
Developing Real-world Evidence-Ready Datasets: Time for 
Clinician Engagement

James M. Snyder1, Jacob A. Pawloski1, Laila M. Poisson2

1Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Hospital, 2799 West 
Grand Boulevard, Detroit, MI 48202, USA

2Department of Public Health Sciences, Hermelin Brain Tumor Center, Henry Ford Hospital, 2799 
West Grand Boulevard, Detroit, MI 48202, USA

Abstract

Purpose of Review—Real-world data (RWD) applications in healthcare that support learning 

health systems and pragmatic clinical trials are gaining momentum, largely due to legislation 

supporting real-world evidence (RWE) for drug approvals. Clinical notes are thought to be the 

cornerstone of RWD applications, particularly for conditions with limited effective treatments, 

extrapolation of treatments from other conditions, or heterogenous disease biology and clinical 

phenotypes.

Recent Findings—Here, we discuss current issues in applying RWD captured at the point-of-

care and provide a framework for clinicians to engage in RWD collection. To achieve clinically 

meaningful results, RWD must be reliably captured using consistent terminology in the description 

of our patients.

Summary—RWD complements traditional clinical trials and research by informing the 

generalizability of results, generating new hypotheses, and creating a large data network for 

scientific discovery. Effective clinician engagement in the development of RWD applications is 

necessary for continued progress in the field.
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Introduction

Widespread adoption of electronic health records coupled with advances in computational 

analysis and recent legislative changes have sparked tremendous enthusiasm for “real-world 

data” (RWD) applications in healthcare. RWD has gained popularity in recent years due to 
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interest in “real-world evidence” (RWE) as a pathway for drug approval. Neuro-oncologic 

conditions are an anatomical group of heterogenous neoplasms that typically harbor rare 

subtypes and have limited treatment options; thus, RWD may provide insight into clinical 

phenotypes and therapeutic responses through aggregation of data. Clinical notes are thought 

to be the cornerstone of RWD applications; however, there is variability in clinical notation, 

including which elements are documented, language and structure used, core data recorded, 

and definition of key terms. Justifiably, there is apprehension towards establishing norms for 

point-of-care (POC) data standardization due to increased workload on an overextended 

population (healthcare providers) who are wary of the achievements of such a system [1]. 

There is also an unheralded opportunity to accelerate healthcare discovery through adoption 

of scalable RWD applications that can aggregate clinical information across institutions and 

ultimately have a meaningful impact on our understanding of rare diseases and clinical 

phenotypes. This potential paradigm shift is dependent on “ground-truth-data” obtained at 

the POC recorded directly by care providers. Advances in computational power that can now 

handle massive volumes of health data and the capability for connected electronic health 

records through use of a common language have created a platform to accelerate care 

discovery resulting in improved health outcomes. These advances have provided impetus for 

the next evolution in clinical documentation: an electronic health record (EHR) designed not 

only for the patient in front of you but also for a learning healthcare network that informs 

care of future patients.

What Is Real-world Evidence?

The objective of this manuscript is to introduce key events driving RWE applications in 

healthcare and to propose a clinical framework for POC, ground-truth-data generation in 

neuro-oncology. A singular definition of RWD and/or RWE has yet to be agreed on; 

therefore, we chose to use the Food and Drug Administration (FDA) definition because a 

recent catalyst for RWE implementation has been alternative forms of approval for medical 

therapies by the FDA. RWE as per the FDA is the “clinical evidence about the usage and 

potential benefits or risks of a medical product derived from analysis of RWD.” RWD is 

defined as “data relating to patient health status and/or the delivery of healthcare routinely 

collected from a variety of sources” [2]. RWD can come from a variety of sources including 

electronic health records (EHRs), medical claims, billing data, disease registries, digital 

phenotyping, patient-generated data, internet activity, and other sources (see Fig. 1). Digital 

phenotyping as defined by Torous et al. refers to the “moment-by-moment quantification of 

the individual-level human phenotype in situ using data from smartphones and other 

personal digital devices” [3]. Use of RWE is not new; however, contemporary applications 

such as market expansion for drug approvals and rare disease phenotyping have reappraised 

the impact of RWE.

