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Abstract
Introduction  Magnetic resonance imaging (MRI) has played an increasingly major role in the evaluation of patients with 
prostate cancer, although prostate MRI presents several technical challenges. Newer techniques, such as deep learning (DL), 
have been applied to medical imaging, leading to improvements in image quality. Our goal is to evaluate the performance 
of a new deep learning-based reconstruction method, “DLR” in improving image quality and mitigating artifacts, which is 
now commercially available as AIRTM Recon DL (GE Healthcare, Waukesha, WI). We hypothesize that applying DLR to 
the T2WI images of the prostate provides improved image quality and reduced artifacts.
Methods  This study included 31 patients with a history of prostate cancer that had a multiparametric MRI of the prostate 
with an endorectal coil (ERC) at 1.5 T or 3.0 T. Four series of T2-weighted images were generated in total: one set with the 
ERC signal turned on (ERC) and another set with the ERC signal turned off (Non-ERC). Each of these sets then reconstructed 
using two different reconstruction methods: conventional reconstruction (Conv) and DL Recon (DLR): ERCDLR, ERCConv, 
Non-ERCDLR, and Non-ERCConv. Three radiologists independently reviewed and scored the four sets of images for (i) image 
quality, (ii) artifacts, and (iii) visualization of anatomical landmarks and tumor.
Results  The Non-ERCDLR scored as the best series for (i) overall image quality (p < 0.001), (ii) reduced artifacts (p < 0.001), 
and (iii) visualization of anatomical landmarks and tumor.
Conclusion  Prostate imaging without the use of an endorectal coil could benefit from deep learning reconstruction as dem-
onstrated with T2-weighted imaging MRI evaluations of the prostate.
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Introduction

Prostate cancer affects one in six men during his lifetime 
and is the second leading cause of cancer death in the United 
States. Magnetic resonance imaging (MRI) has played an 
increasingly important role in the evaluation of patients with 
suspected or confirmed prostate cancer, especially in staging 
the disease [1, 2], such as in the detection of extraprostatic 
extension. More recently, MRI has been increasingly used 
in the detection of primary tumors in all patients, including 
“biopsy naïve” patients. Technical guidelines such as the 
Prostate Imaging Reporting and Data System (PI-RADS) 
have been instrumental in making these changes and in 
improving the interpretation of the MRIs of the prostate by 
establishing minimum standards for high-quality images and 
a protocol for optimal image interpretation.
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The standard prostate MRI protocol consists of multiple 
sequences, including the T2-weighted (T2W) images, diffu-
sion-weighted MRI (DWI), and dynamic contrast-enhanced 
(DCE) series with Gd-injection [3]. T2-weighted imaging 
(T2WI) is commonly performed in three orthogonal planes. 
These techniques are used to evaluate the primary malignancy 
and to stage the extent of disease.

Prostate MRI presents several technical challenges and con-
troversies. Some commonly encountered challenges include a 
low signal-to-noise ratio (SNR, especially with scanners of a 
field strength of < 3 T) and the presence of artifacts that could 
compromise the image interpretation, such as the strong pulsa-
tion artifacts from the rectum. The use of an endorectal coil 
(ERC) for prostate MRI is controversial [4]. An ERC provides 
a definite advantage over surface array coils with a better SNR, 
which is essential for the high spatial resolution that is needed 
for accurate visualization of the prostate and its surrounding 
anatomy and for the detection of prostate cancer. However, 
ERC often has exacerbated motion artifacts due to its proxim-
ity to regions of interest (ROIs). The use of an ERC is also 
cumbersome, costly, and uncomfortable or even intolerable to 
some patients. From the patient perspective, discomfort can 
lead to noncompliance and to unwillingness to undergo future 
MRI studies and to the patient potentially missing an optimal 
window of intervention for managing the disease.

Deep learning (DL) and machine learning (ML) have 
recently experienced explosive growth in applications, includ-
ing in many areas of medical research [5, 6]. For prostate MRI, 
ML and DL have been used successfully for prostate segmen-
tation, cancer detection, evaluation of local aggressiveness, 
staging, pretreatment assessment, and biochemical recurrence 
[7]. DL techniques have also been reported for improved image 
quality and noise reduction [8, 9].

In this work, we applied a novel DL-based MRI reconstruc-
tion method (hereafter referred to as “DLR”) to clinical pros-
tate T2W fast spin-echo prostate imaging [10].

