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The frequency distributions can characterize the population-
potential landscape related to the stability of ecological states.
We illustrate the practical utility of this approach by analyz-
ing a forest–savanna model. Savanna and forest states coexist
under certain conditions, consistent with past theoretical work
and empirical observations. However, a grassland state, unseen
in the corresponding deterministic model, emerges as an alterna-
tive quasi-stable state under fluctuations, providing a theoreti-
cal basis for the appearance of widespread grasslands in some
empirical analyses. The ecological dynamics are determined by
both the population-potential landscape gradient and the steady-
state probability flux. The flux quantifies the net input/output
to the ecological system and therefore the degree of nonequi-
libriumness. Landscape and flux together determine the transi-
tions between stable states characterized by dominant paths and
switching rates. The intrinsic potential landscape admits a Lya-
punov function, which provides a quantitative measure of global
stability. We find that the average flux, entropy production rate,
and free energy have significant changes near bifurcations under
both finite and zero fluctuation. These may provide both dynam-
ical and thermodynamic origins of the bifurcations. We identified
the variances in observed frequency time traces, fluctuations,
and time irreversibility as kinematic measures for bifurcations.
This framework opens the way to characterize ecological sys-
tems globally, to uncover how they change among states, and
to quantify the emergence of quasi-stable states under stochastic
fluctuations.
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The characterization of the dynamics of systems through the
construction of sets of differential equations and the explo-

ration of their long-term behavior have become standard and
powerful tools in the applied sciences (1). This is particularly
the case in mathematical biology and ecology, from the early
works of Volterra up to recent years (2). The framework of
nonlinear dynamical systems allows us to efficiently characterize
steady states, periodic orbits, and even more complex invari-
ant sets, as well their dependence on system parameters (3–8).
However, these methods often rely on local properties of the sys-
tems in the vicinity of attractors and are not designed to address
how the dynamics are altered in the presence of noise or how
fluctuations can induce global switching between multiple sta-
ble attractors. In many ecological models, multiple alternative
stable states can emerge, each with their own distinct basin of
attraction. Characterizing the stability of such states and their
responses to ecological fluctuations and predicting the possible
transitions among them is thus a grand challenge in ecology (3,
7, 9). Indeed, on longer time scales, slow variable evolution,
perhaps initiated by fluctuations, can alter the topology of the
dynamics, leading to critical transitions or to flickering between
states or basins of attraction (1, 5, 6, 10–12). We present how
landscape-flux theory from nonequilibrium statistical mechanics
can provide a powerful framework to study these questions, using

a well-known savanna–forest model, typically referred to as the
Staver–Levin (SL) model, as a case study (5, 6). Here, savanna
refers to a grass-dominated state with some trees and saplings
while forest refers to a tree-dominated state with few grasses and
saplings.

Ecological systems are subject to multifarious sources of
stochastic noise, ranging from fires and climatic variability to
variations in the growth and death rates of species (see refs.
5, 6, 8, 13, and 14 and the references therein). In ecological
dynamics, the observables of interest fluctuate, which can intro-
duce unpredictability into an otherwise deterministic process. In
such settings, the statistics of vegetation or their distributions can
be collected and often provide a reliable quantification of the
state of an ecological system. The statistical patterns are typi-
cally relatively regular and the associated probabilistic dynamics
can be predicted since they typically follow the linear evolu-
tion law dictated by the associated Fokker–Planck or Master
equation. Although the probabilistic evolution equation and the
corresponding Langevin equation for the stochastic trajectories
are usually mathematically equivalent in terms of the statistics,
the individual trajectories as a result of the nonlinear interac-
tions and fluctuations are often impossible to reliably predict (1,
15, 16). These trajectories can be compared with observations
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of not only the time traces, but also their frequency or sta-
tistical distributions, which are increasingly becoming available
(17). A critical question is then how observed frequency distribu-
tions are linked to stability (18). Ecological analyses of snapshot
data have mostly assumed that stable states will appear more
frequently than unstable ones (19). However, the real situa-
tion can be more complicated, and it remains a challenge to
disentangle the underlying stable configurations and stochastic
effects.

Historically, researchers have applied a myriad of techniques
to study the global dynamics of complex systems subject to ran-
dom forcing. Some approaches have focused on the zero-noise
limit (20–23) while others have considered the finite stochastic
fluctuations (1, 24–26), but certain mathematical challenges still
remain (25, 26). Data-driven approaches to landscape changes
and transition paths have recently been explored in the microen-
vironment “ecosystem” of cancer–immune interactions (27–30).
In this study, we highlight a recently developed method for
analyzing the global stability and dynamics of both determinis-
tic and stochastic complex systems in a unified framework (4,
17, 31, 32). For general dynamical systems, one can study the
global dynamics by identifying the so-called population-potential
landscape and the rotational curl flux. The global population-
potential landscape is determined by the steady-state probability
distribution of ecological states, while the rotational curl flux is
determined by the steady-state probability flux. Heuristically, the
population-potential landscape attracts the system to the basins
of the steady states and the curl flux drives the system in a rota-
tional way that reinforces the stability of the flow. Furthermore,
since the population-potential landscape is directly associated
with the statistical distribution of the steady states, we can
use the observed frequency distribution to infer the underlying
population-potential landscape. The observed frequency distri-
butions are typically univariate, allowing an effective description
of the ecological system in this specific dimension (8). The
corresponding landscape inferred from the observed univariate
frequency distribution can provide insights regarding the global
stability of the system. If different univariate frequency distri-
butions are observed, one may approximate the multivariate
population landscape as the product of the individual univariate
distributions (mean field approximation) under the weak cou-
pling assumption. To obtain more precise information on the
population landscape, one needs to know the time series of all
of the observables for the joint distribution, which is rarely the
case in practice.

Since the foundational work of Volterra (2), a significant
amount of research has focused on trying to find Lyapunov func-
tions for dynamic ecological models (33), but such approaches
have practical difficulties and are still somewhat incomplete (4,
17, 31). The landscape-flux framework provides a general way
to analyze the dynamics of ecological systems. We focus on its
implications in a forest–savanna model to study the stochastic
dynamics and the interplay between grass, saplings, and trees
(5, 6). This will allow us to not only quantify the underlying
population-potential landscape, link this to the frequency distri-
bution of the observables at long times, and gain insights on the
global stability under various conditions, but also characterize
the effects of fluctuations on the dynamics.

This study establishes a link between the observed frequency
distribution at long times and the population landscape of the
ecological system. Moreover, we will identify the rates of tran-
sitions between multiple states and their dependence on noise
levels. In particular, contrasting with the view that fluctuations
destabilize steady states, we will show that here, fluctuations
can sometimes produce a state not present in deterministic
dynamics. Importantly, we show that the nonzero flux charac-
terizing the net input/output to the ecological system and there-
fore the degree of nonequilibriumness (the distance away from

equilibrium), together with the population-potential landscape,
determine the noise-induced transitions between the basins of
attraction, in terms of both the dominant paths and rates of
transition. These noise-induced transitions are irreversible, in
the sense that the dominant forward path from A to B is
not the same as the dominant backward path from B to A.
This framework thus opens the way to characterize the eco-
logical system globally, to uncover how they switch between
states due to the nonzero flux, and to quantify the emer-
gence of stable states that are not present in the deterministic
dynamics.

