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Abstract

Purpose of Review—This manuscript reviews the use of electronic medical record (EMR) data 

for HIV care and research along the HIV care continuum with a specific focus on machine 

learning methods and clinical informatics interventions.

Recent Findings—EMR-based clinical decision support tools and electronic alerts have been 

effectively utilized to improve HIV care continuum outcomes. Accurate EMR-based machine 

learning models have been developed to predict HIV diagnosis, retention in care, and viral 

suppression. Natural language processing (NLP) of clinical notes and data sharing between 

healthcare systems and public health agencies can enhance models for identifying people living 

with HIV who are undiagnosed or in need of relinkage to care. Challenges related to using these 

technologies include inconsistent EMR documentation, alert fatigue, and the potential for bias.

Summary—Clinical informatics and machine learning models are promising tools for improving 

HIV care continuum outcomes. Future research should focus on methods for combining EMR data 

with additional data sources (e.g., social media, geospatial data) and studying how to effectively 

implement predictive models for HIV care into clinical practice.
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Introduction

Electronic medical record (EMR) adoption has expanded rapidly in the USA in the past 

decade. As of 2017, 86% of office-based physicians and 96% of US hospitals had adopted 

advanced EMR systems [1]. Because EMRs are now utilized by the vast majority of HIV 

medical providers, electronic data captured in EMRs can greatly enhance understanding of 

HIV epidemiology. Recent advances in artificial intelligence and machine learning methods 
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allow for detection of complex relationships within EMR data. Beyond elucidating patterns 

in HIV care, EMRs can also be utilized to enact interventions for improving patient health. 

In providing care for patients, medical providers spend a significant amount of time 

interacting with the EMR. Clinical informatics tools embedded within the EMR can give 

relevant information to providers at the point of care. For example, clinical decision support 

tools can assist providers with identifying patients at risk for HIV or people living with HIV 

who are in need of relinkage to care. Machine learning algorithms utilizing EMR data can 

accurately predict potential future events, such as risk for virologic failure, and this 

information can be shown to providers to allow them to intervene to improve outcomes for 

patients in real time.

In this review, we discuss the use of EMR data for HIV-related care and research along the 

HIV care continuum. We specifically focus on the use of machine learning methods applied 

to EMR data as well as clinical informatics interventions to improve care continuum 

outcomes. We also discuss challenges in using EMR data and machine learning for HIV 

research as well as promising future directions for harnessing these technologies to enhance 

knowledge and improve quality of care for people living with HIV (PLWH).

HIV Diagnosis

To identify PLWH who are as of yet undiagnosed with HIV, EMR data have been utilized 

for targeted HIV testing programs. Ahlstrom et al. used machine learning algorithms to 

create models predicting HIV status within Danish EMR registries [2]. They found that 

models utilizing past medical history data within the EMR had higher accuracy for 

identifying undiagnosed PLWH than models only utilizing demographics and history of 

sexually transmitted infections. In addition to data documented within structured EMR fields 

(e.g., “past medical history,” “problem list,” medications, laboratory values), natural 

language processing (NLP) of unstructured text of clinical notes in the EMR may be able to 

detect nuanced risk factors for HIV acquisition. Indeed, Feller et al. found that an algorithm 

utilizing both structured fields and NLP of unstructured clinical notes to predict risk for HIV 

acquisition was more accurate than an algorithm using structured EMR data alone [3]. 

Machine learning models for identifying undiagnosed PLWH can be calibrated to different 

thresholds of sensitivity and specificity depending on a healthcare system’s resources for 

HIV testing.

Beyond targeted HIV screening, EMRs have also been used to facilitate universal HIV 

screening. To improve rates of HIV diagnosis among PLWH, the Centers for Disease 

Control and Prevention and United States Preventive Task Force recommend that all patients 

be screened for HIV [4, 5]. Despite these recommendations, HIV screening rates in 

healthcare settings remain low [6]. EMR-based clinical decision support (CDS) tools that 

prompt providers to order HIV screening have been successfully utilized to improve HIV 

screening rates in a variety of settings including primary care practices and emergency 

departments [7, 8]. For example, Lin et al. utilized an EMR-driven clinical decision support 

tool that linked HIV screening with other routine blood tests in the emergency department to 

increase monthly HIV screening from an average of 7 HIV screens per month to an average 

of 550 HIV screens per month [7].
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Retention in Care

In addition to aiding diagnosis of HIV among PLWH, EMR data have also been utilized to 

facilitate relinkage to care for PLWH not engaged in medical care. Ridgway et al. developed 

an EMR algorithm to identify PLWH not engaged in care who presented to the emergency 

department or were hospitalized [9]. The algorithm included laboratory data, billing 

diagnoses, past medical history, problem list, and medications. At their institution, an HIV 

care navigator utilized the EMR algorithm to identify PLWH in need of relinkage to care. In 

the first year of use, the algorithm facilitated relinkage of two-thirds of out-of-care patients. 