Our goal was to evaluate the performance of this new 
reconstruction method in improving image quality and miti-
gating artifacts. We hypothesize that DLR-generated images 
can provide better image quality and fewer artifacts than do the 
images obtained by conventional image reconstruction algo-
rithms (hereafter referred to as “Conv”). Our secondary goal 
was to evaluate DLR-generated image quality with and without 
the signal from the ERC. We hypothesize that DLR images can 
provide adequate image quality with fewer artifacts when the 
ERC signal is removed.

Patients and methods

Patient population

The patient population was selected from all patients that 
had complete Endorectal MR-exam of the prostate during a 
six-month period (3/2019–9/2019) on either 1.5 T or 3.0 T 
(GE Healthcare, Waukesha, WI). Patients with no history 
of biopsy-proven prostate cancer, prior prostatectomy, or 
therapy for prostate cancer were excluded from the study. 
This study was IRB approved and informed consent was 
waived due to the retrospective nature of the study.

Deep learning reconstruction

As detailed in [10], the DLR technique consists of a deep 
convolutional network trained with a supervised learning 
approach using pairs of images representing near-perfect 
and conventional MRI images for noise removal and high 
in-plane resolution. The database of training images spans 
a broad range of image content, enabling generalizability of 
the network across all anatomies. The database consists of 
more than 10,000 images, and image augmentations (rota-
tions, flips, etc.) were applied to create 4 million unique 
image/augmentation combinations for added robustness. The 
loss between the predicted and the near-perfect images was 
minimized using the ADAM optimizer. The network offered 
a tunable noise reduction factor to accommodate user prefer-
ence. The DLR was based on a residual encoder. Instead of 
directly generating high SNR images, the residual encoder 
offered flexibility on noise reduction. This can help in avoid-
ing aggressive denoising by adding back a little controlled 
level of noise, making it appear more natural to human eyes. 
The DLR network was embedded into the conventional 
reconstruction pathway such that two sets of image series 
could be generated from a single set of raw MRI data. Data 
for training were not acquired from the scanners used.

MRI acquisition

All axial T2W fast spin-echo images were acquired with 
an external pelvic phased array coil in combination with an 
ERC. The typical scan parameters were TE/TR = 133–150 
ms/4000–8500 ms; ETL = 24; 3/0 mm; 256 × 192; Nex = 2 at 
either 1.5 T or 3.0 T. On two series, the signal from the ERC 
was turned off, without physically removing the coil from 
the patients. These images were labeled as Non-ERC. In 
two series, the DL reconstructions using the above-described 
model [10] were applied and these two series were labeled 
DLR. Thus, a total of four set of images were generated for 
each patient: (i) T2W with ERC with conventional image 
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reconstruction (ERCConv), (ii) Non-ERC T2W with con-
ventional image reconstruction (Non-ERCConv), (iii) T2W 
with ERC with DLR (ERCDLR), and (iv) Non-ERC T2W 
with DLR (Non-ERCDLR).

Evaluation of images

Three radiologists, each with more than 15 years of expe-
rience in abdominal imaging, independently reviewed the 
set of four series. Images were displayed using a GE AW 
workstation (GE Healthcare, Waukesha, WI) by one radi-
ologist while the others interpreted and scored the images. 
The radiologists did not review more than eight studies in 
one session to minimize the effect of fatigue. They were 
blinded to image acquisition details and to the location of 
biopsy-proven prostate cancer. In addition, the series were 
scrambled on the AW workstation to reduce bias: for exam-
ple, Series 1 for patient “1” may correspond to ERCConv, and 
Series 1 for patient “2” may correspond to Non-ERCConv.

For each series, each reader separately scored the over-
all image artifacts on a 1-to-5 scale (1 = no artifacts to 
5 = severe artifacts/nondiagnostic). This was scored based on 
each radiologist’s clinical experience on interpretation of the 
prostate MRIs. In addition, the readers also separately scored 
the overall image quality on a 1-to-3 scale (1 = excellent, 
2 = adequate, 3 = poor) for each sequence. This was scored 
based on each radiologist’s clinical experience on interpreta-
tion of prostate MRIs. The individual assessment provided 
independent evaluation of image quality and artifacts of each 
series.