To study the SL model subject to noise, we first compute the
nonequilibrium population-potential landscape (U ) under finite
fluctuations. We then take the zero-fluctuation limit to obtain
the intrinsic potential landscape, denoted by φ0. As we show
presently, the intrinsic potential landscape is a global Lyapunov
function for the ecological dynamics and thus the topological
structure of the intrinsic potential landscape provides a quantita-
tive measure for the global stability of the ecological system. In
addition, we characterize the quantitative relationship between
the driving force of the intrinsic potential gradient and that of
the probabilistic flux for the ecological dynamics. We also iden-
tify the nonequilibrium free energy as a Lyapunov function for
quantifying the global stability of the ecological systems at finite
fluctuations. The linkage of the nonequilibrium intrinsic free
energy with the different phases and the bifurcations (phase tran-
sitions) of the ecological system changes with respect to changes
in the parameters.

Complex ecological systems often involve nonlinear interac-
tions that can lead to a variety of behaviors and transitions
between various dynamic regimes. These changes in the quali-
tative behavior of the system can be described by bifurcations
where different stable/unstable states can branch out, meet, or
emerge spontaneously (1, 34, 35). Energy, material, or infor-
mation exchange can also lead to new phases and bifurcations.
In nonequilibrium systems, the flux provides the origin of the
entropy production, which is a measure of nonequilibrium ther-
modynamic cost. This cost is a thermodynamic measure of the
free-energy consumption or dissipation needed for certain bio-
logical functions; it is quantified by the entropy production. For
example, to maintain the cell cycle flow, nutrition supply through
the phosphorylation reaction via adenosine triphosphate hydrol-
ysis, quantified by the entropy production or free-energy cost, is
required. In an equilibrium ecological system, the bifurcations
are determined exclusively by the potential gradient. However,
in nonequilibrium ecological systems, the bifurcations are deter-
mined by both the potential gradient and the rotational flux.
Therefore, the curl flux plays a crucial role in the emergence
of nonequilibrium states and bifurcations in nonequilibrium
systems (4, 36, 37).

We analyze the average curl flux, Fluxav , and entropy pro-
duction rate, EPR, under both finite and zero fluctuations.
As system parameters vary, Fluxav and the associated ther-
modynamic cost in terms of the EPR both have significant
changes near (between) the two saddle-node bifurcations, espe-
cially in the zero-fluctuation case. Therefore, the dynamical and
thermodynamic origins of the bifurcation for nonequilibrium
ecological systems may be from the curl flux and the EPR,
respectively. On the other hand, these physical quantities can
be inferred from the observed time series. For example, infor-
mation on flux and EPR can be inferred directly from the
time irreversibility of the observed time traces. The variance in
the frequency statistics and kinetic time obtained directly from
the observed time traces can be used as the kinematic mark-
ers for the onset or offset of bifurcations. Both physical and
kinematic markers based on the observed time traces may be
used to identify the start or end of bifurcations in ecological
dynamics.
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Materials and Methods
The Staver–Levin Model. The SL model was introduced to study the dynamics
of the ecological system and the interplay between the fractions of ter-
rain covered by grass (G), savanna saplings (S), and savanna trees (T) in a
forest–savanna ecological system (5, 6). In the absence of forest trees, the
interaction between savannas and grass is mediated by fires, carried by
grass, that limit the rate of maturation of savanna saplings into adult trees.
More precisely, the simplified interactions between grass and two life stages
of savanna trees are given by the equations (5, 6)

Ġ =µS + νT − βGT

Ṡ = βGT − (ω(G) +µ)S [1]

Ṫ =ω(G)S− νT.

Parameter interpretations and their default values (unless otherwise spec-
ified) are given in Table 1. The function ω(G) =ω0 +

ω1−ω0
1+e−(G−θ1)/ss1

is a

smooth decreasing sigmoid with parameters chosen to qualitatively cap-
ture how threshold fire onset limits the maturation of saplings into adult
trees. This aspect of the model can be motivated by percolation the-
ory as well as empirical observations (6, 38). By scanning the parameter
ranges, we find only monostable or bistable behaviors (see SI Appendix
for detailed exploration of the parameter space). Therefore, we focus on
certain ranges of parameters, which cover all of the dynamic regimes of
the model.

The SL model assumes that all terrain is covered by one of grass,
saplings, or savanna trees, so that G + S + T = 1 for all times. Hence, we
can reduce the system to a two-dimensional system in which we keep track
only of grass (G) and savanna trees (T) since saplings (S) will be given by
S = 1− T −G.

Population-Potential Landscape and Flux Quantification for the SL Model. Due
to fluctuations from internal and external sources, the deterministic dynam-
ics described by a set of ordinary differential equations need to be modified
to include the contribution of the additional fluctuation forces. Thus, the
following stochastic dynamics emerge (4, 10, 37, 39, 40): dx = F(x)dt +

g · dW, where x is the vector representing the observables for the popula-
tion or species density; and x = {G, T} for the SL model. In our case, x does
not represent spatial variables as we model spatial extent only implicitly
by tracking the proportions of space covered by each vegetation type. We
retain this notation for both the stochastic dynamics and the correspond-
ing Fokker–Planck equation. F(x) is the driving force for the dynamics, and
W coupled with the matrix g represents an independent Gaussian fluctuat-
ing process. We set DG = (1/2)(g · gT), where D is a constant describing the
scale of the fluctuations and G represents the diffusion matrix of the fluctu-
ations. In this study, G is an isotropic diagonal identity matrix, for simplicity,
and thus the noise is chosen as Gaussian white noise.

The stochastic dynamics are characterized by the probability distribution
of the system state at time t, P(x, t), which can be obtained by solving the
Fokker–Planck equation:

∂tP =−∇ · J =−∇ · [FP− (1/2)∇ · ((g · gT)P)]. [2]

Hence, the steady-state probability distribution, denoted by Pss, can be
obtained by solving the steady-state Fokker–Planck equation; i.e., ∂tP = 0.
The normalization condition G + S + T = 1 in the SL model means that
the system is reduced from three dimensions to two. Therefore, the state
space is an isosceles right triangle with the two equal length sides hav-
ing length 1 (see Fig. 2). In equilibrium systems, the probability follows a

Table 1. Parameter interpretations and default values

Symbol Ecological interpretation Default

β Savanna sapling birth rate 0.38
µ Savanna sapling mortality rate 0.2
ν Adult savanna tree mortality rate 0.1
ω0 Savanna sapling-to-adult recruitment 0.9

rate basic value
ω1 Savanna sapling-to-adult recruitment 0.2

rate of sigmoid basic value
θ1 Grass cover basic value 0.4
ss1 Slope of the sigmoid 0.01

Boltzmann distribution P∼ exp[−U] (1, 4, 10, 41) and the energy U is called
the population-potential landscape. Thus, the driving force for the dynam-
ics is determined by the gradient of the population-potential landscape in
equilibrium systems.

In nonequilibrium systems, the force F cannot be written as the gradient
of a potential in general. However, the population-potential landscape can
still be defined and linked to the probabilities by the formula U =− ln Pss

(1, 4, 31). We denote by Jss = FPss−D∇ · (GPss) the corresponding steady-
state probability flux and note that it satisfies the divergence-free condition
∇ · Jss = 0.