Other healthcare systems have used EMRs to coordinate supportive care services for PLWH 

and improve communication between case managers and other supportive service providers; 

this intervention was associated with significantly improved retention in care [10].

While the above examples highlight the use of EMR data for relinkage within individual 

healthcare systems, data sharing among different healthcare systems and/or with the public 

health department can provide further support for relinkage to care. One of the first 

examples of such a data sharing approach was the Louisiana Health Information Exchange 

(LaPHIE), a bi-directional data exchange platform that linked HIV surveillance data from 

the Louisiana Office of Public Health with patient-level EMR data from Louisiana State 

University Health Care Services Division (LSU HCSD) [11]. Public health surveillance data 

were used to identify PLWH out of care (i.e., no HIV viral load or CD4 count reported in the 

past 12 months). When patients accessed care at any LSU HCSD location, their name and 

demographics were matched with the out-of-care list. For out-of-care patients, a real-time 

EMR-based alert with clinical decision support was sent to the provider to prompt them to 

re-engage the patient in care.

More recently, public health departments have placed greater emphasis on data sharing as a 

strategy to improve relinkage to care through Data to Care initiatives [12, 13]. Through Data 

to Care, HIV care providers share their list of out-of-care patients with public health 

departments. Public health departments then match this “out-of-care” list with HIV 

surveillance data and send data back to HIV care providers regarding whether these patients 

are in care elsewhere. By forming this feedback loop, both public health departments and 

HIV care providers can improve the quality of their HIV surveillance and care data and 

target relinkage resources toward patients who are truly out of care, rather than those who 

have moved or transferred care [14].

Data to Care initiatives identify patients in need of relinkage after they have fallen out of 

care, but recent studies have focused on developing predictive models to identify PLWH at 

risk for retention in care failure before they disengage from care [15, 16]. Ramachandran et 

al. utilized EMR data combined with geospatial features and American Community Survey 

data to create a machine learning system to predict retention in care in an urban HIV clinic 

[15]. They compared the performance of various machine learning models including random 

forest models and logistic regression. Random forest is a machine learning method that 

combines the output from decision trees that are individually trained using sub-samples of 

data and features. The final prediction is made using the average of all tree predictions for 

regression models or using a majority vote for classification models. Ramachandran’s study 
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found that a random forest model had higher positive predictive value for flagging the top 

10% highest risk patients compared to a logistic regression model [15]. Predicting retention 

in care in PLWH can also be done using unstructured text. Oliwa et al. used NLP of clinical 

notes to create a retention in care prediction model among PLWH [17]. They found that 

certain phrases within texts of notes, such as “syphilis,” “K103N,” “substance abuse,” and 

“stigma” were predictive of future lack of retention in care. Such models could be 

implemented within an HIV care clinic to allow retention resources to be directed toward 

patients most at risk for retention failure.

Viral Suppression

PLWH who achieve viral suppression with antiretroviral therapy experience improved health 

outcomes and are no longer able to transmit HIV to others. Thus, several studies have used 

EMR data to identify risk factors for virologic failure and to develop viral suppression 

prediction models [18–21]. Robbins et al. developed and validated a 1-year virologic failure 

prediction model using EMR data [21]. They then converted their model into a clinical 

prediction rule that providers can utilize to understand risk factors for virologic failure. The 

clinical prediction rule includes variables such as prior viral load, CD4 count, ART regimen, 

drug and alcohol abuse, and missed visits [21]. A recent study by Semerdjian et al. utilized 

NLP of clinical notes to predict HIV outcomes including viral suppression [22]. They found 

that a model using NLP of clinical notes had higher performance than a model based on 

demographics (AUC 0.83 vs. 0.75). Words/phrases found to be predictive of viral 

suppression included “migraine,” “verruca,” and “negative anxiety.” Some of these NLP-

detected terms may not seem to have a clinical association with viral suppression; i.e., it is 

unclear why a patient with migraines would be more or less likely to be virally suppressed 

than a patient without migraines. However, it is important to note that NLP algorithms do 

not necessarily detect that a patient has a certain condition, but only documentation of the 

condition in the clinical notes. It may be that providers who perform a detailed medical 

history and take the time to discuss minor medical conditions such as migraines with their 

patients are more likely to provide ART adherence support and resources for patients to 

facilitate viral suppression.

