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Abstract

Background: Functional connectomes (FCs) have been shown to provide a reproducible individual fingerprint, which
has opened the possibility of personalized medicine for neuro/psychiatric disorders. Thus, developing accurate ways
to compare FCs is essential to establish associations with behavior and/or cognition at the individual level.
Methods: Canonically, FCs are compared using Pearson’s correlation coefficient of the entire functional connec-
tivity profiles. Recently, it has been proposed that the use of geodesic distance is a more accurate way of com-
paring FCs, one which reflects the underlying non-Euclidean geometry of the data. Computing geodesic distance
requires FCs to be positive-definite and hence invertible matrices. As this requirement depends on the functional
magnetic resonance imaging scanning length and the parcellation used, it is not always attainable and sometimes
a regularization procedure is required.
Results: In the present work, we show that regularization is not only an algebraic operation for making FCs
invertible, but also that an optimal magnitude of regularization leads to systematically higher fingerprints.
We also show evidence that optimal regularization is data set-dependent and varies as a function of condition,
parcellation, scanning length, and the number of frames used to compute the FCs.
Discussion: We demonstrate that a universally fixed regularization does not fully uncover the potential of geo-
desic distance on individual fingerprinting and indeed could severely diminish it. Thus, an optimal regularization
must be estimated on each data set to uncover the most differentiable across-subject and reproducible within-
subject geodesic distances between FCs. The resulting pairwise geodesic distances at the optimal regularization
level constitute a very reliable quantification of differences between subjects.
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Impact Statement

Functional connectomes (FCs) have a reproducible individual fingerprint, making it possible to study neurological and psy-
chiatric phenomena at an individual level. But this requires an accurate way to compare FCs to establish individual-level
associations with behavior and/or cognition. Although the canonical methods of comparing FCs (e.g., correlation, Euclidean)
are adequate, geodesic distance provides a more principled and accurate way of comparing FCs by utilizing the underlying
non-Euclidean geometry of correlation matrices. We demonstrate that by combining geodesic distance with an optimal
amount of regularization, we can get substantially more reliable estimates of relative distances between FCs and thus uncover
individual-level differences.
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Introduction

Brain activity can be estimated, indirectly, by measur-
ing the blood oxygenation level dependent (BOLD) sig-

nal using magnetic resonance imaging (MRI) (Bandettini
et al., 1992; Frahm et al., 1992; Kwong et al., 1992; Ogawa
et al., 1990, 1992). This is the standard technique to generate
brain images in functional MRI (fMRI) studies. Functional
connectivity between two distinct brain regions is then de-
fined as the statistical dependence between the corresponding
BOLD signals, canonically estimated with Pearson’s correla-
tion coefficient (Bravais, 1846; Galton, 1886). A whole-brain
functional connectivity pattern can be represented as a full
symmetric correlation matrix denominated functional con-
nectome (FC) (Fornito et al., 2016; Sporns, 2018). FCs have
been used to study the changes in brain connectivity with
aging (Zuo et al., 2017), cognitive abilities (Shen et al.,
2017; Svaldi et al., 2019), and across a wide range of brain
disorders (Fornito and Bullmore, 2015; Fornito et al., 2015;
van den Heuvel and Sporns, 2019). Recently, it has also
been shown that FCs have a recurrent and reproducible indi-
vidual fingerprint (Abbas et al., 2020; Amico and Goñi, 2018;
Finn et al., 2015; Gratton et al., 2018; Mars et al., 2018;
Pallarés et al., 2018; Rajapandian et al., 2020; Satterthwaite
et al., 2018; Seitzman et al., 2019; Venkatesh et al., 2020),
which has opened the possibility of personalized medicine
for neuro/psychiatric disorders (Satterthwaite et al., 2018),
aided by improved acquisition parameters and the availabil-
ity of large data sets with open data policy (Allen et al.,
2014b; Amunts et al., 2016; Miller et al., 2016; Okano
et al., 2015; Poo et al., 2016; Van Essen et al., 2012, 2013).

A clinically useful individual-level biomarker must have
high interindividual differentiability, which in turn requires
an accurate way of comparing individual FCs. FCs are com-
pared traditionally by computing the Pearson’s correlation
coefficient between their upper-triangular vectorized ver-
sions (Amico andand Goñi, 2018; Bari et al., 2019; Finn
et al., 2015). This approach enables us to assess to what
extent it is possible to identify a participant from a large
population of participants, a process known as fingerprinting
or subject identification. The success rate of subject identifi-
cation is known as identification rate (Finn et al., 2015)
and has been also referred to as participant identification
(Venkatesh et al., 2020). Although comparing FCs using
Pearson’s correlation coefficient is intuitive and computa-
tionally simple, it ignores the underlying geometry of the
correlation-based FCs (Venkatesh et al., 2020) and hence
has had only limited success in terms of identification rates
(Finn et al., 2015).

A geometry-aware approach (Venkatesh et al., 2020) has
recently been introduced to establish a more accurate way
of measuring distance between any two FCs. FCs computed
using Pearson’s correlation coefficient between BOLD sig-
nals of all brain regions are objects that lie on or inside a
nonlinear surface or manifold called the positive semidefinite
cone (Fig. 1). This non-Euclidean geometry of FCs suggests
that the distances between FCs are better measured along a
geodesic of the cone. This contrasts with using correlation
which is equivalent to the cosine of the angle between de-
meaned and normalized FCs, or the Euclidean distance
which is equivalent to the straight-line distance between
FCs. Venkatesh and colleagues (2020) applied the geodesic

approach of comparison to the problem of individual finger-
printing and showed that it improves identification rates
robustly compared with a dissimilarity measure based on
Pearson’s correlation coefficient. The improvement was
observed across most conditions (resting-state [REST] and
seven fMRI tasks) from the Human Connectome Project
(HCP) data set.