In equilibrium systems, there is no net flux in or out of the system. Thus,
the steady-state probability flux is zero at all points in the state space; this
is the so-called detailed balance condition Jss = 0. In nonequilibrium systems,
the nonzero flux, Jss, is divergence-free and breaks the detailed balance
condition. This nonzero flux thus provides a quantitative measure of the
degree to which the system is out of equilibrium. In nonequilibrium eco-
logical systems, the driving force F can be decomposed into the gradient of
the potential U, the curl steady-state probability flux, and the divergence of
the diffusion coefficient as F =−DG · ∇U + Jss/Pss + D∇ ·G. The population
potential landscape U and the steady-state probability flux Jss together can
address many global dynamical and thermal dynamical issues including sta-
bility, robustness, dynamics, and thermodynamics of ecological systems. We
use the SL model under fluctuations to study the stochastic dynamics and the
interplay among grass, saplings, and trees (5, 6). We solve the Fokker–Planck
partial differential equation given by Eq. 2 for the SL model with reflecting
boundary conditions, i.e., n · J = 0, where n is a unit vector perpendicular to
the boundary of the state space, to obtain the probability distribution of
the system. We can thus quantify the population-potential landscape U and
the flux Jss, which together determine the driving forces for the dynamics of
the ecological system.

Forest–savanna landscapes are nonequilibrium open ecological systems
and hence exchange energy with their environments, which leads to dis-
sipation. The entropy of a stochastic system can be defined as Sentropy =

−
∫

P ln Pdx and the change in the entropy in time can be divided into
the entropy production rate and heat dissipation rate. The time evolution
of the entropy of the system is thus given by Ṡentropy = Ṡt − Ṡe, where the
entropy production rate (EPR =Ṡt) is given as Ṡt =

∫
dx(J · (DG)−1 · J)/P (31,

42–44). Thus, the EPR is explicitly linked to the flux J. Zero flux would give
rise to zero-entropy production, which would correspond to an equilib-
rium system. However, in practice, nonzero fluxes are likely, corresponding
to nonequilibrium systems. A higher flux gives rise to a higher EPR, cor-
responding to more deviations from equilibrium. This formalism provides
a link between nonequilibrium driving force (flux) and nonequilibrium
thermodynamic cost, i.e., the EPR.

One can prove that Ṡt ≥ 0, which leads to the second law of nonequilib-
rium thermodynamics. Ṡt has the physical meaning of the EPR contributed
from both the system Ṡ and the environment Ṡe as Ṡt = Ṡentropy + Ṡe. This
can be understood as a formulation of the first law of nonequilibrium ther-
modynamics. The heat dissipation rate from the environment is given as
Ṡe =

∫
dx(J · (DG)−1 · (F−D∇ ·G)). The heat dissipation rate can be either

positive or negative and can quantify the entropy flow rate from the
environment to the nonequilibrium system. When the system is at the
steady-state Ṡentropy = 0, the EPR and the heat dissipation rate are equal
(31, 42–44). The EPR and the average flux Fluxav =

∫
Jdx thus provide global

thermodynamic measures for the nonequilibrium systems (4, 17, 31, 43). The
mathematical notation and definitions outlined above are summarized in
SI Appendix, Table S1.

Lyapunov Function for the SL Model under Zero Fluctuations. A Lyapunov
function is crucial for quantifying the global stability of ecological systems
subject to perturbations. One might use the steady-state probability or the
associated population potential to explore the global stability under finite
fluctuations. However, the population potential is not a Lyapunov function
in general (17) and it is often a challenging problem to find Lyapunov func-
tions for complex nonequilibrium systems. Here we show that the intrinsic
potential landscape, φ0, is a Lyapunov function for the ecological dynamics
in the zero-noise limit (17, 43).

The probability P can be expanded according to the fluctuation
strength D as P(x) = exp(−(φ0(x)/D +φ1(x) + Dφ2(x) + · · · ))/Z, where Z =∫

exp(−U(x))dx. By substituting it into Eq. 2, we obtain the D−1 order
expansion of the Fokker–Planck equation, which has the largest con-
tribution to the probability under the zero-noise limit. This yields the
Hamilton–Jacobi equation (HJE):

H = F · ∇φ0 +∇φ0 ·G · ∇φ0 = 0. [3]
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The time evolution of φ0(x) is thus given by φ̇0(x) = ẋ · ∇φ0 = F · ∇φ0 =

−∇φ0 ·G · ∇φ0≤ 0. The value of φ0(x) monotonically decreases along the
deterministic trajectories under the zero-fluctuation limit since G is pos-
itive definite. Therefore, φ0 is a Lyapunov function and can be used to
quantify the global stability of the systems. Furthermore, φ0 is linked
with the steady-state probability and population-potential landscape as
U =−lnPss∼φ0/D. The solution φ0 of the Hamilton–Jacobi equation, which
is the zero-fluctuation limit of the solution to the Fokker–Planck equation,
is called the intrinsic potential of the system (17, 43).

In the zero-fluctuation limit, the force F can be decomposed into a gra-
dient term and a curl term F =−G · ∇φ0 + (Jss/Pss)|D→0 =−G · ∇φ0 + V,
where −G · ∇φ0 represents the gradient of the nonequilibrium intrin-
sic potential. We set V = (Jss/Pss)D→0 as the intrinsic steady-state flux
velocity. Jss|D→0 represents the steady-state intrinsic divergence free curl
flux due to ∇ ·V = 0. From the Hamilton–Jacobi equation, the relation-
ship between φ0 and the intrinsic flux is thus (Jss/Pss)|D→0 · ∇φ0 = V ·
∇φ0 = 0. This implies that the gradient of the intrinsic potential and
the intrinsic flux are perpendicular to each other in the zero-fluctuation
limit.

Due to the normalization condition in the SL model, the state space
becomes an isosceles triangle, making calculation of φ0 very difficult. To
overcome this problem, we approximate the Lyapunov function φ0 from
the expansion of the potential U(x) for the small diffusion coefficient D as
U(x) =φ0(x)/D +φ1(x) + . . .. We applied the linear fit method for the dif-
fusion coefficient D versus the DU to solve the φ0 approximately. We use the
data of 0.0002<D< 0.0005 to fit a line, which is the diffusion coefficient
D versus D ln Pss. Thus, the slope of the line leads to the value of φ0 (43, 45).
The results are shown later in this paper. An exact numerical solution of the
Hamilton–Jacobian equation for the intrinsic potential landscape φ0 under
a specific choice of diffusion matrix mimicking the population evolution
dynamics is demonstrated in SI Appendix.

Nonequilibrium Thermodynamics, Entropy, Energy, and Free Energy of the
General Dynamical Systems under the Zero-Fluctuation Limit and the Finite
Fluctuations. In equilibrium systems, we can quantify the equilibrium prob-
ability distribution and the partition function as well as the entropy and
free energy according to the underlying interacting potential energy. The
partition function provides a statistical description for the collection of
states in the system. For nonequilibrium systems, the intrinsic potential
φ0 can be related to the steady-state probability distribution under the
zero-fluctuation limit as Pss(x) = Pss(x)|D→0 = exp(−φ0/D)/Z, where D=

D|D→0. The partition function Z is defined as Z =
∫

exp(−φ0/D)dx. Thus,
φ0 =−D ln(ZPss).

The entropy of the nonequilibrium system under the zero-fluctuation
limit can be defined by S =−

∫
P(x, t) lnP(x, t)dx (4, 17, 31, 43).

The intrinsic energy E of the nonequilibrium system can be defined
as E =

∫
φ0P(x, t)dx =−D

∫
ln(ZPss)P(x, t)dx. Thus, the intrinsic free

energy of the nonequilibrium system can be defined as F = E −DS =

D (
∫
P ln(P/Pss)dx− lnZ).