Comparing the four series side-to-side, each reader 
selected one or possibly two (if tied) of the best series for 
visualization of the prostate capsule (C), neurovascular bun-
dle (NVB), anterior rectal wall (ARW), seminal vesicles 
(SV), ejaculatory duct (ED), urogenital diaphragm (UD), 
and tumor (T). A side-to-side comparison provided direct 
comparison between the four series. The reader also selected 
one or possibly two (if tied) worst series for visualization of 
C, NVB, ARW, SV, ED, UD, and T. The landmarks selected 
were those most commonly evaluated during the review of 
an MR prostate examination.

Each radiologist selected the tumor location indepen-
dently. The radiologists were not aware of biopsy results. 
The radiologists selected a location that they suspect to rep-
resent tumor. The radiologists compared the visualization of 
the suspected tumor between the different series. The sus-
pected tumor may not be same for all radiologists and may 
not correspond to the biopsy-proven location. The radiolo-
gists did not have access to the entire examination or to the 
electronic health records when performing the evaluations.

Qualitative analysis

One radiologist placed a round ROI, at least 1 cm, on the 
peripheral zone (PZ), transitional zone (TZ), and obturator 
internus muscle (M) on each of the four series. The signal 
intensity from the ROI was considered as the signal for the 
corresponding anatomical location. The signal ratios for the 
ERC vs. Non-ERC series were calculated. The signal ratios 
of Conventional versus DLR for each anatomical location 
were also calculated.

Interobserver variability

Interobserver variability was calculated for the scoring of 
overall image quality (excellent vs. adequate vs. poor) and 
for the artifacts (nondiagnostic, barely diagnostic, moderate, 
minimum, and no artifacts).

Statistical analysis

Reader ratings were summarized by using frequencies and 
percentages. The generalized estimating equation method 
was used to assess the effect of methods on Likert scales, 
adjusted for the reader. The generalized estimating equation 
method takes into account the correlations among measure-
ments from the same patient. p-values of pairwise compari-
sons were adjusted by using the Tukey–Kramer method to 
control the overall type I error rate. Interobserver agreement 
was assessed by using Krippendorff α, a generalization of 
the κ statistic. The p-value was considered statistically sig-
nificant at less than 0.05.

Results

Patient population

Thirty-one patients were enrolled in this study. The average 
age was 67.3 years (range 49–82 years). The average and 
median prostate-specific antigen (PSA) values were 6.1 and 
6.45 ng/mL, respectively (PSA range 1.5–25.7 ng/mL). The 
average and median Gleason scores were 7.8 and 7.5 (Glea-
son range 6–10). Fourteen patients were scanned at 1.5 T 
and 17 patients at 3.0 T.

Denoising

In our study, a sample pilot project consisting of 5 patients 
was first conducted to compare images processed with vari-
ous noise reduction levels (25%, 50%, 75%, and 100%). 
These images were evaluated by the 4 radiologists. Given 
a reasonable SNR in the original T2W images, all the radi-
ologists preferred a 75% denoising level, which removed 
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most of the noise without making the images appear overly 
synthetic: a balance between acceptable image quality and 
denoising.

Artifacts

Table 1 shows the scores for image artifacts for the separate 
series: ERCDLR, ERCConv, Non-ERCDLR, and Non-ERCConv. 
Very few series were scored as barely diagnostic or non-
diagnostic. None of the Non-ERC series were scored as 
barely diagnostic or nondiagnostic. When comparing 1.5 T 
and 3.0 T series, the 1.5 T Non-ERC series had a higher 
percentage of poor image quality. This was expected due to 
the lower signal-to-noise ratio without an ERC and lower 
field scanner. Using a point system of 1–5 [Non-diagnostic 
(ND = 1), Barely diagnostic (BD = 2), Moderate artifacts 
(MA = 3), Minimum artifacts (MA = 4), and No artifacts 
(NA = 5)]. The overall score for each series was calculated 
(Table 2, when a series was scored no artifacts, it received 
5 points).

Image quality

Figure 1 shows an example of the four series generated 
for each patient. Table 3 shows the score for overall image 
quality. The Non-ERCDLR series received an excellent score 
56.7% of the time. This was significantly better than the 
other series (p < 0.001). An ROI was placed in the PZ, TZ, 
and M (muscle). The signal ratios of the ERC images were 
3.4 to 4.8 times higher than the signal ratios of the Non-ERC 
images. The signal ratios of the DLR and conventional were 
similar (1.0 and 1.4 times).

