015

Yakushevich LV, Kashapova GR, Zakiryanov FK (2012) Influence of
periodic field with constant and slowly changing frequency on
movement of DNA kink. Biophysics 57:14–18. https://doi.org/10.
1134/S0006350912010186

Yakushevich LV, Kashapova GR, Zakiryanov FK (2013) Dynamics of
soliton in the form of kink in the periodic field. Vestnik MSTU
Stankin 3:103–107

Yakushevich LV, Krasnobaeva LA (2007) Influence of dissipation and
external field on the dynamics of local conformational perturbations
in DNA. Biophysics 52:179–184. https://doi.org/10.1134/
S0006350907020066

Yakushevich LV, Krasnobaeva LA (2008a) A new approach to studies of
nonlinear dynamics of kinks activated in inhomogeneous

polynucleotide chains. Int J Nonl Mech 43:1074–1081. https://doi.
org/10.1016/j.ijnonlinmec.2008.05.003

Yakushevich LV, Krasnobaeva LA (2008b) Peculiar features of kink
dynamics in inhomogeneous DNA. Biophysics 53:21–25. https://
doi.org/10.1134/S0006350908010041

Yakushevich LV, Krasnobaeva LA (2016) Forced oscillations of DNA
bases. Biophysics 61:241–250. https://doi.org/10.1134/
S000635091602024X

Yakushevich LV, Krasnobaeva LA (2017) Trajectories of the DNA kinks
in the sequences containing CDS regions. Math Biol Bioinform 12:
1–13. https://doi.org/10.17537/2017.12.1

Yakushevich LV, Krasnobaeva LA (2019) Plasmid pBR322 and nonlin-
ear conformational distortions (kinks). Math Biol Bioinform 14:
327–339. https://doi.org/10.17537/2019.14.327

Yakushevich LV, Krasnobaeva LA, Shapovalov AV et al (2005) One-
and two-soliton solutions of the sine-Gordon equation as applied to
DNA. Biophysics 50:450–455

Yakushevich LV, Ryasik AA (2012) Dynamical characteristics of DNA
kinks and antikinks. Comput Res Model 4:209–217. https://doi.org/
10.20537/2076-7633-2012-4-1-209-217

Yakushevich LV, Savin AV, Manevitch LI (2002) Nonlinear dynamics
of topological solitons in DNA. Phys Rev E 66:016614. https://doi.
org/10.1103/PhysRevE.66.016614

Yomosa S (1983) Soliton excitations in deoxyribonucleic acid (DNA)
double helices. Phys Rev A 27:2120–2125. https://doi.org/10.
1103/PhysRevA.27.2120

Yomosa S (1984) Solitary excitations in deoxyribonucleic acid (DNA)
double helices. Phys Rev A 30:474–480. https://doi.org/10.1103/
PhysRevA.30.474

Zakiryanov FK, Yakushevich LV (2013) Control of the dynamics of the
kink of the modified sine-Gordon equation by the external exposure
with varying parameters. Comput ResModel 5:821–834. https://doi.
org/10.20537/2076-7633-2013-5-5-821-834

Zharnitsky V, Mitkov I, Gronbech-Jensen N (1998a) π kinks in strongly
ac driven sine-Gordon systems. Phys Rev E 58:52–55. https://doi.
org/10.1103/PhysRevE.58.R52

Zharnitsky V, Mitkov I, Levi M (1998b) Parametrically forced sine-
Gordon equation and domain walls dynamics in ferromagnets.
Phys Rev B 57:5033–5035. https://doi.org/10.1103/PhysRevB.57.
5033

Zhou GF, Zhang CT (1991) A short review on the nonlinear motion in
DNA. Phys Scr 43:347. https://doi.org/10.1088/0031-8949/43/3/
025

Zuo Y, Steitz TA (2017) A structure-based kinetic model of transcription.
Transcription 8:1–8. https://doi.org/10.1080/21541264.2016.
1234821

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

338 Biophys Rev (2021) 13:315–338

https://doi.org/10.1103/PhysRevE.83.040901
https://doi.org/10.1143/PTP.70.308
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1016/0378-1119(88)90212-0
https://doi.org/10.1016/0375-9601(89)90425-8
https://doi.org/10.1016/0375-9601(89)90425-8
https://doi.org/10.17537/2016.11.81
https://doi.org/10.15406/bbij.2018.07.00212
https://doi.org/10.20537/2076-7633-2018-10-4-545-558
https://doi.org/10.1515/rnam-2014-0015
https://doi.org/10.1134/S0006350912010186
https://doi.org/10.1134/S0006350912010186
https://doi.org/10.1134/S0006350907020066
https://doi.org/10.1134/S0006350907020066
https://doi.org/10.1016/j.ijnonlinmec.2008.05.003
https://doi.org/10.1016/j.ijnonlinmec.2008.05.003
https://doi.org/10.1134/S0006350908010041
https://doi.org/10.1134/S0006350908010041
https://doi.org/10.1134/S000635091602024X
https://doi.org/10.1134/S000635091602024X
https://doi.org/10.17537/2017.12.1
https://doi.org/10.17537/2019.14.327
https://doi.org/10.20537/2076-7633-2012-4-1-209-217
https://doi.org/10.20537/2076-7633-2012-4-1-209-217
https://doi.org/10.1103/PhysRevE.66.016614
https://doi.org/10.1103/PhysRevE.66.016614
https://doi.org/10.1103/PhysRevA.27.2120
https://doi.org/10.1103/PhysRevA.27.2120
https://doi.org/10.1103/PhysRevA.30.474
https://doi.org/10.1103/PhysRevA.30.474
https://doi.org/10.20537/2076-7633-2013-5-5-821-834
https://doi.org/10.20537/2076-7633-2013-5-5-821-834
https://doi.org/10.1103/PhysRevE.58.R52
https://doi.org/10.1103/PhysRevE.58.R52
https://doi.org/10.1103/PhysRevB.57.5033
https://doi.org/10.1103/PhysRevB.57.5033
https://doi.org/10.1088/0031-8949/43/3/025
https://doi.org/10.1088/0031-8949/43/3/025
https://doi.org/10.1080/21541264.2016.1234821
https://doi.org/10.1080/21541264.2016.1234821

	Ideas...
	Abstract
	Introduction
	McLaughlin-Scott equation for homogeneous DNA
	Sine-Gordon equation as a predecessor
	McLaughlin-Scott equation for DNA kink velocity. Solution in the absence of external field
	Solution in the presence of constant external field
	Solution in the presence of periodic external field with constant frequency
	Solution in the presence of periodic external field with a slowly varying frequency
	Solution in the presence of on/off external field

	McLaughlin-Scott equation for inhomogeneous DNA
	Sine-Gordon equations for inhomogeneous DNA
	Method of concentrations
	Solution of the McLaughlin-Scott equation for the IFNA17 gene by the method of concentrations
	Solution of the McLaughlin-Scott equation for the pTTQ18 plasmid by the method of concentrations
	Solution of the McLaughlin-Scott equation for the ADRB2, NOS1 and IL-5 genes by the method of concentrations
	Solution of the McLaughlin-Scott equation for three promoters of bacteriophage T7 by the method of concentrations
	Method of blocks
	Solution of the McLaughlin-Scott equation for the IFNA17 gene by the method of blocks
	Solution of the McLaughlin-Scott equation for the pBR322 plasmid by the method of blocks

	Discussion and perspectives
	References