The nonequilibrium intrinsic free energy always decreases since dF
dt =

−D2
(∫ [
∇ ln( PPss

) ·G · ∇ ln( PPss
)
]
Pdx

)
≤ 0 (17, 43). The minimum value

of the nonequilibrium intrinsic free energy is F =−D lnZ. This represents
the second law of thermodynamics for nonequilibrium systems. Therefore,
the nonequilibrium intrinsic free energy is a Lyapunov function and, as
we show presently, it can be used to quantify the global stability of the
nonequilibrium system.

We also explore the nonequilibrium free energy under finite fluctua-
tions D. The energy E of the nonequilibrium system under finite fluctuations

can be defined as E =
∫

DUPdx, and the entropy under finite fluctuations
is Sentropy =−

∫
P ln Pdx. Thus, the free energy under finite fluctuations

is shown as F = E −DSentropy = D
∫

P ln(P/Pss(x))dx (17, 43). The nonequi-
librium free energy under finite fluctuations also always decreases since
dF
dt =−D2

(∫ [
∇ ln( P

Pss
) ·G · ∇ ln( P

Pss
)
]
Pdx
)
≤ 0 (17, 43). This shows that

free energy under finite fluctuations is also a Lyapunov function (17, 43),
which can be used to quantify the global stability of the nonequilibrium
system.

Kinetic Speed and Dominant Paths between the Stable States. The path-
integral approach can be used to identify and quantify the most likely
transitions between two stable states. The path-integral formula character-
izing the probability of the path from initial state xi at t = 0 to final state
xf at time t is given by (17, 32) P(xf , t|xi , 0) =

∫
Dx exp[−

∫
dt( 1

2∇ · F(x) +
1
4 (dx/dt− F(x)) · (DG)−1 · (dx/dt− F(x)))] =

∫
Dx exp[−A(x)] =

∫
Dx exp[−∫

L(x(t))dt], where L(x(t)) is the Lagrangian and A(x) is the action for each
path on the potential landscapes. The path integral over Dx represents
the sum over all possible paths connecting xi at time 0 to xf at time
t. The exponential factor gives the weight of each specific trajectory
and the probability of going from xi to xf is thus the weighted sum
over all possible paths. The path integral can be approximated by the
path that contributes the most to the weight since the other paths’
contributions are exponentially small. We can find the dominant paths
with the optimal weights through minimization of the action A(x) or
Lagrangian L(x(t)) as the dominant path probability is proportional
to exp[−A(x)]. Thus, we can identify the paths that give the largest
contribution to the weight as the dominant savanna– forest switching
pathways. The path-integral formalism here is based on the Onsager–
Machlup functional for a diffusion process under finite fluctuations
(46). Under the zero-noise limit, the divergence of the force term in the
Onsager–Machlup functional can be ignored. As a result, the path-integral
formalism is reduced to the form arising in the Freidlin–Wentzell
theory (47).

Ecological Dynamics: The Landscape-Flux Approach versus Conventional Non-
linear Dynamics. We show comparison between conventional nonlinear
dynamics analysis and landscape-flux theory in Table 2. In standard deter-
ministic nonlinear dynamics, local stability analysis can be performed and
stable states can be identified. However, there is no information about the
weights of the states, information that can be provided from the proba-
bilistic landscape-flux approach. Furthermore, local stability analysis does
not quantify the connections or switching paths between the stable states,
properties that can be quantified through the landscape-flux approach. In
addition, conventional nonlinear dynamical analysis often does not provide
information about the global stability of a system, typically due to the diffi-
culty in finding a suitable Lyapunov function. The landscape-flux approach
can provide a way to identify the Lyapunov function and therefore quantify
the global stability.

The additional information that this approach provides is the degree of
difficulty in switching from one stable state to another, a property that
can have significant ecological consequences in real-world systems. Sim-
ilarly, while conventional nonlinear analysis can identify the bifurcations
for the system, there is typically no information about how the bifurca-
tions occur and the possible origins of such bifurcations. This is one of
the most important unresolved issues in theoretical ecology and can be
addressed in the landscape-flux approach by searching for the physical
(dynamic and thermodynamic) origins of the bifurcations of the ecological
systems.

Table 2. Comparison between conventional nonlinear dynamics analysis and landscape-flux theory

Conventional nonlinear dynamics Landscape-flux approach

Locations of the fixed-point states Weights of the states
Local dynamics around fixed points Global connections between the fixed-point states
Stochastic local stability analysis Global stability analysis based on landscape and flux under fluctuations
Deterministic local stability analysis Lyapunov function identifications for quantifying global stability under no fluctuations
Isolated fixed points Barrier height between the local stable states
Fixed points with no kinetic connections Kinetic rates of switching between the local stable states
Fixed points without the connected paths Dominant kinetic pathways and associated weights between local stable states
Locations of the bifurcations Physical origins and predictions of bifurcations
Locations of bifurcations Kinematic markers and early warning signals of the bifurcations
No identification of the driving force components Theoretical framework of the driving force via landscape and flux
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In deterministic nonlinear dynamics, the driving force in the model is sim-
ply the right-hand side of the evolution equations. However, there is usually
no easy way to understand the nature of this driving force when the sys-
tem is subject to noise. The landscape-flux approach offers a framework to
study the stochastic dynamics by identifying the driving force as the action
of both the landscape gradient and rotational flux. One can also quan-
tify the associated global thermodynamics in terms of the EPR. Therefore,
the landscape-flux approach provides a general framework to study the
global dynamics and thermodynamics of the ecological systems. Finally, in
deterministic nonlinear dynamics, the stable states emerge from the interac-
tions. However, in the presence of stochastic forcing, new quasi-stable states
can emerge, and these new states can be predicted by the landscape-flux
approach.

Results
Dynamics and Thermodynamics via Potential-Flux Landscapes.
Nonequilibrium population-potential landscape and flux with
finite fluctuation. We now illustrate the landscape-flux approach
to ecological dynamics by studying the SL model under finite
fluctuations. Savanna denotes a grass-dominated state with some
trees and saplings, while forest is a tree-dominated state with few
grasses and saplings. The grassland state has no saplings or trees
present.

Fig. 1A shows the deterministic phase diagram in β
(the sapling birth rate), while Fig. 2 shows two-dimensional
population-potential landscapes (U ) for a range of βs with D =
0.0001; in both cases the system is considered under finite fluc-
tuations. In Fig. 2, the population-potential landscape initially
has one stable state that evolves from the grassland state [i.e.,
(G,T ) = (1, 0)] to the savanna state with increasing β. As β
increases further, the stable forest state emerges. As β increases,
the ecological system switches from savanna dominant to forest
dominant (also shown in Fig. 1A), and as β increases further,
the grass is completely invaded by the trees due to the high
sapling birth rate. Eventually, the forest state becomes dominant
while the savanna state disappears. Fig. 3 shows the fluxes on
the population-potential landscapes as white arrows for increas-
ing β. To show the fluxes clearly, we give only the directions of
the larger values of the fluxes, which are all around the stable
states. Vegetative growth factors, such as nutrition and energy
from soil, air, water, and sunshine, will vary due to different cli-
mates in the environment. Thus, when the system has two stable
states savanna and forest, the fluxes originating from the vegeta-

Fig. 1. (A) The phase diagram versus β. (B) The population entropy
production rate versus β. (C) The population average flux versus β.

tive growth factors go around the stable states, enhancing their
communications to each other. In Fig. 3, the negative gradient of
the population-potential landscapes and the nonzero flux are the
driving forces of the forest–savanna ecological system.