Anatomical landmarks and tumor

Tables 4, 5, and 6 show the results for the qualitative anal-
ysis of the best series for the visualization of the ARW, 
UD, ED, C, NVB, and tumor. When a single series was 
selected, “Non-ERCDLR” was chosen more frequently as 
the “best series” for each category (55/72, 62/82, 63/78, 
69/79, 65/80, and 67/80, respectively). For example, the 
ERCDLR received a score of best series for visualization of 
the ARW only once. In contrast, the Non-ERCDLR received 
the score as best series for ARW 55 times.  

Table 1   Summary scoring of 
image artifacts for each series: 
Non-diagnostic (ND), Barely 
diagnostic (BD), Moderate 
artifacts (M), Minimum artifacts 
(MA), and No artifacts (NA)

The columns correspond to the number of times each score was assigned to each series. The table list 
the results for the 1.5 T, 3.0 T, and the combined dataset. For example, Non-ERCDLR score no artifacts, 
37 times for the combined dataset. Non-ERCConv and Non-ERCDLR were statistically superior to ERCConv 
and ERCDLR (p < 0.001). No statistically significant differences were seen between ERCConv and ERCDLR 
(p = 0.999)

ND BD M MA NA Magnetic field (T)

Non-ERCConv 0 0 2 18 19 1.5
Non-ERCConv 0 0 3 37 14 3
Non-ERCConv 0 0 5 55 33 Combined
Non-ERCDLR 0 0 0 17 22 1.5
Non-ERCDLR 0 0 7 32 15 3
Non-ERCDLR 0 0 7 49 37 Combined
ERCDLR 0 4 19 17 0 1.5
ERCDLR 1 8 29 14 1 3
ERCDLR 1 12 48 31 1 Combined
ERCConv 0 2 22 13 2 1.5
ERCConv 2 7 29 16 0 3
ERCConv 2 9 51 29 2 Combined

Table 2   Summary scoring of image artifacts for each series, using the 
point scale 1-to-5 scale: Non-diagnostic (ND = 1), Barely diagnostic 
(BD = 2), Moderate artifacts (M = 3), Minimum artifacts (MA = 4), 
and No artifacts (NA = 5)

The results are shown for the 1.5 T, 3.0 T, and combined dataset. The 
overall point score for each series is shown below. The higher the 
score, the less artifacts affecting image quality

Points Magnetic field (T)

Non-ERCConv 173 1.5
Non-ERCConv 227 3.0
Non-ERCConv 400 Combined
Non-ERCDLR 178 1.5
Non-ERCDLR 224 3.0
Non-ERCDLR 402 Combined
ERCDLR 133 1.5
ERCDLR 165 3.0
ERCDLR 298 Combined
ERCConv 132 1.5
ERCConv 167 3.0
ERCConv 299 Combined
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Fig. 1   Axial T2-weighted images of a 61-year-old patient with a 
history of prostate cancer. a Images obtained with the ERC signal 
turned off and without DLR (Non-ERCConv). b Images generated with 
the ERC signal turned off and with DLR (Non-ERCDLR). c Images 
obtained with the ERC signal turned on and without DLR (ERCConv). 

d Images obtained with the ERC signal turned on and with DLR 
(ERCDLR). On c and d, note the pulsation artifacts from the coil 
(black arrows) and the near field artifacts (arrowhead) that are not 
seen on a or b 

Table 3   The qualitative results for the best overall image quality

The number of series the radiologists selected the image quality as either excellent, adequate, or poor. The results are presented for 1.5 T, 3.0 T, 
and combined data for both magnetic fields. Non-ERCDLR was scored as “excellent” in 56.7% of all the” excellent” series (68/120). These scores 
were better than those in the other three series, and differences were statistically significant (p < 0.001)

Field 1.5 T 1.5 T 1.5 T 3 T 3 T 3 T Combined Combined Combined
Score Poor Adequate Excellent Poor Adequate Excellent Poor Adequate Excellent

Non-ERCConv 8 26 6 7 35 11 15 61 17
Non-ERCDLR 1 7 33 0 17 35 1 24 68
ERCDLR 0 29 10 5 38 11 5 67 21
ERCConv 1 34 4 6 38 10 7 72 14
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When two series were tied for the best series, “Non-
ERCDLR” was also selected more frequently as “the best 
series” for each category: ARW, UD, ED, C, NVB, and T 
(20/42, 6/18, 12/26, 13/28, 12/24, and 11/27, respectively). 
For example, “Non-ERCDLR” received the score as best 
series for ARW 20 times when tied.