In addition to identifying risk factors for virologic failure or predicting viral suppression, 

other studies have investigated how clinical informatics interventions can be implemented to 

improve rates of viral suppression. Puttkamer et al. developed a prediction model for viral 

suppression including predictors such as consistency of ART medication pickups as well as 

clinical and social factors [23]. They then calculated a risk score and classified patients 

based on risk for future treatment failure. They incorporated the risk score into a best 

practice alert within the EMR to inform providers of patients’ medication adherence and 

treatment failure risk. Providers received training for counseling at risk patients about 

medication adherence. The EMR alert and associated counseling were associated with a 

15% greater likelihood of achieving viral suppression for patients who received the 

intervention.

Several additional studies have used machine learning models to not only predict virologic 

failure but to also determine the optimal intervals at which viral load tests should be 
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collected [24–26]. Petersen et al. used the super learner machine learning algorithm with 

medication event monitoring systems (MEMS) data to develop a model of virologic failure 

[26]. The model was then used to predict the proportion of HIV viral load tests that could 

have been avoided based on the probability that they would have shown viral suppression. 

The study found that 25–31% of viral loads could have been avoided, allowing for savings 

of $16–$29 dollars per person-month.

Challenges in Utilizing EMR Data and Machine Learning for HIV Care

Inconsistent EMR Documentation

The development of reliable EMR algorithms depends on the presence of accurate 

information within the EMR. Unfortunately, EMRs often contain incorrect or missing 

documentation of factors relevant for HIV care. For example, despite recommendations from 

the National Academy of Medicine and the Joint Commission [27–29], many EMRs do not 

have a systematic way for documenting sexual orientation or gender identity. PLWH are 

disproportionately impacted by psychiatric illness compared to the general population. 

However, Brown et al. found that psychiatric illness and substance use disorder are under-

documented in structured fields in EMR records for PLWH [30].

One strategy to overcome EMR under-documentation is to utilize algorithms that 

incorporate multiple EMR fields for relevant conditions. For example, to identify patients 

with psychiatric illness, an algorithm could take into account diagnostic codes, 

documentation of mental illness in the problem list or past medical history, mental health 

screening results, prescription of psychiatric medications, or clinical encounters in the 

Psychiatry department. Moreover, use of natural language processing can detect factors 

present in clinical notes that are not documented in structured EMR fields. Ridgway et al. 

found that among patients with psychiatric illness or substance use disorder detected by NLP 

of clinical notes, only half had these behavioral health disorders documented in structured 

EMR fields [31].

Even something as foundational as identifying people who have tested positive for HIV may 

require multi-step algorithms due to incomplete EMR data. Paul et al. developed two EMR-

based algorithms that included HIV antibody test results, viral load test results, antiretroviral 

therapy prescriptions, and ICD-9 codes [32]. Their algorithms had high specificity of 99–

100% but lower sensitivity of 77–78% for accurately identifying PLWH within an EMR 

database. The most common reasons for the algorithms failing to identify PLWH were 

missing laboratory or medication data from the EMR and patients being diagnosed with HIV 

at an outside institution.

Barriers to Data Sharing

An additional challenge related to use of EMR data for HIV patient care and epidemiologic 

and clinical research is the lack of data sharing between healthcare systems. PLWH often 

receive care at different healthcare facilities and may have laboratory results and/or clinical 

notes in different healthcare systems’ EMRs that may not be linked. Healthcare data 
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fragmented in disparate EMR systems results in a lack of a complete clinical picture at any 

given healthcare site.