Fig. 3 shows the dominant population paths, calculated under
finite fluctuations, on the population-potential landscape U with
different parameters. Once more, savanna and forest are the
two stable states. The red line is the dominant population path
from forest state to savanna, while the thick white line is the
dominant population path from savanna state to forest. The
white arrows represent the steady-state probability fluxes that
guide the dominant population paths deviating from the naively
expected steepest-descent path passing through the saddle point
based purely on the population-potential landscape. Therefore,
the dominant population paths from savanna to forest and the
dominant population paths from forest to savanna do not follow
the same path, in contrast to the equilibrium case under zero flux.
The two dominant population paths are different, which shows
the irreversibility of the dominant population paths due to the
presence of the nonequilibrium rotational flux. Thus, the dom-
inant population paths going from savanna to forest (the white
lines) and going from forest to savanna (the red lines) will fol-
low different routes. The two dominant population paths under
larger fluctuations (bigger diffusion coefficient D) are shown in
Fig. 3D; the two dominant population paths are also apart from
each other due to presence of the steady-state probability fluxes
such as those shown in Fig. 3C. The fluxes have spiral shapes
around these two basins, which shows the dynamic nature of the
nonequilibrium system.

The red and white lines approximately form a figure-“8” shape,
emphasizing that the switching dominant population paths are
distinct and thus that the transition is “irreversible.” The white
path lines start from savanna and initially the flux force is in the
counterclockwise direction, as shown in Fig. 3. Therefore, the
dominant population paths from savanna to forest initially move
upward under the action of the flux force compared to the paths
based purely on the gradient of the landscape. When the grass G
decreases close to θ1 = 0.4, the savanna sapling-to-adult recruit-
ment rate ω(G) will run into a threshold value and increase
sharply. Therefore, the white path lines arrive at their inflec-
tion point, where the flux changes direction to be clockwise. As a
result, the white path moves downward from then on under the
action of the flux force, compared to the paths based purely on
the gradient of the landscape. Similarly, the red path line starts
from the forest state and initially the flux force is in the clockwise
direction, as shown in Fig. 3. Therefore, the dominant population
paths from forest to savanna states initially move more upward
under the action of the flux force. When the grass G increases
close to θ1 = 0.4, the savanna sapling-to-adult recruitment rate
ω(G) hits its threshold value and decreases sharply. The red
path lines arrive at their inflection point, where the flux becomes
counterclockwise. The red path moves downward from then on
due to the action of the flux. In ecological terms, this finding is
quite intuitive. For a forest to establish, trees must first establish
as saplings, whereas they need not regress into saplings before
dying, such that the composition of the system is quite different
as a forest opens up compared to when a savanna closes over
(see ref. 48 for empirical evidence supporting this mathematical
intuition).

The weight of the population path represents the probabil-
ity of each route for state switchings under finite fluctuation.
It can be used to quantify the likelihood of different routes
for the transition between savanna and forest. The dominant
population path probability can be quantified by the popula-
tion action Apo(x) as shown in SI Appendix, Fig. S1 (β, µ,
θ1) and SI Appendix, Fig. S22 (ν, ω0, ω1). Bigger popula-
tion action denotes lower dominant population path probability
since the dominant population path probability is proportional

Xu et al.
Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach

PNAS | 5 of 12
https://doi.org/10.1073/pnas.2103779118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103779118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103779118/-/DCSupplemental
https://doi.org/10.1073/pnas.2103779118


Fig. 2. The two-dimensional population-potential landscapes versus β with
finite fluctuation D = 0.0001.

to exp[−Apo(x)]. As β becomes larger, the probability of the
dominant population path from forest to savanna decreases,
while the probability of the dominant population path from
savanna to forest increases. The variation of the population-
potential landscape, the flux, the population actions, and the
dominant population paths in µ, θ1, ν,ω0,ω1 are presented in
SI Appendix.
The intrinsic potential landscape and flux velocity in the zero-
fluctuation limit. Fig. 4 shows the three-dimensional nonequi-
librium intrinsic potential landscape φ0 with increasing β. The
intrinsic potential landscape changes from a dominant savanna
stable state, to a savanna and forest coexisting stable state, and
then to a dominant forest stable state as β increases. The intrinsic
flux and the negative gradient of the intrinsic potential landscape
−∇φ0 are in fact perpendicular to each other and the two dom-
inant intrinsic paths, calculated under the zero-fluctuation limit,
both pass through the saddle point denoted by the black dot;
these facts can also be seen clearly in SI Appendix, Fig. S2 via
a two-dimensional (2D) projection.

The dominant intrinsic path probability can be quantified by
the intrinsic action Ain(x) shown in SI Appendix, Fig. S3 (β, µ, θ1)
and SI Appendix, Fig. S25 (ν, ω0, ω1). The results of the intrin-
sic actions have the same tendencies as those of the population
actions.

Throughout the main text and in SI Appendix, sections 1–6,
the diffusion matrix G is an isotropic and homogeneous diag-
onal matrix. In SI Appendix, section 7, we present results for
certain anisotropic and inhomogeneous fluctuations character-
ized by different choices of diffusion matrices. We perform a
coordinate transformation from a special diffusion matrix in
an isosceles triangle into an inhomogeneous diagonal matrix
in a square (SI Appendix, Fig. S43). Thus, we can numeri-
cally solve the Hamilton–Jacobi equation in a regular square
shape with the resulting diagonal matrix (17, 43). Results for
the anisotropic and inhomogeneous fluctuations are qualitatively
similar to those for the isotropic and homogeneous diffusion
matrices (SI Appendix, Fig. S44).
Barrier heights and kinetic rates of switching between states. Fig.
5A shows the barrier heights of the population-potential land-

scape under finite fluctuations as a function of β. The barrier
heights of the intrinsic potential landscape under zero fluc-
tuations versus β are shown in SI Appendix, Fig. S5A. ∆UF

represents the barrier height from forest to savanna and ∆US

represents the barrier height from savanna to forest. ∆φ0F rep-
resents the intrinsic barrier height from forest to savanna, while
∆φ0S represents the intrinsic barrier height from savanna to
forest.

As expected, population barrier height ∆UF and intrinsic bar-
rier height ∆φ0F increase, while ∆US and ∆φ0S decrease as
β increases. High barrier height from the bottom of the basin
of the attraction to the barrier top implies that it is difficult
to escape from the basin of attraction of that state. Therefore,
larger ∆UF indicates that the forest state is more stable while
larger ∆US indicates a more stable savanna state. As the sapling
birth rate β increases, the trees become more established and
the forest state becomes more stable, while the savanna state
becomes less stable. The forest–savanna system thus switches
from savanna dominance to forest dominance for β sufficiently
large. The barrier heights of the population-potential landscape
and the intrinsic barrier heights of the intrinsic potential land-
scape have almost the same qualitative features (cf. Fig. 5A and
SI Appendix, Fig. S5A). The barrier heights of the population-
potential landscape and the intrinsic potential landscape as
functions of β, µ, θ1, ν, ω0, and ω1 are shown in SI Appendix,
Figs. S4 and S5.

Due to stochastic fluctuations or other external forces, eco-
logical systems may not stay in the basin of attraction of their
current stable state, but may escape from this basin, switching
the system to an alternative stable state. Mean first passage time
(MFPT) is the average time for a stochastic process to reach a
given threshold value (state) for the first time. The MFPT can
be used to quantify the kinetic speed or kinetic time for switch-
ing from one state to another, both natural measures for the
tendency of the system to escape its current basin of attraction.
We use Langevin dynamics to simulate the stochastic SL model
and study the distribution of the MFPT from one stable state
to another as follows: We choose one stable state as the ini-
tial condition and a disc of radius r0 = 0.01 around the other
stable state serves as the target final “state.” We then collect
statistics of the first passage time from the initial state to the
final state before averaging over all simulations to compute the
mean first passage time (40,000 simulations were performed to
obtain the results shown). τSF is the MFPT from savanna to for-
est while τFS is the MFPT from forest to the savanna. We show
the logarithm of MFPT versus β in Fig. 5B and observe that
ln τSF decreases and ln τFS increases as β increases. In other
words, it becomes easier to switch from savanna to forest and
harder to switch from forest to savanna as the sapling birth rate
increases.