RWE Complements Traditional Clinical Trials

Randomized prospective clinical trials are the backbone of medical progress and will 

continue to be the gold standard for efficacy and safety driving evidence-based medicine. 

Yet, some argue that clinical trial participants represent only a subset of the general 

population and may not always reflect “real-world” populations. The claim is made that 
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through the process of maximizing internal validity, clinical trials are more likely to 

encompass patients with better performance status and less comorbidities. Additionally, 

there are concerns with narrowed demographic diversity in clinical trial participants, 

exclusion of advanced age patients, and elevated socioeconomic status when compared with 

population-level disease incidence [4–7]. Clinical trials are typically offered at large 

academic medical centers frequently clustered in major urban centers, whereas the majority 

of patients in the USA are treated in community hospitals, raising awareness of geographic 

barriers to clinical trial access and patient selection [5, 8••]. Prospective clinical trials harbor 

tremendous financial investment with an average cost for phase 1, 2, and 3 studies in the 

USA of $3.8, $13.8, and $19.9 million dollars, respectively, and an average of 7.2 years for 

glioblastoma (GBM) trials to progress from completion of phase 1 through phase 3 [9, 10]. 

Multiple estimates suggest that less than 5% of cancer patients in the USA are treated on a 

clinical trial [7]. RWE may serve as a complement to existing clinical trials by adding data 

dimensionality over time that extends beyond the therapeutic window of a specific trial 

agent, refining clinical trial designs, reducing costs through use of RWD control groups, and 

facilitating implementation of a healthcare learning environment informing intervention 

reproducibility in expanded populations.

A Developing Framework for Point-of-Care Health Data to Power RWE

The 2016 21st Century Cures Act was intended to accelerate drug development and included 

a requirement for the FDA to create a RWE program to support new indications for 

approved drugs [11]. This legislation is also interpreted to support the use of patient 

experience data, biomarkers, and other surrogate markers in the approval process, paving the 

way for alternatives to prospective randomized clinical trials for drug approval [11]. 

Stakeholders across healthcare, including academia, private sector biotechnology, patient-

centered clinical research networks, health systems, and consortia, are investing in POC data 

and other systems to capture health data in a reliable fashion [12–15].

In 2009, the Health Information Technology for Economic and Clinical Health (HITECH) 

Act catalyzed rapid adoption of EHRs and development of interoperable health technology 

systems through financial incentives tied to meaningful use [16]. Widespread use of highly 

functional EHRs would create an environment where the long-held aspirations of a learning 

health system(s) of curated patient data could be created at scale. In 2009, the National 

Cancer Policy Forum of the Institute of Medicine (IOM) presented a “rapid learning system 

for cancer care” workshop which outlined a plan to transform cancer care through an ever-

evolving learning healthcare data network anchored in “collecting data in a planned and 

strategic manner” and a patient-centric, multi-step iterative process for data analysis [17]. In 

total, there were 12 IOM meetings on learning healthcare systems that resulted in the 

generation of a comprehensive strategic vision emphasizing POC health data curation to 

harness new computationally driven analytics tools that inform care decisions at the POC 

through an ever-evolving dissemination of knowledge [18, 19].

Since the HITECH Act, adoption of EHRs in US hospitals and outpatient offices has 

become the norm including urban, rural, community, and academic centers. The Healthcare 

Information and Management Systems Society (HIMSS) developed an 8-stage sequential 
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model of EHR adoption that reflects functionality called the Electronic Medical Record 

Adoption Model (EMRAM) [20]. EMRAM stage 5 and higher requires some aspect of the 

physician note to use structured templates and discreet fields which would greatly advance 

RWD quality and scope; however, there was no further EHR meaningful-use incentives in 

the HITECH act once stage 4 was achieved [21]. In 2015, the Office of the National 

Coordinator for Health Information Technology reported that 83.8% of US health systems 

had adopted EHR use that includes access to clinical notes. While tremendous progress has 

been made through the current EHR system, the next epoch of progress may be achieved 

through federated clinical notes, which requires either tedious abstraction processes or POC-

structured data with discreet data elements embedded in the clinical narrative. Updated EHR 

adoption data was not available at the time of publication; however, predictive modeling 

suggests that stage 5 should have reached its peak in 2019, while stage 7, which indicates 

complete EHR use with a central data warehouse that facilitates data analytics, is not 

anticipated to reach peak adoption until 2035 [21]. True POC clinical phenotyping by the 

provider will require a transformation in how clinical notes are recorded, which will be 

rewarded through scientific progress.