The non-optimality of conventional metrics to compare
FCs can be shown in another way. When comparing FCs
using the conventional Pearson or Spearman-based correla-
tions, the FCs are vectorized and then correlated. Implicit
in this process is the assumption that all the elements of
FCs are uncorrelated features. This is not the case. Since
FCs are correlation matrices (Q), they live on or inside a pos-
itive semidefinite cone, that is, yT Qy � 0 for all non-zero
vectors y (Pennec et al., 2006). This means that elements
of Q are interrelated, which violates the implicit uncorrelated
feature assumption when conventional metrics are used to
compare FCs. Geodesic distance treats Q as a single object,
instead of treating each element separately, which results in
much more accurate comparisons of FCs evidenced by ro-
bustly higher identification rates (Venkatesh et al., 2020).

The definition of geodesic distance between two positive
definite matrices of the same size (say Q1 and Q2) requires
that at least one of the matrices being compared is invertible
(Pennec et al., 2006). When this is not the case (rank defi-
cient matrices with at least one eigenvalue equal to 0),
both Q1 and Q2 can be regularized by adding a scaled identity
matrix, s · I, to both, which increases the eigenvalues of
both matrices by s, ensuring that they become invertible.
This process was used by Venkatesh and colleagues (2020)
with a fixed s = 1, for all fMRI tasks, when computing geode-
sic distances between (otherwise) rank-deficient matrices.
Rank-deficient FCs may occur typically when the number
of time points (from the BOLD time-series) is smaller than
the number of brain regions of the parcellation used. It
may also happen when using very high-resolution parcella-
tions, even if the number of time points is larger than the
number of brain regions. Venkatesh and colleagues (2020)
demonstrated that even with rank-deficient matrices, with
the help of regularization, higher identification rates were
achieved using geodesic distance when compared with iden-
tification rates based on correlation dissimilarity. Please note
that regularization does not affect similarities or dissimilar-
ities between FCs based on Pearson’s correlation coefficient
as the main diagonal is not even considered for comparison
purposes.

Using a regularization of s = 1 ensures that FCs were in-
vertible and hence permits to use geodesic distance for
assessing subject fingerprints as measured by identification
rate. However, one could use any positive value of the reg-
ularization parameter, s, and repeat the process of subject
identification to assess performance. Geodesic distance is
mostly influenced by the eigenvalues of the FCs being com-
pared, which are in turn impacted by the values in their main
diagonal. Hence, intuitively, increasing main diagonal regu-
larization is equivalent to shifting and shrinking the space oc-
cupied by the matrices within the manifold (Fig. 1). Indeed,
as s tends to infinity all distances between FCs tend toward
zero. It can be hypothesized that such regularized shrinking
will affect not only absolute but also relative distances be-
tween FCs, which in turn would affect identification rates.
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In such a scenario, full rank and invertible FCs may also
benefit from the same regularization procedure to improve
identification rates.

In this article, we explore the effect of the magnitude of
the regularization parameter (s) on the geodesic distance be-
tween FCs and its impact on identification rates. We assess
this effect for different scanning lengths, number of frames
for a fixed scanning length, parcellations, and fMRI tasks
and evaluate which levels of regularization maximize identi-
fication rates. In this manner, we aim to develop a procedure
to uncover individual fingerprints by shifting FC data to an
optimal location of the semidefinite cone where test/retest
FCs are more differentiable across subjects. The existence
of an optimal regularization would be critical to obtain the
corresponding geodesic distances between FCs. An optimal
amount of regularization should lead to higher identification
rates in FCs (i.e., higher individual fingerprint), and hence,
these optimally regularized FCs and particularly their

corresponding pairwise distances would be better suited for
establishing associations between functional connectivity
and cognition, behavior, and neurological diseases at the
individual level.

Methods

Data set

We included the N = 426 unrelated subjects from the
HCP 1200 participants release (Van Essen et al., 2013).
This subset of unrelated subjects was chosen from the over-
all data set to ensure that no two subjects have a shared par-
ent. The criterion to exclude siblings (whether they share
one or both parents) was crucial to avoid confounding ef-
fects in our analyses due to family-structure confounders.
Data from REST and seven fMRI tasks were used: emo-
tion processing (EM), gambling (GAM), language (LAN),
motor (MOT), relational processing (REL), social (SOC),

FIG. 1. Incremental regularization of FCs and its effect on the estimates of geodesic distance. We illustrate the geodesic
distance between two FCs of size 2 · 2 (denoted here by a circle and a triangle) and how it changes with increasing regula-
rization (s) of FCs. All the positive-definite (full rank) FCs comprise the cone interior, whereas all the rank-deficient positive
semidefinite FCs (having at least one 0 eigenvalue) reside on the cone boundary. Different magnitudes of s reallocate FCs
within the positive semidefinite cone. We should also highlight that for FCs of higher dimensions, a three-dimensional vi-
sualization of the positive semidefinite cone is not possible. FCs, functional connectomes. Color images are available online.
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and working memory (WM). In this study, we will refer to the
resting-state plus all the tasks as conditions.

For each condition, subjects underwent two sessions cor-
responding to two different acquisitions (left to right or
LR, and right to left or RL). The resting-state fMRI scans
were acquired on two different days with a total of four ses-
sions (coded as REST1 and REST2). The two sessions from
REST1 were used for most of the analyses in this study.
REST2 sessions were only used in the generalizability anal-
ysis (see the Subject Identification section). The HCP scan-
ning protocol was approved by the institutional review
board at Washington University in St. Louis. Full details
on the HCP data set have been published previously (Glasser
et al., 2013; Smith et al., 2013; Van Essen et al., 2012).

Brain parcellations

Two gray matter parcellations were used in this study:

� The Destrieux atlas (Destrieux et al., 2010), or ‘‘aparc
.2009s’’ in FreeSurfer nomenclature, defined using
‘‘Rules and algorithm that produced labels consistent
with anatomical rules as well as automated computational
parcellation,’’ featuring 75 regions in each hemisphere
(74+Medial Wall), with the particularity of separating
gyral and sulcal areas (a total of 150 brain regions).
� MMP1.0 atlas (Glasser et al., 2016), a multimodal parcel-

lation of the human cerebral cortex, with 180 brain re-
gions in each hemisphere (a total of 360 brain regions).

For completeness, 14 subcortical regions were added to
each parcellation, as provided by the HCP release (filename
Atlas_ROI2.nii.gz). To do so, this file was converted from
NIFTI to CIFTI format using the HCP workbench software
(Glasser et al., 2016; Marcus et al., 2011). This resulted in
a total of 164 and 374 brain regions for Destrieux and
MMP1.0 parcellations, respectively.