The population-potential landscape topography, quantified by
the barrier height, and the corresponding logarithm of MFPT
have positive correlation and are shown in Fig. 5C. Thus, from
the barrier height ∆UF , ∆US and the logarithm of the corre-
sponding MFPT, lnτFS , one can see that the MFPT is directly
related to ∆UF . Thus, lnτSF has a correlation with the barrier
height ∆U as τ ∼ exp(∆U ). This shows that the higher the bar-
rier height or the deeper the valley is, the longer time it takes
to escape from the valley. This indicates that the population-
potential landscape topography is often correlated to the kinetic
speed of the state switching and therefore the communication
capability for the global stability of the ecological system. We can
also see that kinetic speed can sometimes be estimated based on
the population-potential landscape topography through the bar-
rier heights. The logarithm of MFPT versus other parameters
and the logarithm of MFPT versus barrier heights are presented
in SI Appendix, Fig. S6 (β, µ, θ1) and SI Appendix, Fig. S26
(ν, ω0, ω1). We also found the barrier height ∆UF , ∆US and
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Fig. 3. (A–C) The dominant population paths and fluxes on the population-
potential landscape U with different β= 0.34, 0.36, 0.38 and D = 0.0005.
The white lines represent the dominant population paths from the savanna
state to the forest state. The red lines represent the dominant popula-
tion paths from the forest state to the savanna state. The white arrows
represent the steady-state probability fluxes. (D) The dominant population
paths and fluxes on the population-potential landscape U with β= 0.38 and
D = 0.001.

the corresponding MFPT ln τFS , ln τSF have the correlation of
τ ∼ exp(∆U ) (SI Appendix).
Early warning signals for bifurcations. Many complex systems,
from ecological systems to financial markets and climates, have
tipping points when the systems evolve into a critical dynamic
regime. Predicting the system behavior before it reaches a tip-
ping point is extremely difficult, but recent studies in different
fields suggest that common early warning signals may be tracked.
For a range of different types of systems, these signals can
be used to detect whether the critical threshold is approached.
When one phase state changes to another, the dispersed fluctu-
ations that occur in the phase transition from an old state to the
new state not only increase in magnitude, but also extend in dura-
tion. This lengthening of time is called “critical slowing down” in
statistical physics. The closer the system is to the critical state
of sudden change, the more significant this slowing down will be
(49, 50). We briefly illustrate how these concepts and techniques
can be applied to the SL model in both the finite-fluctuation case
and the zero-fluctuation limit.

Finite fluctuations. There are two phase transition points for this
set of parameters, as shown in Fig. 1A. Fig. 1B shows the pop-
ulation entropy production rate versus β. Fig. 1C shows the
population average flux versus β. As β increases, population
Fluxav and population EPR both increase markedly before then
decreasing slightly. Furthermore, both the population averaged
flux and population entropy production rate undergo signifi-
cant changes at the saddle-node bifurcation shown in Fig. 1A.
When undergoing a critical transition at the saddle-node bifur-
cation, the system has two coexisting stable states in the phase
transition region emerging from one stable state. For nonequi-
librium systems, while the gradient force always tends to stabilize
the point attractor, the flux force (due to its rotational nature)
will tend to destabilize the existing state, but stabilize the flow
between the states. Therefore, there is a possibility of a new
state emerging for the purpose of stabilizing the flow between
the existing state and this newly formed state. Thus, the stability
of the coexisting state is not determined by the individual state
but by the associations between the two states. In this sense, the
two states in the transition region have associations with each
other, in contrast to the individual state, and more state space can
be explored under fluctuations. The system appears to require
more average flux to maintain the coexisting states and their
associations, in contrast to when there is only one stable state.
This also results in greater thermodynamic cost or dissipation.
These effects lead to the peaks in the bifurcation region in EPR
and Fluxav . We show the population entropy production rate
and the population average flux versus other parameters in SI
Appendix. Both the population average flux and the population
entropy production rate have significant changes near (between)
the two saddle-node bifurcations under different parameters and
their associated changes, reaching similar conclusions to those
above.

The forest state has higher EPR and Fluxav , which implies
that the trees need more vegetative growth factors and more
nutrition and energy than grass from the savanna environment.
The savanna needs fewer vegetative growth factors, less nutri-
tion, and less energy than trees from the environment. The
population Fluxav and population EPR have similar changes
with respect to β, as shown in Fig. 1 B and C. Hence popu-
lation Fluxav and EPR may provide warning signals of bifur-
cations. Therefore we may use the population Fluxav and
EPR to explore the global stability and bifurcations of the
nonequilibrium ecological dynamics.

Long-time trajectories of the SL model with the default
values of the parameters and D = 0.0005 are shown in Fig.
6A to illustrate this noise-induced attractor switching from a
pathwise perspective. The average of the differences between
the two-point cross-correlations forward and backward in time
can be used to measure the time irreversibility and there-

Fig. 4. The three-dimensional intrinsic potential landscape φ0 for increasing β in the zero-fluctuation limit. (A–C) The projection of the flux velocity (purple
arrows) and the negative gradient of the intrinsic potential landscape −∇φ0 (black arrows) on the intrinsic potential landscape φ0 for increasing β.
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Fig. 5. (A) The population barrier heights versus parameter β. (B) The log-
arithm of MFPT versus β. (C) The logarithm of MFPT versus barrier heights
for β.

fore the degree of detailed balance breaking (36, 51, 52). The
cross-correlation function is defined as CXY (τ) = 〈X (0)Y (τ)〉=∑

X iY jP ss
i Pij (τ), where X and Y denote the time trace sig-

nals of variables X and Y . P ss
i represents the steady-state

probability at state i and Pij (τ) represents the probability from
state i to state j with time interval τ (51, 52). The nonequi-
librium steady-state probability flux, J ss

ij , is defined as J ss
ij =

P ss
i kij −P ss

j kji , since τPij (τ)∼ kij τ for small time interval τ ,
where kij denotes the transition rate from state i to state
j , while kji denotes the transition rate from state j to state
i . The difference between the forward cross-correlation func-
tion CXY (τ) in time and the backward cross-correlation func-
tion CYX (τ) in time is given by (51, 52) CXY (τ)−CYX (τ) =
XAY B [P ss

A PAB (τ)−P ss
B PBA(τ)] =XAY BJ ss

ABτ , where J ss
AB =

1
XAYB limτ→0

CXY (τ)−CYX (τ)
τ

.
The difference between the cross-correlation functions

forward in time and backward in time can quantify
the time irreversibility and flux in ecological systems.
We use the average difference in cross-correlations
∆CC =

√
1
tf

∫ tf
0

(CXY (τ)−CYX (τ))2dτ , which can mea-
sure the difference in cross-correlation functions between
forward in time and backward in time with different sets of
parameters as shown in Fig. 6B and SI Appendix, Fig. S40. The
forward in time cross-correlation function and the backward in
time cross-correlation function are equal to each other with zero
flux (52). Thus, the average difference of cross-correlation func-
tions ∆CC can be used to quantify the flux and therefore the
degree of the time irreversibility or the detailed balance breaking
(36, 51, 52). Importantly, this provides a practical method to
quantify one part of the dual driving force of the ecological
system from cross-correlations between the real time trajectories
of the empirical observations of the variables of interest in
ecological systems. Along with the earlier finding in this study,
we can quantify both driving forces of the ecological system:
the landscape from the frequency statistics or distribution of
the variables and the flux from cross-correlations between real
time trajectories from the empirical observations of ecological
dynamics. As detailed in SI Appendix, the average difference
of cross-correlations has almost the same trends with respect
to different parameters as the Fluxav and EPR. Crucially, the
average differences in cross-correlations become significantly
higher near (between) the two saddle-node bifurcation regions.
This provides a possible practical way to infer the onset or
offset of the bifurcation from the observed time traces of the
ecological systems, giving rise to a possible early warning signal.

