Skip to main content
. 2021 Jun 7;12:669841. doi: 10.3389/fgene.2021.669841

TABLE 4.

The accuracy, specificity, sensitivity, AUC, and AP score of different models at distinguishing Noonan syndrome from patients with several other genetic syndromes.

models Accuracy (mean ± SD) Specificity (mean ± SD) Sensitivity (mean ± SD) AUC (mean ± SD) AP score (mean ± SD)
DCNN-Arcface 0.8171 ± 0.0074 0.9477 ± 0.0116 0.7794 ± 0.0252 0.9274 ± 0.0062 0.9356 ± 0.0067
DCNN-CE 0.7848 ± 0.0205 0.7907 ± 0.0155 0.6960 ± 0.0207 0.8594 ± 0.0106 0.8739 ± 0.0108
SVM-linear 0.7048 ± 0.0190 0.6982 ± 0.019 0.7112 ± 0.0049 0.7627 ± 0.0161 0.7499 ± 0.0257
LR 0.7210 ± 0.0111 0.7273 ± 0.0407 0.7150 ± 0.0294 0.7694 ± 0.0102 0.7467 ± 0.0025

Values in bold indicate the optimal performance. SD, standard deviation.