Data sharing among healthcare organizations requires significant resources such as 

informatics support for harmonizing data across different platforms. There are also data 

security considerations and protections that must be in place to support privacy and 

confidentiality of data, particularly related to HIV status which is highly sensitive health 

information. Permissions for data sharing may not be uniform across healthcare systems, 

and public health institutions may have policies against disclosing HIV data to clinical 

entities. Moreover, healthcare systems frequently update or change their EMR systems, and 

processes for data sharing must be continually maintained through these updates. Despite 

these challenges, several groups have formed data sharing platforms for HIV data, such as 

the LaPHIE HIV care system to improve retention in care that was previously mentioned 

[11]. Several EMR-based HIV research cohorts have also been developed with data from 

multiple HIV care sites. These include the Center for AIDS Research Center Network of 

Integrated Clinical Systems (CNICS) cohort and the DC cohort [33, 34]. Such cohorts 

require resources and commitment from all participating sites as well as continued funding 

to support ongoing collaboration. More support and incentives are needed to facilitate data 

sharing for PLWH to improve quality of data and ultimately quality of care for PLWH.

Challenges in Utilizing Clinical Decision Support Tools

Clinical decision support tools have the potential to improve care for PLWH by guiding 

providers regarding care for their patients. However, it can be challenging to build and 

implement these tools. Healthcare systems may have competing priorities and may prioritize 

other EMR tools over those for HIV care. Moreover, providers may not utilize the tools or 

respond to the alerts. “Alert fatigue” describes the phenomenon in which providers become 

desensitized to repeated alerts in the EMR, prompting them to override and ignore such 

alerts [35, 36]. In clinical practice, the majority of CDS alerts are overridden, thereby 

limiting their utility [37].

To successfully improve care, CDS tools must follow clinical informatics best practices (i.e., 

fitting into the provider’s workflow and minimizing extra “clicks”) [38]. Alerts that do not 

follow these best practices will likely fail to improve HIV care. For example, one institution 

found their EMR HIV screening alert to be ineffective because it prompted providers to 

enter documentation of patients’ verbal consent for HIV testing after providers had finished 

speaking with patients. Because this alert failed to fit into providers’ workflow, it was 

ignored over 99% of the time [39]. Similarly, important metrics for prediction such as 

number needed to screen, sensitivity, and positive predictive values must be reported by 

studies that build prediction models.

Potential for Bias in Machine Learning

Machine learning algorithms have enormous potential for improving HIV care but can also 

pose additional challenges. Although algorithms may avoid biases in diagnosis and 

treatment by objectively synthesizing and analyzing data, they can also perpetuate bias 
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among historically marginalized communities, many of whom are disproportionately 

affected by HIV [40]. Machine learning algorithms used for risk prediction can reflect 

human biases in decision-making and exhibit substantial racial or gender bias, inadvertently 

perpetuating or exacerbating health disparities [40–44]. Bias within machine learning in 

healthcare can exist in the design, data, and deployment of a model [43] and is usually 

associated with missing data and certain groups or individual patients not being identified by 

algorithms, sample size underestimation, and misclassification and measurement error [40]. 

For instance, machine learning models utilize historically collected data, meaning that 

vulnerable groups who have endured human and structural biases are subject to harm by 

either incorrect predictions or withholding of certain resources [43].

HIV disproportionately impacts Blacks/African Americans, who account for a higher 

proportion of new HIV diagnoses compared to people of other races/ethnicities and are most 

vulnerable to machine learning bias [45]. A study assessing algorithm performance for HIV 

risk prediction found that a majority of the machine learning models based on variables 

related to sexual orientation and STIs had lower sensitivity for Black patients than White 

patients [46]. This disparity could result from a lack of traditional HIV risk factors 

documented within the medical records of Black people due to factors such as stigma and 

medical mistrust [47] and structural racism within the healthcare system [48] that can impact 

the accuracy of the information within their medical records [49]. In addition to race, the 

study evaluated predictive performance by sex and found none of the algorithms used in 

their healthcare setting predicted HIV acquisition among women, further demonstrating bias 

inherent within their machine learning algorithms [46].

When machine learning algorithms are biased, they can further perpetuate inequalities. 

Machine learning algorithms for HIV care must be developed, implemented, and evaluated 

with principles of distributive justice [43]. The investigators who design machine learning 

algorithms must understand and address potential biases, such as structural racism, 

misogyny, and discrimination against sexual and gender minorities, and ensure algorithms 

will advance health equity and benefit all patients [50]. Strategies to address and overcome 

bias in machine learning include engaging various stakeholders in the design and 

implementation process, measuring algorithm performance across diverse groups, and 

monitoring patient outcomes [15, 43]. Properly designed and utilized machine learning 

could help to resolve disparities in healthcare, especially those related to the HIV epidemic, 

if algorithms remedy known biases and highlight areas for future research [42].