In Pursuit of a New Taxonomy of Disease Based on Molecular Biology

In 2011, the National Academy of Sciences presented a heroic multi-decade framework to 

establish “a new taxonomy of disease” intended to marry medicine and research through an 

“information commons” of medical data and a “knowledge network” integrating molecular, 

environmental, and phenotypic data. This effort attempts to create new phenotypic 

characterizations of health anchored in the intrinsic biology of disease which is meant to 

serve as a distinction from the established system-based and histologic classifications [22]. 

The Cancer Genome Atlas (TCGA) and other efforts redefined our understanding of the 

intrinsic biology of disease, and the 2016 WHO Classification of CNS Tumors adopted 

molecular features as core elements in neuro-oncologic diagnosis [23]. In many sectors of 

healthcare, there are groups racing to develop molecularly annotated comprehensive clinical 

phenotyping repositories; however, none has drawn the attention like the acquisition of 

Flatiron by Roche Pharmaceuticals for $1.9 billion US dollars [24]. Flatiron Health was a 

privately held, US cancer analytics company invested in oncology RWD, reported to have a 

federated RWD repository of more than 1 million patients, many of whom had linked 

molecular testing results through a partnership with a large commercially available 

molecular laboratory. While the race to achieve the vision for learning health systems 

continues, there remains a data disconnect across competing and fragmented data 

repositories.

Barriers to RWD Amalgamation

To achieve high-quality RWD, specific conditions need to be met so that the data is 

consistent, reproducible, and accessible. Semantic heterogeneity can be overcome through 

use of common data elements (CDEs) that follow a defined data dictionary. For example, 

glioblastoma, a relatively rare malignant primary brain tumor, is referred to in the literature 

as “glioblastoma,” “glioblastoma multiforme,” “GBM,” and “grade IV astrocytic tumor” 

with more labels used in clinic notes. The use of CDEs is necessary to reduce data 
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fragmentation and improve aggregation, so that specific phenotypes and molecular 

subgroups can be identified, a core objective of the “information commons” model. There is 

a collaborative effort to establish CDEs in oncology as well as neurology; however, a 

defined set of neuro-oncology-specific CDEs has yet to be determined and will likely need 

to be aggregated across individual efforts to achieve scale [25, 26]. Issues related to 

technical heterogeneity also need to be overcome so that data can be compiled across 

software platforms and research tools. In many institutions including EMRAM stage-4 

centers, pathology reports, clinic notes, radiation oncology records, and other key documents 

may be unstructured in the EHR. Some of these documents may have originated in a 

structured source application, but through the process of export into the EHR, discreet 

elements may have been lost. Additional processing or abstraction is then required to again 

reveal the clinically meaningful data within the EHR. This extra step should be eliminated 

once the EHR is configured to receive structured data. The health IT community is adopting 

frameworks to overcome the technical limitations of data aggregation, interoperability, and 

application design. Adoption of technical standards facilitates RWD and includes efforts 

such as SMART (Substitutable Medical Applications, Reusable Technologies) that enables 

development of healthcare IT tools that can function without specific knowledge of 

individual EHRs and HL7’s Fast Healthcare Interoperability Resources (FHIR) which 

attempts to facilitate health information exchange through implementation of core technical 

standards.

Clinician-Generated Point-of-Care Health Data

Resources are aligning to create the next generation of learning healthcare systems through 

RWD, but to achieve this vision, POC-structured clinical records that can be amalgamated at 

scale are needed. Even in centers with robust EHRs, clinical notes are typically free-text and 

exhibit significant semantic and structural heterogeneity. The lack of consistent terminology 

in the phenotypic description of our patients prevents reliable data capture. This absence of 

ground-truth-data at the POC undermines the process of a learning healthcare system. While 

there is a growing perspective that RWD can be compiled without clinician guidance 

through computational language processing, which now permeates our everyday lives (i.e., 

talk-to-text), clinician engagement in RWD is necessary to ensure accuracy of clinical data 

input, to govern data use, and to maximize clinical impact. Applications of computational 

language processing in healthcare pose unique challenges that limit adoption including 

patient privacy, data security, consequence of error, regulatory compliance, and clinician 

liability. Incentives to promote implementation of structured data using contemporary 

technical standards in clinical encounters are needed, as this is likely the rate-limiting step 

toward the development of a learning health system, particularly in oncology.