The distributions of grass and trees in the state space are
shown for various values of β in Fig. 7 A–C and we observe
the expected change from savanna to forest dominance as β
increases. The variances of grass and trees versus various param-
eters are also shown in Fig. 7D for β and SI Appendix, Fig.
S41 for other parameters. The variances of grass, σS , and the
variances of trees, σF , all have peaks near (between) the two
saddle-node bifurcations for each parameter. Thus, the variances

from the empirical observations of the ecological dynamics can
also provide a possible early warning signal for the onset of a
bifurcation.

The logarithms of the variances of the kinetic first passage
time from savanna to forest log(σSF ) and the logarithms of the
variances of the kinetic first passage time from forest to savanna
log(σFS ) and their sum log(σSF +σFS ) are shown in Fig. 7E for
β and SI Appendix, Fig. S42 for other parameters. For one stable
savanna state, we calculate the first passage time from a certain
point near the forest state determined in the two-state param-
eter regime to the savanna state. In reverse, we can obtain the
first passage time for one stable forest state. Both log(σSF ) and
log(σFS ) monotonically increase or decrease as the parameter
changes. This indicates that the more stable the states are, the
larger the variances of the first passage time will be. The sums
of the variances have a “U” shape, indicating that when the eco-
logical system has two stable states coexisting, there are fewer
fluctuations in its kinetics. When the barriers for the two sta-
ble states have very different heights, the deeper one (the more
stable one) has the larger variance of the escape times and is
dominant in the sums of the variances of the escape times for
the two stable states. When the barriers for the two stable states
are nearly equal in height, the sum of variances of the escape
times for the two states reaches the minimum compared to the
cases of the unequal barrier heights. This is because the commu-
nication between the two states in the two-state coexisting case
is much more frequent than that in the one stable state alone.
While the gradient always tends to stabilize the point attractors,
the flux tries to destabilize the point attractor, but stabilizes the
flow between the stable states. Thus, the flux flow between the
two stable states drives the stability of the state coexistence. The
sum of the variance of the kinetic first passage times forward and
backward has significant changes near (between) the two saddle-
node bifurcation regimes. This shows that through the real
time trace analysis of the ecological dynamics, one can use the
fluctuations in kinetics to quantitatively locate where the bifur-
cation will be likely to occur, thus providing a possible early
warning signal.
The zero-fluctuation limit. There are two phase transition points
for the set of parameters we considered, as shown in Fig. 8A. Fig.
8A is the same as Fig. 1A since it is convenient to check the transi-
tion zone and compare it with the other plots. Fig. 8B shows the
intrinsic entropy production rate versus β, while Fig. 8C shows
the intrinsic average flux versus β. As β increases, inEPR and
inFluxav both increase first and then decrease. Both inFluxav

and inEPR have significant changes along with the bifurcation
shown in Fig. 8A. We also found that the forest has more inEPR
and inFluxav , which implies that the trees need more vegeta-
tive growth factors and cost more nutrition and energy from the
savanna environment. While the savanna needs fewer vegeta-
tive growth factors and costs less nutrition and energy from the
savanna environment. The peaks in the inEPR and the inFluxav

Fig. 6. (A) The trajectories of grass and trees. Shown is the average change
of the forward and backward in time cross-correlation function ∆CC as a
function of parameter β (B).
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Fig. 7. The frequencies of Grass and Tree along the variable state space with β= 0.32 (A), 0.36 (B), 0.40 (C). (D) The variances Grass σS and the variances
Tree σF versus β. (E) The logarithms of the variances of the first passage time from Savanna to Forest log(σSF ) and the first passage time from Forest to
Savanna log(σFS), and the logarithms of the sum of them log(σSF +σFS) versus β.

are distinct at the phase transition region. This shows that the
inEPR and the inFluxav may be used to characterize the fun-
damental properties of the system, such as bifurcations. Both
the inEPR and the inFluxav under zero fluctuations have more
significant changes near (between) the two saddle-node bifurca-
tion regions than those of population entropy production and
population flux under finite fluctuations.

However, the critical slowing-down theory applies only to the
continuous phase transition (often called second-order phase
transition) and hence for the discrete phase transition (such as
first-order phase transition) we cannot use critical slowing down
to trace the bifurcation signals. From this study and some oth-
ers (36), EPR and Fluxav can both be used as possible early
warning signals or markers for bifurcations such as subcritical
pitchfork bifurcation and supercritical pitchfork bifurcation, as
well as saddle-node bifurcation. Both EPR and Fluxav are not
constrained to only be markers for continuous transitions. In
fact, they apply to both discrete and continuous transitions in
the examples shown. We suggest that the above statement may
be general. Therefore, this may provide a feasible way to pre-
dict the bifurcations in ecological systems to avoid catastrophic
change.

EPR and Fluxav are observed to have extreme values between
the two saddle-node bifurcations as the parameter varies. The
locations of these peak values in EPR and Fluxav are close
to the place where the two stable states are equal in chances
(probabilities) of appearance (Figs. 2, 4, and 8). This is because
the emergence of two stable states and their associated connec-

tions needs more consumptions to maintain in contrast to that of
the one individual state. Away from the extreme values in aver-
age flux and entropy production or equal probability of the two
states, the system switches the dominance of the stability on the
landscapes (Figs. 2 and 4). Thus, near the regime of the coexis-
tence of the two stable states, the former stable state becomes
less stable while the former less stable state becomes more stable
when the system goes through the regime with extreme values of
EPR and Fluxav or equal basin depths of the two stable states
(Figs. 2 and 4). It will then be easier to switch from the former
stable state to the latter stable state. Since the EPR and Fluxav

change significantly upward before their peak values, they pro-
vide possible early warning signals for the bifurcations or more
explicitly the switching in the dominance of the stabilities from
one state to another (Figs. 2, 4, and 8).

Fig. 8D shows the intrinsic free energy versus β. The slope
of the nonequilibrium intrinsic free energy significantly changes
near the phase transition zone, although the nonequilibrium
intrinsic free energy is continuous. Fig. 8 B–D shows that signifi-
cant slope changes in intrinsic entropy production rate, intrinsic
average flux, and intrinsic free energy (analogous to the equi-
librium case) may provide signals of bifurcation. The nonequi-
librium intrinsic free energy may also be useful to quantify the
global phases of the system and the bifurcations. Therefore, we
may use this nonequilibrium intrinsic free-energy function as
well as the intrinsic Fluxav and intrinsic EPR to explore the
global stability and bifurcations of the nonequilibrium ecological
dynamics.