Preprocessing

The data processed using the ‘‘minimal’’ preprocessing
pipeline from the HCP were employed in this work (Glasser
et al., 2013). This pipeline included artifact removal, motion
correction, and registration to standard template. Full details
on this pipeline can be found in earlier publications (Glasser
et al., 2013; Smith et al., 2013).

We added the following steps to the ‘‘minimal’’ process-
ing pipeline. For resting-state fMRI data: (i) we regressed
out the global gray matter signal from the voxel time courses
(Power et al., 2014), (ii) we applied a bandpass first-order
Butterworth filter in the forward and reverse directions

[0.001–0.08 Hz (Power et al., 2014); MATLAB functions
butter and filtfilt], and (iii) the voxel time courses were
z-scored and then averaged per brain region, excluding any
outlier time points that were outside three standard deviation
from the mean (workbench software, command -cifti-
parcellate). For task fMRI data, we applied the same steps
as mentioned above, but a more liberal frequency range was
adopted for the band-pass filter (0.001–0.25 Hz) (Amico et al.,
2019), since the relationship between different tasks and op-
timal frequency ranges is still unclear (Cole et al., 2014).

Table 1 shows the number of frames per run and the scan-
ning length for all fMRI conditions. It also shows the number
of participants for whom this number of frames per run
was available after the preprocessing. Any runs where we
could not fully process the data or were left with fewer
frames were left out of the analyses.

Whole-brain FCs

As described in the Preprocessing section, for a given brain
parcellation, time series data for each voxel were z-scored
and averaged within each brain region. Pearson’s correlation
coefficient (MATLAB command corr) was used to estimate
the functional connectivity between all pairs of brain regions,
resulting in a symmetric correlation matrix of size m · m,
where m is the number of brain regions in the parcellation
being used. This object is referred to as a FC. A whole-
brain FC was computed for each of the two runs of each par-
ticipant and each condition (resting-state and seven tasks).

As mentioned above, FCs are correlation matrices and it
is well known that correlation matrices are symmetric posi-
tive semidefinite (SPSD), which means that their eigenval-
ues are greater than or equal to zero (Bhatia, 2009). If all
the eigenvalues of an FC are strictly greater than zero, then
it is a symmetric positive definite (SPD) FC matrix. The
rank and invertibility of an FC are also directly related to
its eigenvalues: if one or more eigenvalues are zero, then
that FC is rank-deficient and not invertible. When all the
eigenvalues are greater than zero for an FC, it is full-rank
and hence invertible (Bhatia, 2009). The rank of an FC de-
pends on the number of brain regions in the parcellation (m)
and the number of samples in the time series (T) such that:

rank � m for T � m

rank < T for T < m

For all the conditions, the FCs generated using Destrieux
parcellation were full-rank if the number of samples (frames)

Table 1. Summary of the Number of Unrelated Participants Available (of a Total of 426)

for Each Parcellation and Condition After Complete Preprocessing of the Functional

Magnetic Resonance Imaging Data with Corresponding Number of Frames per Run

Condition REST EM GAM LAN MOT REL SOC WM

Total participants—Destrieux 407 408 408 409 409 409 409 409
Total participants—MMP1.0 405 406 406 407 407 407 407 407
Frames per run 1190 166 243 306 274 222 264 395
Scanning length, min 14.28 1.99 2.92 3.67 3.29 2.66 3.17 4.74

EM, emotion processing; GAM, gambling; LAN, language; MOT, motor; REL, relational processing; REST, resting-state; SOC, social;
WM, working memory.
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in the time series used was � 164 (e.g., when using entire
scanning for any condition), whereas the FCs generated using
MMP1.0 parcellation were always rank-deficient, regardless
of the number of samples in the time series (Table 1).

Geometry of FCs

FCs estimated using Pearson’s correlation coefficient
are objects that lie on or inside a nonlinear surface, or man-
ifold, called the positive semidefinite cone. Although a three-
dimensional visualization of this manifold is only possible
for 2 · 2 FCs (Fig. 1), a manifold with exactly the same prop-
erties exists for FCs with higher dimensions (Bhatia, 2009).
Pearson’s correlation coefficient is the canonical way to
estimate similarity/dissimilarity between FCs (Amico and
Goñi, 2018; Finn et al., 2015), whereas other related ap-
proaches, such as Euclidean distance between the vectorized
matrices (Ponsoda et al., 2017) and the so called Manhattan
(L1) distance (Allen et al., 2014a), have also been used. Con-
sidering the non-Euclidean geometry of FCs, it is natural to
measure the distance between FCs along the curvature of the
positive semidefinite cone (Bhatia, 2009). The geodesic dis-
tance between two points inside the cone, thus between two
SPD FCs Q1 and Q2, is the shortest path between them along
the manifold and is unique for any two such points (Bhatia,
2009; Pennec et al., 2006).

Let Sm
þ be the set of all symmetric positive matrices of

dimension M, which lie on or inside an SPSD cone of dimen-
sion M. The positive-definite matrices would comprise the
interior of the cone while all the rank-deficient semidefinite
matrices would reside on the cone boundary. Now assume
that Q1 2 Sm

þ and Q2 2 Sm
þ are two SPD matrices of size

m · m (here, m = 164 or 374). Let us denote Q = Q
� 1
2

1 Q2Q
� 1
2

1 ,
then Q 2 Sm

þ and its corresponding m eigenvalues sat-
isfy ki � 0 1 � i � mð Þ. Then, the geodesic distance be-
tween Q1 and Q2 is computed as (Bhatia, 2009; Pennec
et al., 2006):

dG Q1,Q2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace log2 Q

�1
2

1 Q2Q
�1
2

1

� �� �r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+m

i= 1
log kið Þð Þ2

q

(1)

where log is the matrix log operator. This definition of geode-
sic distance requires that the matrix Q1 is invertible (or equiv-
alently SPD or full-rank). When this is not the case, we can
regularize both Q1 and Q2 by adding to each of them a scaled
identity matrix, s · I, which increases the value of their eigen-
values by s, ensuring that they are now invertible matrices.
Importantly, this regularization reallocates both matrices
within the positive semidefinite cone (Fig. 1).