Tables 7, 8 and 9 show results for the qualitative analysis 
of the worst series for visualization of the ARW, UD, ED, 
C, NVB, and T. When a single series was selected, “Non-
ERCDLR” was chosen least frequently as the “worst series” 
for each category (0/72, 4/84, 1/81, 1/72, 1/74, and 1/85, 
respectively).  

When two series were tied for the worst series, “Non-
ERCDLR” was also selected less frequently as “worst series” 
for categories ARW, UD, ED, C, NVB, and T (1/105, 4/91, 

1/95, 1/107, 1/106, and 1/94, respectively). When combining 
the single and tied series as “worst series,” “Non-ERCDLR” 
was selected as the “the worst series” less frequently for 
each category (1/180, 8/175, 2/176, 2/179, 2/180, and 1/94). 
In contrast, “ERCDLR” was selected the worst of visualiza-
tion of the ARW (98/180), C (70/179), and NVB (85/180). 
The “ERCConv” and “ERCDLR” tied as the worst series for T 
(22/94). The “ERCConv” scored the worst for ED (65/176). 
The “Non-ERCConv” scored the worst for UD visualization 
(48/91).

Table 4   Frequency of selection for each series as the “the best series” 
when only one series was selected for evaluation of the anterior rectal 
wall (ARW), urogenital diaphragm (UD), ejaculatory duct (ED), cap-
sule and zonal anatomy (C), neurovascular bundle (NVB), and tumor 
(T)

The Non-ERCDLR was the commonly selected series for all categories
ERCConv Non-DLR processed images with ERC signal, Non-ERCConv 
Non-DLR processed images without ERC signal, Non-ERCDLR DLR 
processed images without ERC signal, ERCDLR DLR processed 
images with ERC signal

ERCDLR ERCConv Non-ERCDLR Non-ERCConv

ARW​ 1 4 55 12
UD 5 7 62 8
ED 5 3 63 7
C 1 2 69 7
NVB 0 2 65 13
T 3 5 67 5

Table 5   Frequency of selection for each series as the “the best series” 
when tied with another series for the evaluation of anterior rectal wall 
(ARW), urogenital diaphragm (UD), ejaculatory duct (ED), capsule 
and zonal anatomy (C), neurovascular bundle (NVB), and tumor (T)

The Non-ERCDLR was the commonly selected series for all categories
ERCConv conventional reconstruction images with ERC signal, Non-
ERCConv conventional reconstruction images without ERC signal, 
Non-ERCDLR DLR processed images without ERC signal, ERCDLR 
DLR processed images with ERC signal

ERCDLR Non-ERCDLR ERCConv Non-ERCConv

ARW​ 3 20 2 17
UD 5 6 4 3
ED 4 12 3 7
C 2 13 4 9
NVB 1 12 0 11
T 8 11 3 5

Table 6   Frequency of selection for each series as the “the best series” 
when single or tied with another series for the evaluation of anterior 
rectal wall (ARW), urogenital diaphragm (UD), ejaculatory duct 
(ED), capsule and zonal anatomy (C), neurovascular bundle (NVB), 
and tumor (T)

The Non-ERCDLR was the commonly selected series for all categories
ERCConv conventional reconstruction images with ERC signal, Non-
ERCConv conventional reconstruction images without ERC signal, 
Non-ERCDLR DLR processed images without ERC signal, ERCDLR 
DLR processed images with ERC signal

ERCDLR ERCConv Non-ERCDLR Non-ERCConv

ARW​ 4 6 75 29
UD 10 11 68 11
ED 9 6 75 14
C 3 6 82 16
NVB 1 2 77 24
T 11 8 78 10

Table 7   Frequency of selection for each series as the “the worse 
series” when only one series was selected for the evaluation of ante-
rior rectal wall (ARW), urogenital diaphragm (UD), ejaculatory duct 
(ED), capsule and zonal anatomy (C), neurovascular bundle (NVB), 
and tumor (T)

The Non-ERCDLR was the least commonly selected series for all cat-
egories
ERCConv conventional reconstruction images with ERC signal, Non-
ERCConv conventional reconstruction images without ERC signal, 
Non-ERCDLR DLR processed images without ERC signal, ERCDLR 
DLR processed images with ERC signal

ERCDLR ERCConv Non-ERCDLR Non-ERCConv

ARW​ 42 29 0 4
UD 12 21 4 47
ED 27 29 1 24
C 27 21 1 23
NVB 35 32 1 6
T 29 30 1 25
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Interobserver variability

For image quality, interobserver variability was κ = 0.58 
(moderate agreement); for artifacts, interobserver variability 
was κ = 0.34 (fair agreement).