����

A B C D

Fig. 8. (A) The phase diagram versus β. (B) The intrinsic entropy production rate versus β. (C) The intrinsic average flux versus β. (D) Intrinsic free energy
versus β.
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Stochastic Fluctuations Generate a New Stable State. Fig. 9A shows
the deterministic phase diagram mapping the fraction of grass
cover versus µ. When the savanna saplings mortality rate is very
small, the only stable state is forest, but as µ is increased, the
dynamics shift from forest to savanna. For µ between about
0.14 and 0.37, bistability emerges and beyond 0.37, the dynam-
ics approach a state dominated by grass. As µ increases further,
trees occasionally go extinct and a new quasi-stable grassland
state emerges. For µ larger than 0.37 but less than 0.65, the
grassland state is always stable on the G axis and unstable
on the T axis. For µ beyond 0.65, this state becomes stable.
Fig. 9B shows the corresponding stochastic phase diagram ver-
sus µ with D = 0.0001 (see SI Appendix for further details on
the stochastic phase diagram). Remarkably, the grassland state
becomes quasi-stable much sooner than stable in the determinis-
tic phase diagram (around µ= 0.3) in the presence of stochastic
fluctuations.

Fig. 10 A and C shows three-dimensional population-potential
landscapes varying with increasing savanna saplings mortality
rate µ with D = 0.0001. Fig. 10 B and D shows the magnifica-
tion of Fig. 10 A and C with lower cutting maximum values.
Fig. 10 B and D show the details around the grassland state
[1, 0]. For µ= 0.3, as in Fig. 10A, the system has two stable
fixed points in its deterministic phase diagram (Fig. 9A) and
three stable fixed points in its stochastic phase diagram (shown
in Fig. 9B); the grassland state [1, 0] is not a stable fixed point
for the deterministic SL model for this value of µ. We can see
from Fig. 10D that the grassland state is a stable state with a
very small basin in stochastic dynamics when µ= 0.3. Fig. 10 C
and D shows the population-potential landscape with µ= 0.35.
The population-potential landscape around [1, 0] shows that
the grassland state has a relatively small basin of attraction,
but this basin is larger than that shown in Fig. 10A, indicat-
ing that the basin of the grassland state becomes deeper as
µ increases.

The emergence of the grassland state in Fig. 10, leading to the
coexistence of the three stable states forest, savanna, and grass-
land, contrasts with the deterministic dynamics that predict the
absence of forest extinction. The newly quasi-stable grassland
state is thus born from the stochastic fluctuations. An impor-
tant prediction of the landscape-flux approach is the emergence
of new quasi-stable states due to fluctuations. Fig. 10 highlights
this effect, where the deterministic system predicts the existence
of only two stable states (forest and savanna; Fig. 9A) and the
stochastic system displays an additional quasi-stable grassland
state (see Figs. 9B and 10, for 0.30<µ< 0.37). Grassland is thus

Fig. 9. (A) Deterministic phase diagram in µ. (B) Stochastic phase diagram
(minima of the population-potential landscape) in µ with D = 0.0001.

Fig. 10. (A and C) The three-dimensional population-potential landscapes
versus (A) µ= 0.3 and (C) µ= 0.35. B and D are the magnification basin of
A and C with lower maximum values.

an unstable fixed point in deterministic dynamics that is stabi-
lized by the fluctuations, and a basin of attraction emerges in its
vicinity (see magnification Figs. 10 B and D). As µ increases, the
grassland basin becomes much deeper and thus the associated
state becomes more attractive while the savanna state becomes a
much shallower minimum of the population-potential landscape
and thus less stable.

In the deterministic case, the grassland state is stable in the
G direction and unstable in the T direction. However, the con-
straint G +T +S = 1 and the boundary conditions {G > 0,T >
0} effectively mean there are three reflecting walls to constrain
the system in a specific region. In particular, at [1, 0], the deter-
ministic system is stable in the G direction but also not freely
movable in the T direction. The noise effectively expands the
accessible region near the point [1, 0]. Since there are two walls
with infinite potential at T = 0 and G +T = 1 near [1, 0], the
population-potential landscape in the T direction must go up
toward both the T = 0 wall and the G +T = 1 wall. This leads
to an effective quasi-stable region or basin of attraction in the T
direction, in addition to that already present in the G direction
near [1, 0]. Thus, the phase space around [1, 0] changes from a
saddle-point region to a stable basin due to the dual actions of
the noise and boundary conditions.

Conclusion and Discussion
The dynamics of ecological systems are determined by both the
population potential, which drives the system toward the poten-
tial minimum, and the curl flux, which describes the switching
dynamics between basins of attraction. The population-potential
landscape can be obtained from the frequency distribution of
the observables at long times and can provide insights on the
global stability. The steady-state probability flux has divergent
free-curl nature and provides the driving force for the nonequi-
librium part of the dynamics. Stability is crucial for exploring
the function and robustness of an ecological system, but this is
a challenging issue both theoretically and practically. Ecologi-
cal stability is commonly defined as Lyapunov stability, which
can describe the global stable behavior of the system under
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perturbations. However, it is difficult to obtain a Lyapunov func-
tion for complex ecological systems. We introduced a general
method to calculate the underlying intrinsic potential landscape
as a Lyapunov function that can quantify the global stability
of ecological systems. In particular, the intrinsic potential land-
scape φ0 is shown to be a Lyapunov function in the zero-noise
limit.

We investigate the SL model with the underlying potential-flux
landscape. We found many interesting quantitative markers for
the stability and dynamics: barrier heights between the basins of
attraction, MFPT representing the kinetic time of state switch-
ing, the EPR representing the thermodynamic cost, and the
average flux representing a dynamical driving force for quanti-
fying the global stability of the forest–savanna ecology system.
We found that the Fluxav and the EPR have the same trends.
Their significance changes near (between) the two saddle-
node bifurcation points. It is particularly evident for the zero-
fluctuation situation with the intrinsic potential landscapes. This
demonstrates that the flux and the entropy production rate may
provide a dynamical origin and a thermodynamic origin for bifur-
cation of the nonequilibrium ecological systems, respectively.
The dominant paths describing how the state-switching processes
actually occur do not follow the naively expected steepest-
descent gradient path based on the population-potential land-
scape alone because of the presence of the nonzero flux. In fact,
they are irreversible and determined by both the population-
potential landscape and the flux. The flux is the source of the
irreversibility.

Remarkably, even though the grassland state is unstable in
the deterministic case without fluctuation for certain parameter
ranges, it can in fact become quasi-stable under small fluctu-

ations. This may offer a potential explanation for how often
treeless grasslands are observed in nature (13, 14), the real
existence of which has proved somewhat controversial (53, 54).
However, here we show that the emergence of this new stable
state under stochastic forcing is predicted by our landscape-
flux theory. We therefore suggest a note of caution in the use
of empirical frequency distributions to quantify the stability of
real landscapes, but also show that, so qualified, empirical fre-
quency distributions can offer useful and rigorous insights into
the stability of these biomes.

We provide quantitative and physical markers for identify-
ing the start and end of a bifurcation via the EPR, the Fluxav ,
and the intrinsic free energy. More practically, the information
on the physical bifurcation markers, such as the flux and ther-
modynamics cost of the EPR, can be inferred from the time
irreversibility of the observed time traces. Similarly, the variance
in the frequency statistics and kinetic time obtained directly from
the observed time traces can be used as the kinematic markers
for the onset and offset of bifurcations. Therefore, we may be
able to identify both physical and kinematic markers to detect
the beginning and end of bifurcations in ecological systems based
on the observed time series data.

Data Availability. All study data are included in this article and/or
SI Appendix.
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