Venkatesh and colleagues (2020) used s = 1 with the
specific purpose of ensuring full rank matrices. However,
theoretically, one could use any positive value of the regula-
rization parameter, s, to ensure that both matrices (Q1 and
Q2) are full rank. As mentioned earlier, all correlation matri-
ces are either positive definite or positive semidefinite, which
means that either all their eigenvalues are positive or at least
one of them is zero (they cannot have negative eigenvalues).
Thus, even a small positive perturbation to a rank-deficient
correlation matrix using a scaled identity matrix would
make it full rank and invertible (i.e., all eigenvalues greater
than zero).

Subject identification

Subject identification is the process of identifying an indi-
vidual’s FC from a population of FCs, given another FC
of that individual. All conditions (resting-state and seven
tasks) in our data set contain two runs (LR and RL acquisi-
tion orientation), which we denominate here Test and Retest.
To avoid any bias due to the acquisition orientation, runs
were randomly assigned to either Test or Retest for each sub-
ject. This process was repeated for each condition separately.

An FC from the Retest data was labeled with the partici-
pant’s identity in the Test data that was closest to it in the
Test data. We repeated this process for all the FCs in the
Retest data and defined the identification rate as:

Identification Rate =
Number of correctly labeled subjects

Total number of subjects

This process was repeated by reversing the roles of test
and retest sessions, as introduced by Finn and colleagues
(2015). The final identification rate was obtained by averag-
ing the two values.

The identification rates were computed for each condition
separately. To study the effects of regularization on the iden-
tification rates, this process was repeated for a wide range
of regularization parameter values, s, in particular:

For Destrieux parcellation : s = 0 to 2 in steps of 0:1
2:5 to 10 in steps of 0:5

�

For MMP1:0 parcellation : s = 0 to 10 in steps of 0:5
11 to 20 in steps of 1

�

Different values of s for the two parcellations were chosen
based on preliminary exploration of the change in identifica-
tion rates with s.

To understand the effect of scanning length, for each value
of s, the identification process was repeated by selecting
frames sequentially of the total time series, starting from
50 frames to the maximum number of frames, in steps of
50 (see Table 1 for maximum number of available frames
and the corresponding scanning length for all eight fMRI
conditions).

To understand the effect of number of frames when the
scanning length is fixed, the identification process was re-
peated for each value of s using the maximum scanning
length. The number of frames was adjusted by choosing
alternating frames from the time series, that is, by picking
every second, third, fourth . frame. Note that this process
is equivalent to assessing identification rates for longer rep-
etition times (TRs). The maximum gap between chosen
frames was decided for each condition to keep at least 50
frames in the final time series.

To assess variability in identification performance due to
differences in samples, we used sampling without replacement.
For every run, we randomly selected 80% of the partici-
pants and performed subject identification process. This pro-
cedure was repeated 100 times for each value of s and for
each number of frames evaluated.

The above mentioned ‘‘sampling without replacement’’
process would also serve as a proxy exploration of the gen-
eralizability of the optimal regularization magnitude for
outside data sets of same or similar acquisition parameters
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as the ones used in this study. To explore generalizability of
the optimal regularization magnitude across different ses-
sions of the same subjects, two sessions from REST2 were
used to compare the identification rates for varying values
of s with REST1, using the entire scanning length.

Results

We explored the effect of using different values of the reg-
ularization parameter (s) on the geodesic distance, and the
uncovering of individual fingerprint in FCs. Identification
rate (Finn et al., 2015; Venkatesh et al., 2020) was used as
a metric to quantify the individual fingerprint. Identification
rate was computed by the Subject Identification process,
which is the process of identifying an individual’s FC from
a population of FCs, given another FC of that individual.
Identification rate is simply the percentage of accurately
identified individuals. Through a small example, we show
evidence of regularization affecting not only the global
geodesic distance but also relative distance between FCs,
which ultimately may affect identification rates. Then, we sys-
tematically studied how regularization affects identification
rates for FCs, with different fMRI conditions (resting-state
and seven fMRI tasks), parcellations, varying scanning
lengths, and finally, varying number of frames for a fixed scan-
ning length. The generalizability of the optimal regularization
magnitude for different sessions of the same subjects and for
different subjects for whom fMRI data were acquired with ex-
actly same acquisition parameters was also investigated.

We first provided an example to develop an intuitive un-
derstanding of how regularization affects geodesic distances
between FCs. To do so, we assessed the effect of regulariza-
tion on geodesic distances among FCs when subjects are
performing the emotion processing task. Figure 2A shows
that as regularization (s) increases, average geodesic distance
across all subjects and sessions (global geodesic distance),
exponentially decreases. We then assessed the effect of reg-
ularization on the relative geodesic distances between FCs.
Figure 2B shows the proximity-rank in terms of distance.
Briefly, the proximity-rank of an FC B with respect to an
FC A quantifies how many FCs in that data set are closer
to FC A than FC B. Taking as reference subject Atest, we
tracked the proximity-rank of the subjects Aretest, Bretest,
and Cretest at different levels of s. At s = 0:5, compared
with Bretest, there are many more FCs closer to Atest than
Cretest. However, the situation is reversed at s = 4. In addition,
at s = 0:5, Bretest is closer Atest than Aretest. Last but not least,
the proximity-rank of the Aretest also changes with respect
to Atest with regularization.

Results above show that regularization not only affects the
global geodesic distance among FCs but also the relative dis-
tance, which may ultimately affect identification rates.
Figure 2C and D shows the identifiability matrices for 25
subjects chosen arbitrarily (for ease of visualization) per-
forming the emotion processing task at a low (s = 0:5) and
a high (s = 4) value of regularization. An i, jð Þ entry in an
identifiability matrix here shows the geodesic distance be-
tween the test FC of the ith and the retest FC of the jth sub-
ject. Since the order of the subjects is the same across rows
and columns, a main diagonal entry represents the geodesic
distance between test and retest session of the same subject.
Thus, a brighter main diagonal in Figure 2D, compared with

Figure 2C, indicates that the test and retest sessions of the
same subject are closer to each other than other subjects
at s = 4 than at s = 0:5, which should translate into higher
identification rates.