Future Directions and Innovations

While EMR data are a rich source of information regarding PLWH, they are limited in their 

ability to identify social and structural factors that impact HIV care. The vast majority of 

people’s lives are spent outside the healthcare system, and EMR data only offer a snapshot 

of factors that impact overall health. People generate enormous quantities of data outside of 

the EMR in their daily lives through social media, internet searches, geospatial tracking, etc. 

Future work should seek to supplement EMR data with these additional data sources.
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Research to date on the use of these additional data sources for HIV-related data has been 

promising. One study used machine learned methods to examine patterns in HIV risk 

behavior documented on Twitter and found that their models were able to identify HIV-

related Tweets with a mean accuracy of 85% [51]. Young et al. found that Facebook data 

including Facebook group affiliations and social network structures are associated with sex 

behaviors that may impact HIV transmission [52, 53]. Others have used internet search 

query data to predict locations of new HIV diagnoses in China [54, 55]. Use of social media 

data for HIV-related research poses unique ethical considerations given that social media 

companies may use or sell individuals’ personal data for profit. When social media data are 

combined with health data, extra precautions must be taken to ensure individuals’ privacy.

There has also been a recent recognition that geographic and neighborhood factors may 

influence HIV care continuum outcomes. At the individual level, geospatial analyses have 

shown that longer travel time to HIV clinic is associated with decreased retention in care 

[56]. Global Positioning System (GPS) technology can be utilized to understand mobility 

within neighborhoods and access to needed resources among people living with or 

vulnerable to HIV [57]. At the community level, geospatial analyses have shown that there 

exist geographic “hot spots” wherein PLWH are less likely to be retained in care or virally 

suppressed [58]. Community characteristics such as lower walkability scores and more 

vacant buildings have been associated with increased incidence of HIV infection [59]. 

Individuals’ addresses can be mapped onto community level data, including neighborhood 

and socioeconomic data from the American Community Survey, crime rates, rates of 

sexually transmitted infections, and other public health data to better understand factors 

associated with HIV care continuum outcomes among PLWH.

While there has been limited research to date combining these various data sources with 

EMR data for HIV care continuum research, several promising studies are underway. In 

South Carolina, one group is creating a database of PLWH linking surveillance data from the 

state health department with EMR data, crime and prison data from the Department of 

Corrections, mental health data, and socioeconomic data from American Community Survey 

[16]. They plan to use machine learning techniques to characterize and predict HIV care 

continuum outcomes using the database.

Recent research has moved from using EMR data and other sources for descriptive analytics, 

i.e., describing and understanding patterns in HIV epidemiology, toward predictive analytics, 

i.e., predicting which patients are most likely to experience poor HIV care continuum 

outcomes. More research is needed to understand the best ways to utilize these predictive 

models in practice. It is not known how these models can best fit into care teams’ workflows 

and how they can complement current tools and practices as well as providers’ own intuition 

regarding their patients’ likely outcomes. Implementation science methods should be 

utilized to guide their use. Research is also needed to understand the perspectives of PLWH 

regarding the use of their personal health data for predictive modeling, including concerns 

about privacy and bias.
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Conclusions

With the increase in utilization of EMRs and the application of machine learning methods, 

EMR data are a rich data source for expanding HIV-related knowledge. Predictive analytic 

techniques combined with clinical informatics offer the potential for medical providers to 

intervene in real time to improve HIV care continuum outcomes for at risk patients, from 

diagnosis to viral suppression. Working with EMR data does have challenges, including 

missing documentation, difficulty harmonizing data from different EMR systems, and 

privacy and confidentiality concerns. Moreover, machine learning methods can exacerbate 

disparities by perpetuating bias, and researchers must analyze and correct for potential bias 

in their models. Despite these challenges, research to date has highlighted the promise of 

these technologies. Promising future areas of research include incorporating HIV-related 

EMR data with other social and structural data sources, such as social media data, geospatial 

data, and public health data. More research is also needed to understand the best way to 

implement HIV-related predictive models into clinical care for PLWH to improve care across 

the HIV care continuum.
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