Neuro-oncology and other highly specific clinics that care for a narrow scope of clinical 

phenotypes are ideal sites to initiate RWD and POC-structured notation as most patients will 

have a limited and shared set of clinical presentations and may have similar treatment 

paradigms. Efforts to characterize and standardize the metrics used in prospective clinical 

trials across disease types are needed to guide RWD [10, 27, 28]. The areas of highest yield 

include patient demographics, comorbidities, pathologic diagnoses and molecular testing 

results, disease interventions, functional status, patient-reported measures, and disease 
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outcomes. Some variables, such as patient comorbidities, medications, and central laboratory 

tests, are typically recorded in structured fields within the EHR in the post-HITECH 

meaningful-use era.

A major limitation in the development of effective and scalable POC solutions is the 

uncertainty as to which data are required to define the disease course sufficiently to support 

a learning healthcare system. In clinical trials, where structured data are expected, patient 

data capture forms are largely designed around individual therapies and protocols without 

uniform structure across studies [10]. For instance, while most neuro-oncology trials capture 

overall survival (OS) and progression-free survival (PFS) as endpoints, there is no agreement 

as to which additional factors should be consistently captured and to what detail [10, 29, 30]. 

Consensus is needed about the types of data and level of detail that, if collected consistently, 

would provide meaningful information. A point of diminishing returns is expected, at which 

additional detail is captured unreliably thereby negating its utility. As was done for adoption 

of the EHR, a staged implementation of standardized data collection could be considered. 

An additional complication in the developing consensus around structured data elements is 

the changing landscape of clinical measures. For instance, outcome-defining factors are 

evolving with recent trials prioritizing health-related quality of life (HRQOL) and other 

measures of the patient experience as endpoints [29, 31]. Thus, systems of standardization 

must be flexible to support clinical evolution and designed efficiently with backwards 

compatibility in mind.

Efforts are underway to establish clinical data acquisition standards harmonization 

(CDASH) across commonly used elements in therapeutic trials [27]. CDASH organizes 

clinical data into the following categories: interventions, events, findings, and special 

purpose. For POC data in neuro-oncology, the authors propose to organize information from 

a clinical perspective into the following categories: diagnosis, interventions, surveillance, 

and outcome modifiers (Table 1). Use of a CDE dictionary is necessary to ensure 

interoperability. Data will need to evolve over time with ability to update with changing care 

paradigms. All fields should preserve longitudinal analysis through collection of metadata 

that informs CDE definitions, point in time, and unit of measure if appropriate. For example, 

a pathology specimen used for molecular analysis should state the date specimen was 

harvested and the date of analysis for molecular features, as well as protocol or testing used 

to provide the results.

Discussion

At the time of publication, there is neither an established standard for POC data in neuro-

oncology nor an agreed-upon CDE dictionary; however, several tools are available to guide 

this process. The Radiologic Assessment in Neuro-Oncology (RANO) group has published 

several manuscripts to standardize interpretation of clinical data in neuro-oncology trials, 

with the bulk of this work focused on imaging that adheres to rules based on histopathology 

or treatment type (i.e., immunotherapy) [30]. Efforts are underway to automate neuro-

oncologic radiographic interpretation based on RANO criteria through segmentation and 

computational analysis [32]. RANO imaging criteria use specific parameters that may differ 

from interpretations by a radiologist, and therefore, in many neuro-oncology trials, RANO 
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interpretation is interpreted by the study investigator and/or a central authority. At our center, 

we record RANO imaging interpretation in the clinical note and label with the specific 

RANO criteria applied. The RANO group also has established a standardized and graded 

neurologic clinical exam used in many clinical trials titled “neurologic assessment in neuro-

oncology” (NANO) that could be adopted as a RWD standard [33]. Patient performance 

status is commonly used to guide treatment recommendations in glioma and is often a 

screening requirement for clinical trial participation and is monitored longitudinally 

throughout the disease [28, 29, 34]. Both the Karnofsky Performance Status (KPS) and the 