Intuitively, these results tell us that asymptotically, geode-
sic distances between FCs approach zero as s tends to infin-
ity. In addition to affecting the absolute magnitude of the
distances, s also affects the relative distances between FCs
and we have preliminary evidence that there is an optimal
value/range of s, which would affect relative distances in
such a way that FCs from the two sessions of the same sub-
ject are closer to each other than any other FCs. These find-
ings motivate us to assess changes in subject identification
rates with varying magnitudes of s.

Figure 3 shows the effect of s on identification rates for all
fMRI conditions (using the entire scanning length) and for
both the Destrieux and MMP1.0 parcellations. Identification
rates for all conditions and different parcellations appeared
to be highly sensitive and roughly concave functions of s.
In most cases, we observed the presence of a clearly identi-
fiable optimal s (from now on denominated s*) value for
which the identification rate is maximized. For a few cases
for the MMP1.0 parcellation, it seems that there was a
wide range of optimal s that produced very similar identifi-
cation rates (e.g., resting-state, emotion).

Using the entire scanning length, s* depended not only on
the condition but also on the parcellation (Fig. 3). The s* val-
ues were smaller for the Destrieux parcellation than for
the MMP1.0 parcellation for any given condition. Resting-
state, language, and working memory had the highest,
whereas the emotion task had the lowest identification
rates at s* for both parcellations. At s*, the identification
rates were either approximately equal (for resting-state) or
higher when using MMP1.0 parcellation, compared with
Destrieux, except for working memory and social tasks. For
both parcellations, resting-state condition reached greater
than 99% identification rate at s*.

We then assessed the effect of scanning length on identi-
fication rate and how it interacts with s. Results are shown
in Figure 4 (Destrieux) and Figure 5 (MMP1.0). With the
Destrieux parcellation (164 brain regions), in general, s*
was particularly small (0:1� 0:2) for resting-state compared
with most tasks (0:2� 1:9), with identification rates decreas-
ing slowly with increasing magnitudes (Fig. 4). Overall, for
resting-state compared with tasks, the scanning length used
to compute FCs played a much bigger role in identification
rates than the regularization magnitude. For a given s, the
identification rates tended to increase with increasing scan-
ning length for all conditions, with maximal identification
rates achieved with entire scanning length (see Table 2;
resting-state and language conditions being the exceptions).
With shorter scanning lengths, a broader range of s optimi-
zed the identification rates. But as the scanning length in-
creased, this range became narrower and hence maximal
identification rates required more specific regularization.
Also, the drop off in identification rates was sharper when
the optimal s range became narrower. This pattern is less
clear with the emotion processing task, perhaps due to emo-
tion processing being the fMRI condition with the shortest
scanning length than the other tasks (Table 1).

With MMP1.0 parcellation (374 brain regions), we obser-
ved similar results. Just as with the Destrieux parcellation,
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resting-state behaved differently than tasks. First, for any
given scanning length, s* values were much smaller for
resting-state than for tasks (Fig. 5). Second, the identification
rates for resting-state were more dependent on the scanning
length than on the regularization. For a given s, identification
rates tended to increase with increasing scanning length for
all conditions, with maximal identification rates achieved
with entire scanning length (Table 3). Finally, the optimal
ranges of s were broader with shorter scanning length and
more specific with increasing scanning length. In comparison

to the Destrieux parcellation, the narrowing of the optimal s
range required longer scanning length for MMP1.0 for any
given condition.

We also assessed the effect of number of frames on the
identification rates, when maintaining the entire scanning
length. Overall, for a given condition, the identification rate
was not severely affected by decreasing the number of
frames (Fig. 6). When the number of frames became too
small (different for each condition), identification rates drop-
ped more drastically for the Destrieux parcellation than

FIG. 2. Effect of regularization (s) on global and relative geodesic distances. We have chosen the emotion processing FCs
to illustrate how geodesic distances across subjects and/or sessions change with regularization magnitude. (A) Global
geodesic distance (in this case averaged geodesic distance between test and retest sessions of all subjects for the emotion
processing task) decreases exponentially with increasing regularization. (B) Shows how close (in terms of proximity-rank
with respect to all the other subjects) retest sessions of subjects A, B, and C are to the test session of subject A. Note that
the three proximity-ranks fluctuate with regularization. (C) Identifiability matrix based on geodesic distance for low
(s = 0:5) regularization for a subsample of 25 subjects performing the emotion processing task. (D) Identifiability matrix
based on geodesic distance for high (s = 4) regularization for the same subsample of 25 subjects performing the emotion pro-
cessing task. Color images are available online.
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for the MMP1.0. It is interesting to note that with *170 or
more frames, identification rates reach a plateau for all
fMRI conditions and parcellations.

A very low standard error of mean was observed for all
the analyses discussed above (Figs. 3–6), highlighting the
generalizability of the optimal regularization magnitude to
FCs from different subjects. Optimal regularization magni-
tude and the corresponding identification rates for REST2
were found to be similar to REST1 (Fig. 7) highlighting the
generalizability across different sessions of the same sub-
jects. It should be noted that for both REST1 (Fig. 3) and
REST2 (Fig. 7), there is a range of s where the correspond-
ing identification rates are approximately equal to the optimal
identification rate. In addition, the scatter plots between
identification rates of REST1 and REST2 show how similarly
the two samples behave with respect to s (Fig. 7; insets).

Discussion

In this work, we explored the effects of different magni-
tudes of regularization on geodesic distance and subsequ-
ently its impact on subject identification rates in FCs. We
explored these effects for eight fMRI conditions from the
HCP data—resting-state, emotion, gambling, language,
motor, relational, social, and working memory. We found
that the optimal value of the regularization parameter,
which maximized the identification rates, is dependent on
the condition, parcellation, scanning length, and the number
of frames used to the compute the FCs. In addition, the devi-
ation from the optimal point could affect the identification
rates drastically depending on the condition, scanning length,
and/or the number of frames used. We also found that the
magnitude of optimal regularization is generalizable across

different subjects and different sessions of the same subjects,
when the acquisition parameters are the same. In short, we
found that geodesic distance, which has been shown to be
a more accurate way of comparing FCs than canonical meth-
ods (Venkatesh et al., 2020), can be further refined by choos-
ing an optimal regularization magnitude for each data set and
fMRI condition.