Discussion

Our results indicate an overwhelming preference for the 
Non-ERCDLR series by all radiologists (p < 0.001). The 
Non-ERCDLR series best qualitative image score of the four 
series. Non-ERCDLR was the most frequently selected as the 
“best series” and the least frequent as “worst series” for most 
of the anatomical locations evaluations. These results are 

supportive of our hypothesis that the introduction of DLR 
may produce improved overall image quality.

The addition of the ERC signal, with either Conventional 
or DLR, resulted in more overall image artifacts. This was 
due in part to the pulsation artifacts and/or near field signal 
artifact seen on the images when the ERC was turned on 
(Fig. 1) and was interesting that the DLR was not able to 
remove the artifacts in the presence of ERC. The signal of 
the ERC was almost 3.8–4.8 times larger on the ERC than 
on Non-ERC. This benefit of higher signal apparently did 
not affect the overall image quality as the artifacts obscured 
the images.

The new MRI PI-RADS 2.1 reporting takes into account 
image quality and suggests reporting the quality of images. 
The current bi-parametric MRI relies on T2-weighted and 
diffusion sequence that is artifact-free and has high quality, 
and this may be not be achieved in the absence of an ERC 
[11]. PI-RADS 2.1 advocates using the axial T2 sequence 
as the key sequence in detecting and staging prostate can-
cer. Current guidelines, as proposed by the PI-RADS steer-
ing committee for an MRI-directed biopsy pathway, also 
recommend high-quality multiparametric MRI [12], which 
includes axial T2 as the key sequences. It is therefore impor-
tant that the image quality of this sequence is optimal. Our 
study shows that the artifacts from the coil and from rectal 
motion were significantly reduced by applying the DLR.

DL techniques have been used for reduced noise in brain 
MRIs [8] and musculoskeletal MRIs [13]. One of the con-
ventional denoising methods is filter-based (i.e., Gaussian 
filter) noise reduction [8]. However, this approach will not 
only remove noise but also may result in loss of structural 
details and create image blurring. The DLR technique used 
in this work is deep convolutional neural network that oper-
ates on raw, complex k-space data to reduce image noise, 
remove truncation artifacts, and improve image sharpness. 
Instead of directly generating high SNR images, the DLR 
offers flexibility on noise reduction. This can help avoid 
aggressive denoising by maintaining a controlled level of 
noise, making it appear more natural to a human eye.

DL has been used for segmentation of the prostate and 
urethra [14], for detection of prostate cancer [15], and for 
radiation treatment planning for prostate cancer [16]. How-
ever, to our knowledge, there are no reports of the appli-
cation of DL or artificial intelligence (AI) techniques to 
improve image quality and evaluate the anatomy and tumors 
in patients with prostate cancer. Most of the resources for 
and research interest in AI associated with prostate MRI 
have focused on the diagnosis and detection of disease and 
segmentation of tumors and the prostate. Goldenberg et al. 
recently published a review article on the role of AI and ML 
on prostate cancer [17].

There were some limitations to our study. First, we evalu-
ated only a relatively small number of patients. However, our 

Table 8   Frequency of selection for each series as the “the worse 
series” when tied with another series for the evaluation of anterior 
rectal wall (ARW), urogenital diaphragm (UD), ejaculatory duct 
(ED), capsule and zonal anatomy (C), neurovascular bundle (NVB), 
and tumor (T)

The Non-ERCDLR was the least commonly selected series for all cat-
egories
ERCConv conventional reconstruction images with ERC signal, Non-
ERCConv conventional reconstruction images without ERC signal, 
Non-ERCDLR DLR processed images without ERC signal, ERCDLR 
DLR processed images with ERC signal

ERCDLR ERCConv Non-ERCDLR Non-ERCConv

ARW​ 56 43 1 5
UD 15 24 4 48
ED 31 36 1 27
C 43 38 1 25
NVB 50 48 1 7
Tumor 33 33 1 27