Eastern Cooperative Oncology Group (ECOG) score are in common use [33]. Patient-

reported outcomes (PROs) are extremely valuable in characterizing the patient experience 

and HRQOL as recognized in the 21st Century Cures Act and their increasing weight in 

contemporary clinical trials. A consensus agreement as to which specific PROs should be 

adopted for the neuro-oncology community has yet to be established; however, the RANO 

group has outlined a plan to accomplish this task [35]. Involvement of a patient advisory 

group to provide patient important insight and guide outcome measures is advised. Common 

Terminology Criteria for Adverse Events (CTCAE) reporting is the standard in clinical trials 

and should also be followed in RWE generation [36].

There is a growing momentum towards establishing disease-specific CDEs that harmonize 

within the broader health landscape which in time will provide the universal language of 

RWD in neuro-oncology and lead to discussions of the core POC attributes for longitudinal 

neuro-oncology RWD. From there, an agreement will be necessary to create networks that 

contribute to RWD. Immediate adoption is limited by technical heterogeneity, significant 

resource investment to create structured disease-specific clinical data, and fragmentation of 

data networks. Clinicians may be able to overcome EHR barriers with computational 

language processing by implementing clinical notes designed to facilitate semantic analysis 

with adherence to CDEs using fixed sentence formats, labeling data in a manner that permits 

parsing the information into a recognizable CDE subject with associated modifiers [37•]. 

This would only need to be done for the prioritized variables, while the remainder of the 

clinical note retains the ability to capture any information with any format the clinician 

wishes. Additional challenges exist in getting clinicians to participate, ensuring the data is 

reliable and consistent, and generating meaningful insights.

The National Cancer Institute (NCI) and other bodies have committed to provide resources 

that facilitate RWD collection, RWE generation and analysis, and a broad adoption of data 

sharing with the aim to foster collaboration [38, 39••, 40]. NCI-funded research utilizes 

FAIR (findable, accessible, interoperable, reusable) principles with requirements to share 

source data and expand access to bioinformatics tools [38, 39••].

Pragmatic clinical trials investigate the outcome of specific interventions in unselected 

populations that closely reflect real-world situations, whereas, an explanatory trial aims to 

show the efficacy of an intervention under ideal circumstances [41, 42]. Patients with neuro-

oncologic conditions often have additional factors that limit clinical trial participation (brain 

metastases, multiple disease recurrences, compromised functional status) resulting in 

uncertainty as to the benefit and risk of applying interventions studied in highly controlled 

environments [8••, 41]. Neuro-oncology encompasses many rare diseases where there are 
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little or no approved therapies, unsatisfactory outcomes, and few clinical trials for patients to 

enroll in or to guide treatment as seen in malignant meningioma, ependymoma, and 

recurrent low-grade glioma. Such conditions are poised to benefit from RWD studies, 

pragmatic clinical trials, and learning health systems to inform care.

Conclusions

Leveraging POC clinical data for RWE applications is gaining momentum as a means to 

complement traditional clinical trials. Neuro-oncologic conditions and other rare diseases 

that are heterogenous, intimately linked to rare molecular subtypes, and have few effective 

therapies may benefit from RWE applications and learning healthcare systems. RWE and 

POC data in healthcare are still in the developmental stages; however, the anticipated 

improvement in care quality and health discovery can only be achieved with ground-truth-

data generation at the POC, which requires new perspectives on clinical notation.
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Fig. 1. 
Real-world evidence (RWE) is derived from real-world data (RWD) systematically obtained 

from a multitude of sources loosely defined as patient information obtained outside of 

traditional research settings. RWE can expand the impact of prospective interventional 

clinical trials through evidence generation of the patient experience in conditions most 

similar to everyday healthcare situations (i.e., patients with additional comorbidities treated 

in routine clinical environments). Pragmatic clinical trials are a study type aimed at showing 

impact of an intervention in broad patient populations with minimal deviation in standard 

practice and are thus well-suited to RWE-based analysis. Classical clinical trials, RWE, and 

pragmatic trials inform learning healthcare systems
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