Increased regularization reduces geodesic distance
globally and alters relative distances between FCs

Geodesic distance is highly determined by the eigenvalues
of the FCs being compared [Eq. (1)]. When those FCs are
regularized by adding a constant value to their main diago-
nal, it increases their eigenvalues by the same amount, thus
affecting the geodesic distance between them. As the regula-
rization magnitude increases, the eigenvalues of the FCs,
and hence the geodesic distance between them, becomes
dominated by it. Since the regularization value added to
both FCs is always equal, for a large enough regularization
magnitude, their eigenvalues also become approximately nu-
merically equal, leading to a decreased geodesic distance.
Intuitively, increasing main diagonal regularization is equiv-
alent to shifting and shrinking the space occupied by the
matrices within the manifold. Thus, as the regularization
magnitude increases, it was expected that the geodesic dis-
tance between FCs would decrease, as observed in Figure 2A.

It was less intuitive that the relative magnitude of the dis-
tances would also change with regularization. As the regula-
rization magnitude increased, the relative distance between
FCs changed in different directions as shown in Figure 2B
with FC Bretest and Cretest. Furthermore, for an optimal
value of regularization, the distances between sessions of

FIG. 3. Effect of regularization (s) on identification rates. Identification rates for all eight conditions (utilizing maximum
available scanning length) with variable magnitudes of s, using Destrieux (left; 164 ROIs) and MMP1.0 (right; 374 ROIs)
parcellations. Filled circles indicate the mean identification rate, whereas error bars indicate the standard error of the
mean across samplings with replacement (error bars are small enough that they are hidden behind the circles). Legend indi-
cates the eight conditions along with maximum available number of frames. Along each curve, the circle not filled indicates
the optimal value of s, which maximizes the identification rate. Color images are available online.
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the same subjects became smaller than between subjects,
which lead to better identification of the subjects when com-
paring the test and the retest sessions, as shown in Figure 2C
and D identifiability matrices.

Overall, we can think of increasing regularization as a
nonlinear shrinking procedure, which does not preserve rel-
ative distances between FCs. By tracking the effects of reg-
ularization on three subjects, we demonstrated that the local
distance information is not preserved for different magni-
tudes of regularization (Fig. 2B). This result must be taken
into account when using geodesic distance to compare
FCs. Then, the question is how to decide what magnitude
of regularization to choose? The answer lies in the implicit
hypothesis that the FCs from two sessions of the same sub-
ject should be closer to each other than FCs from any session
of any other subject. If we can find a regularization magni-
tude where for most subjects, this statement is true, then that
is the spot where the distances between FCs are the most
meaningful, if not accurate. This optimal spot can be discov-
ered by tracking identification rates as they change with regu-
larization, as was done in this study.

Identification rate is a concave function of the
regularization parameter

We observed that for any condition and parcellation, there
was a specific value or a range of values for the regulariza-
tion parameter where identification rate peaked (Fig. 3). In
other words, identification rate was a concave function of
the regularization parameter for all fMRI conditions and par-
cellations tested here. We should emphasize that only a lim-
ited range of the regularization parameter was tested in this
study, for specific conditions and parcellations, and thus,
we cannot theoretically guarantee that the optimal levels of
regularization found here could be trivially extrapolated to
other data sets with different acquisition parameters. But,
considering the breadth of the fMRI conditions and the
size of the data set used in this study, we are confident that
this concave behavior would be replicable in other fMRI
data sets as well.

Optimal regularization parameter depends
on the specific data set

We observed that the optimal value of the regularization
parameter, which maximizes the identification rates, depends
on the condition, parcellation, scanning length, and number
of frames used to compute the FCs (Figs. 4 and 5 and Tables 2
and 3). Venkatesh and colleagues (2020) used a fixed regu-
larization magnitude (s = 1). Here, we show that identifi-
cation rates can be substantially improved by using data
set-dependent regularization parameter. In addition, although
Venkatesh and colleagues (2020) employed regularization
only when the FCs being compared were rank-deficient,
we found that regularization improves identification rates
even with full-rank FCs; for example, this was the case of
Destrieux parcellation when � 164 frames were used to
compute FCs.

Longer scanning length leads to more specific values
of optimal regularization and to higher identification rates

As the number of samples (or frames chosen sequentially),
and hence the scanning length, increases in the time series
data, the resultant correlations become more reliable (Bonett
and Wright, 2000), and thus, we get better estimates of FCs
in the ‘‘static’’ sense of functional connectivity. For all the
tasks, we observed that as the scanning length increased,
the range of values of s which resulted in maximized identi-
fication rates narrowed down (Figs. 4 and 5). This effect was
not as prominent in resting-state, where for most of the scan-
ning lengths evaluated, there was a wide range of values of s,
which resulted in maximum identification rates. This sug-
gests that resting-state FCs, in comparison to tasks, may re-
side in an intrinsically different region of the semidefinite
cone where reallocation of FCs through regularization does
not have a sizeable influence on their differentiability.

It should also be pointed out that with optimal values
of s, the optimal identification rates were almost always
obtained when using the entire scanning length (two excep-
tions: resting-state and language using Destrieux parcellation;

Table 3. Optimal Identification Rates for All Eight Functional Magnetic Resonance Imaging

Conditions Using MMP1.0 Parcellation, and the Corresponding Values of the Optimal Scan Length,

Percentage of Maximum Available Frames, and the Optimal Regularization Magnitude (s*)

Condition REST EM GAM LAN MOT REL SOC WM

Optimal ID rate 0.98 0.63 0.81 0.92 0.76 0.75 0.83 0.88
Optimal scan length, min:sec 14:17 1:59 2:55 3:40 3:17 2:40 3:10 4:44
% of frames 100 100 100 100 100 100 100 100
s* 4.0 5.5 5.0 3.0 2.5 6.0 2.5 2.5

Table 2. Optimal Identification Rates for All Eight Functional Magnetic Resonance Imaging