Table 9   Frequency of selection for each series as the “the worse 
series” when single or tied with another series for the evaluation of 
anterior rectal wall (ARW), urogenital diaphragm (UD), ejaculatory 
duct (ED), capsule and zonal anatomy (C), neurovascular bundle 
(NVB), and tumor (T)

The Non-ERCDLR was the least commonly selected series for all cat-
egories
ERCConv conventional reconstruction images with ERC signal, Non-
ERCConv conventional reconstruction images without ERC signal, 
Non-ERCDLR DLR processed images without ERC signal, ERCDLR 
DLR processed images with ERC signal

ERCDLR ERCConv Non-ERCDLR Non-ERCConv

ARW​ 98 72 1 9
UD 27 45 8 95
ED 58 65 2 51
C 70 59 2 48
NVB 85 80 2 13
Tumor 33 33 1 27
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evaluation was performed with three independent reviewers 
with multiple data points, and the results were overwhelm-
ingly in favor of the “Non-ERCDLR” series.

Another limitation was that the tumor, as diagnosed by 
the radiologists, was not confirmed by slice-by-slice corre-
lation with pathology, although each reader was aware that 
patients were known to have at least one tumor in the pros-
tate. Based on axial T2W images, the readers selected the 
“most suspicious area” and compared the same area between 
series (side to side). By not including the DWI, ADC (appar-
ent diffusion coefficient) map, or other series of the entire 
MRI study in the data analysis, the readers were not given 
the full examination for complete interpretation of the MRI 
images. Our goal, however, was not to assess the accuracy 
of the radiologists’ visualization of the suspected tumor in a 
side-to-side comparison. The goal was to evaluate the radi-
ologists’ qualitative analysis of each series in visualization 
of the suspected tumor in a side-to-side comparison. In the 
clinical setting, the interpretation of these images requires 
incorporation of coronal and sagittal T2-weighted series, 
the DWI/ADC maps, and the pre- and post-Gd images, as 
required by PI-RADS-2 criteria but not by PI-RADS 2.1 
criteria, which requires only T2 axial and one additional T2 
orthogonal plane along with diffusion sequences [3].

The other limitation was reader variability for artifacts 
and overall image quality which were 0.58 and 0.34 (fair to 
moderate), respectively. This agreement would probably be 
higher if not for the five options in the scoring of artifacts 
and the three options in the scoring of image quality. The 
agreement can be a measure of the reader’s subjectivity: One 
reader may consider an image acceptable whereas another 
reader may subjectively consider the same image as excel-
lent; furthermore, one reader may have a higher standard for 
excellent vs. adequate than another reader. Similarly, one 
reader may consider a study as having “minimum artifacts” 
whereasanother reader may consider the same study as hav-
ing “moderate artifacts.” Also we did not allow for more 
than two series to be selected as “best series.” The radiolo-
gists, at times, found three series to be very similar. This 
limitation, however, did not affect our conclusion that the 
Non-ERCDLR series was the best for prostate MRI. Also, 
the Non-ERCDLR images had the ERC in place. While this 
gave us the opportunity to compare results generated from 
the same source data thereby removing many confounding 
factors such as mismatch between images, surface coil posi-
tioning differences, and prescan settings variations, we were 
not able to assess the effect of removing the ERC on overall 
image quality.

Interestingly, our data seem to indicate that ERC at 3 T 
may not have the expected added benefit on image quality. 
The expected improvement in overall signal was observed. 
The contrast, as scored subjectively by the radiologists, 
between the anatomical locations did not improve with 

improvement in the overall signal. We propose that the sig-
nal of the ERC did not improve the image quality due to two 
additional factors: (i) artifacts and (ii) anatomy displacement 
by the coil. With the ERC turned “off,” the pulsation arti-
facts from the rectum were diminished (Fig. 1).

Conclusions

DL Recon provided substantial noise reduction without any 
noticeable image blurring or loss of resolution in prostate 
MRI. Given the new PI-RADS 2.1 with its strong recom-
mendation for optimal T2 axial imaging, a prostate MRI 
study using Non-ERCDLR T2-weighted series generated by 
removing the signal from the ERC as part of the prostate 
MRI will have added benefits [3]. As adapted by each indi-
vidual radiologist, such a series may be used in combina-
tion with or independent of the standard T2W series with 
convention image reconstruction.
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