Conditions Using Destrieux Parcellation, and the Corresponding Values of the Optimal Scan Length,

Percentage of Maximum Available Frames, and the Optimal Regularization Magnitude (s*)

Condition REST EM GAM LAN MOT REL SOC WM

Optimal ID rate 0.98 0.59 0.76 0.90 0.73 0.71 0.84 0.90
Optimal scan length, min:sec 13:48 1:59 2:55 3:36 3:17 2:40 3:10 4:44
% of frames 97 100 100 98 100 100 100 100
s* 0.2 1.9 1.3 0.5 0.2 1.8 0.5 0.1

ID, identification.
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FIG. 7. Generalizability: effect of regularization (s) on identification rates for REST2. Identification rates for the two
sessions (LR and RL) from REST2 (utilizing maximum available scanning length) with variable magnitudes of s, using
Destrieux (left; 164 ROIs) and MMP1.0 (right; 374 ROIs) parcellations. Filled circles indicate the mean identification
rate, whereas error bars indicate the standard error of the mean across samplings with replacement (error bars are small
enough that they are hidden behind the circles). Legend indicates the REST2 condition along with maximum available num-
ber of frames. Along each curve, the circle not filled indicates the optimal value of s, which maximizes the identification rate.
The insets in both plots are the scatter plots between REST1 and REST2 of the mean identification rates (across samplings)
for the entire range of s. Both x- and y-axes indicate identification rates and the dotted line is identity line. LR, left to right;
REST, resting-state; RL, right to left. Color images are available online.

FIG. 6. Effect of number of frames on identification rates using the entire scanning length. Identification rates for all eight
fMRI conditions (utilizing optimal regularization magnitude [s*]—see Table 1) with variable number of frames, using
Destrieux (left; 164 ROIs) and MMP1.0 (right; 374 ROIs) parcellations. Maximum scanning length was always maintained
for each condition by choosing alternate points from BOLD time series. For instance, 397 frames were obtained for resting-
state by choosing every third time point. Filled circles indicate the mean identification rate, whereas error bars indicate the
standard error of the mean across samplings with replacement (error bars are small enough that they are hidden behind the
dots). Legend indicates the eight fMRI conditions along with the maximum number of frames available. BOLD, blood
oxygenation level dependent. Color images are available online.
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Tables 2 and 3). Even in the two cases where it was not, the
optimal scanning length was marginally smaller than the en-
tire scanning length and the optimal identification rate was
approximately equal to the identification rate obtained with
maximum scanning length (within margin of error). Intui-
tively, we can say that the longer the scan acquired, the
more information we have about the condition and the sub-
ject, which results in higher identification rates.

Number of frames and TR length are not as influential
as scanning length

For all conditions, across the two parcellations, when the
scanning length was decreased, the identification rates drop-
ped, sometimes drastically (Figs. 4 and 5). Ostensibly, it
might seem that this does not hold for resting-state condition,
but it is worth noting that resting-state scan is a considerably
longer acquisition (14 min and 47 sec compared with second
longest, working memory, which is 4 min and 44 sec) than all
the tasks and the effect of shorter scanning length comes into
play when the reduced scanning length becomes compara-
ble to tasks (around 6� 7 min). The decrease in identification
rate with decreasing scanning length raises a natural ques-
tion: what would happen if scanning length is maintained
but the number of frames is reduced?

The answer is that identification rates are considerably less
sensitive to number of frames than the scanning length, when
the number of frames is not too small (Fig. 6). To achieve
fewer number of frames while maintain the scanning length,
we chose alternate time points, with varying gaps, which in-
troduced another variable into the mix: TR. For instance, by
choosing every fourth sample from a time series, we are ef-
fectively increasing the TR fourfold. So, another conclusion
that we could draw from this result is that identification rates
are considerably less sensitive to TR length than scanning
length. This effect has been observed before by Horien and
colleagues (2018) but using Pearson’s correlation coefficient
as a metric to compare FCs. This knowledge could be help-
ful in designing scanning protocols where often one has to
‘‘sacrifice’’ spatial resolution for temporal resolution or
vice versa. Knowing that as long as one has a long enough
scan, perhaps a relatively longer TR could be acceptable in
favor of improved spatial resolution, without any detrimental
effects to the FC fingerprint.

Regularization counteracts the effect of a coarser grain
parcellation on individual fingerprint

Using Pearson’s correlation as a similarity metric to
compare FCs, Finn and colleagues (2015) showed that a par-
cellation with more ROIs resulted in higher subject identifi-
cation rates than a parcellation with fewer ROIs. Venkatesh
and colleagues (2020) observed the same trend with both
geodesic distance and Pearson’s correlation-based dissimi-
larity. This suggested that finer parcellations lead to more
uniqueness or fingerprint, at least up to a certain resolution.
In this work, we found that when using a coarser resolution
parcellation, we can achieve similar identification rates
than a finer resolution parcellation when applying geodesic
distance with optimal regularization magnitude.

When computing FCs, an ROI time series is computed by
averaging voxel-level time series for all the voxels contained
within the ROI. One of the main reasons this is done is to in-

crease the signal-to-noise ratio of the time series under con-
sideration, as the voxel-level time series would be much
noisier than an averaged ROI time series. By choosing a
finer resolution parcellation, we chose smaller size ROIs
and hence compromise on the signal-to-noise ratio in the
time series in favor of spatial resolution, compared with a
coarse resolution parcellation, where an ROI time series
would be computed by averaging over a larger number of
voxels. Since by using geodesic distance with optimal regu-
larization, we can overcome the downside of coarse reso-
lution parcellation in terms of fingerprint, perhaps we can
favor a relatively coarser parcellation for an improved
signal-to-noise ratio while maintaining the individual
fingerprint.

Generalizability of the optimal regularization magnitude

Very small differences were observed in the optimal
identification rates and the optimal magnitudes of the regula-
rization parameter when different subsamples of the data
set were used for subject identification (Figs. 3–6). This
highlights that the results for optimal regularization in this
study are generalizable to other data sets, given that the
scans are acquired with the same or similar parameters. If
one is to change the acquisition parameters though, the opti-
mal regularization magnitudes might be different. Using the
two sessions from REST2 (not used in any of the former
analyses), we were also able to show that the optimal regula-
rization magnitudes and the corresponding identification
rates are generalizable to different sessions of the same sub-
jects, even when acquired on different days with the same pa-
rameters (Fig. 7). In addition, we observed that optimal
identification rates are maintained for the same amount of
regularization when the TR length is increased (to a certain
extent), and the number of frames is decreased while main-
taining the scanning length (Fig. 6). Overall, these findings
suggest a generalization of these results to a considerable
range of temporal resolution in the BOLD fMRI data.

Comparison with canonical metrics used to compare FCs

With all the canonical methods of comparing FCs (e.g.,
Pearson’s correlation coefficient, Euclidean distance), only
the elements in the upper or lower triangular part of the FC
are selected and vectorized. This means that regularization
has no effect on those metrics since the regularization mag-
nitude is added to the main diagonal, which is ignored by all
those metrics. It has already been shown by Venkatesh and
colleagues (2020) that geodesic distance outperforms those
metrics in uncovering individual fingerprint in FCs. They
achieved this using a fixed nonoptimal regularization magni-
tude (s = 1). Our results show that the combination of geode-
sic distance with an optimal regularization outperforms s = 1
identification rates and hence above-mentioned canonical
metrics by a considerable margin.

How to estimate the optimal regularization parameter
and the resulting geodesic distances in a specific study

We have observed that the optimal regularization that
leads to maximum identification rates is dependent on the
fMRI condition, brain parcellation, scanning length, and the
number of frames. There might be other aspects of the data
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that influence such optimal value as well, such as voxel size.
Hence, results suggest that when using geodesic distance to
compare FCs, the regularization parameter must be esti-
mated from the FC data of that study. Also, one should utilize
sampling techniques to estimate a mean or median magni-
tude of regularization, along with the corresponding error.
Once an appropriate regularization magnitude has been iden-
tified, one should regularize all FCs in the data set by that
amount and then use geodesic distance to compare FCs.
These steps have been tabulated for the benefit of the user
of this framework (Table 4). It is important to remark that
these resulting pairwise distances are better suited for estab-
lishing associations between functional connectivity and
cognition, behavior, and neurological diseases at the
individual level.

This process of estimating an optimal regularization from
the data themselves, and then applying it back to the same
data might seem biased, but we should emphasize that the
optimal regularization is estimated to maximize individual
fingerprint in the data and nothing else. It is not optimized
for any group differences or for any neuro/psychiatric or
behavioral score. The only desired output is maximal inter-
individual differentiability so that the desired effects could
be accurately captured at the individual level.

It might also seem desirable to have a constant value of
regularization (say 0.1 or 1) that is applicable to all data
sets, without any considerable negative effects. But as we
have observed, deviations from optimal regularization
magnitudes could have detrimental effects on the measured
individual fingerprint depending on a variety of factors.
Hence, it is always recommended to estimate an optimal reg-
ularization magnitude from the data themselves, especially
considering that it is extremely easy and computationally
efficient to estimate.

Limitations and future work

One limitation of the geodesic distance, whether applied to
regularized or unregularized FCs, is that it only provides a
single numeric distance estimate between FCs and hence
does not allow element-wise (or edgewise) analyses of the
FCs (i.e., analysis focused on a particular brain region or a
specific functional coupling between two brain regions).
Although this limitation can be addressed by projecting

FCs from the SPD manifold onto a tangent space of symmet-
ric matrices, which would be Euclidean and allow the use of
Euclidean algebra and calculus (Pervaiz et al., 2020; You and
Park, 2021). Future work should explore these projections
and how they interact with regularization magnitude.

One could also explore the effects of regularization on the
identification rates when the test and retest sessions belong to
different fMRI conditions (e.g., working memory vs. resting-
state), analogous to Finn et al. (2015) and Venkatesh et al.
(2020). To estimate the optimal amount of regularization
based on functional connectivity fingerprint, one could go
beyond test/retest of the same individual and assess identifi-
cation rates when the test and retest sessions belong to twin
pairs (monozygotic or dizygotic). Finally, we can compare
this straight forward main diagonal regularization with
other kinds of regularization techniques that include off diag-
onal elements or add a variable amount to the elements of the
main diagonal.

Conclusions

The use of the geodesic distance on full-rank or regular-
ized rank-deficient FCs has been shown to be a more princi-
pled and accurate method to compare FCs than canonical
methods, ultimately leading to improved subject fingerprint-
ing, as measured by identification rates. Here, we combine
geodesic distance with optimal regularization to uncover
brain connectivity fingerprints by means of an incremental
assessment of the magnitude of the regularization parameter.
We show that optimal regularization that maximizes subject
identification rates is highly data set-dependent—it depends
on the fMRI condition, on the brain parcellation used, scan-
ning length, and on the number of frames used to compute
the FCs.
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Table 4. A Step-by-Step Outline of How to Estimate and Apply an Optimal Regularization Magnitude (s*)

to an Functional Connectome Data set, Such That Individual Fingerprint Is Maximized

When Using Geodesic Distances to Compare Functional Connectomes

Step 1 Estimate test and retest FCs per subject from the fMRI data
Step 2 For a wide range of regularization magnitude (s):

a. Obtain a random sample of the FC data set without replacement*
b. Regularize FCs by that regularization magnitude (s)
c. Compute pairwise geodesic distances and obtain the identifiability matrix.
d. Estimate identification rate from the identifiability matrix
*Random samplings without replacement are performed to estimate mean behavior (and standard error) of

identification rate with respect to the regularization
Step 3 Identify the optimal regularization magnitude (s*), such that (mean) identification rate is maximized
Step 4 Regularize all FCs in the data set by the optimal regularization magnitude (s*)
Step 5 Compare the optimally regularized FCs by using geodesic distance
Step 6 (Optional) For every two subjects, average all four test/retest geodesic distances
Step 7 Use those geodesic distances to establish associations with cognitive/clinical outcomes

FC, functional connectome; fMRI, functional magnetic resonance imaging.
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School of Industrial Engineering

Purdue University
315 North Grant Street

West Lafayette, IN 47907-2050
USA

E-mail: jgonicor@purdue.edu

348 ABBAS ET AL.


