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Abstract

Background: Mortality modelling in the critical care paradigm traditionally uses logistic regression, despite the
availability of estimators commonly used in alternate disciplines. Little attention has been paid to covariate
endogeneity and the status of non-randomized treatment assignment. Using a large registry database, various
binary outcome modelling strategies and methods to account for covariate endogeneity were explored.

Methods: Patient mortality data was sourced from the Australian & New Zealand Intensive Society Adult Patient
Database for 2016. Hospital mortality was modelled using logistic, probit and linear probability (LPM) models with
intensive care (ICU) providers as fixed (FE) and random (RE) effects. Model comparison entailed indices of
discrimination and calibration, information criteria (AIC and BIC) and binned residual analysis. Suspect covariate and
ventilation treatment assignment endogeneity was identified by correlation between predictor variable and hospital
mortality error terms, using the Stata™ “eprobit” estimator. Marginal effects were used to demonstrate effect
estimate differences between probit and “eprobit” models.

Results: The cohort comprised 92,693 patients from 124 intensive care units (ICU) in calendar year 2016. Patients
mean age was 61.8 (SD 17.5) years, 41.6% were female and APACHE Il severity of illness score 54.5(25.6); 43.7%
were ventilated. Of the models considered in predicting hospital mortality, logistic regression (with or without ICU
FE) and RE logistic regression dominated, more so the latter using information criteria indices. The LPM suffered
from many predictions outside the unit [0,1] interval and both poor discrimination and calibration. Error terms of
hospital length of stay, an independent risk of death score and ventilation status were correlated with the mortality
error term. Marked differences in the ventilation mortality marginal effect was demonstrated between the probit
and the "eprobit" models which were scenario dependent. Endogeneity was not demonstrated for the APACHE Il
score.

Conclusions: Logistic regression accounting for provider effects was the preferred estimator for hospital mortality
modelling. Endogeneity of covariates and treatment variables may be identified using appropriate modelling, but
failure to do so yields problematic effect estimates.
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Background

Modelling mortality outcome has been a constant pre-
occupation within the critical care literature [1] both in
terms of predictive models such as the Acute Physiology
and Chronic Health Evaluation (APACHE) algorithms
[2, 3] and ground up exploratory studies of the impact
of covariates of interest [4]. The preferred model has
been logistic regression (or logit) [5], rather than probit
[6], consistent with the sentiments of Berkson, “Why I
prefer logits to probits”, expressed 70 years ago [7]. In
econometrics, the probit [8] and the linear probability
model (LPM) [9] have been extensively used for model-
ling binary outcomes and such models have occasionally
appeared in the biomedical literature [10].

Model validation has also differed between disciplines.
Within the biomedical and epidemiological literature ex-
tensive discussion has focused around concepts of dis-
crimination and calibration [11-13], whereas in
econometrics bias and parameter consistency have been
dominant [14-16], to the exclusion of model performance
issues such as goodness-of-fit [17], although some issues
intersect [18]. Econometrics has paid greater attention to
concepts such as endogeneity [19], self-selection [20] and
non-randomized treatment assignment [21], although
there has been a rapid increase in the biomedical literature
devoted to these issues, especially in epidemiology [22].
Previous attention [23] has been drawn to suspected
endogeneity in mortality models where length of stay [24]
or mortality probability [25] were entered as predictive co-
variates; such regression of a variable upon its compo-
nents has been termed a “dubious practice” [26].

The purpose of this study was to explore the perform-
ance of regression models, logistic, probit and the LPM
in predicting the hospital mortality risk of a large cohort
of critically ill intensive care patients whose data was re-
corded in the ANZICS (Australian and New Zealand In-
tensive Care Society) Adult Patient Data Base [27].
Machine learning approaches were not considered [28],
albeit there is debate as to what constitutes “machine
learning” [29, 30]. Performance of both fixed and ran-
dom effects models of logit and probit was compared
with particular attention directed to calibration [13].
The following issues were also canvassed; the potential
endogeneity of hospital length of stay (HLOS) and hos-
pital mortality probability (ROD) recorded in the data
base and derived from an independent published algo-
rithm [31], and the effect of mechanical ventilation
(MV) status (recorded as a binary variable) as an en-
dogenous treatment assignment.

Methods

Ethics statement

Access to the data was granted by the Australian and
New Zealand Intensive Care Society (ANZICS) Centre
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for Outcomes & Resource Evaluation (CORE) Manage-
ment Committee in accordance with standing protocols;
local hospital (The Queen Elizabeth Hospital) Ethics of
Research Committee waived the need for patient con-
sent to use their data in this study. The dataset was
anonymized before release to the authors by ANZICS
CORE custodians of the database. The dataset is the
property of the ANZICS CORE and contributing ICUs
and is not in the public domain. Access to the data by
researchers, submitting ICUs, jurisdictional funding bod-
ies and other interested parties is obtained under specific
conditions and upon written request (“ANZICS CORE
Data Access and Publication Policy.pdf”, http://www.
anzics.com.au/Downloads/ANZICS%20CORE%2
0Data%20Access%20and%20Publication%20Policy%2
0July%202017.pdf).

Data management

Data was accessed from the ANZICS Adult Patient
Database [27]; in this instance for calendar year 2016
and processed as previously described in detail [32].

Statistical analysis

Predictive models

To predict hospital mortality a base parsimonious logis-
tic model (Logitl) was developed with a core set of pre-
dictor variables and their interactions, similar to
previous papers utilizing data from the ANZICS Adult
Patient Database [23, 32]; no automated routine for co-
variate selection, such as stepwise regression, was used.
The covariate set was then supplemented by addition of
two covariates: log HLOS (in days) and log risk of death
(ROD) derived from a locally validated mortality algo-
rithm (Australian and New Zealand Risk of Death
model) [31] and model fit was further ascertained. All
continuous variables were centred to improve model
convergence. Using the same base covariate set and ad-
ditions, this process was repeated for the following
models:

1. Logistic regression with intensive care unit (ICU)
providers as fixed effects (FE), (Logit2)

2. A base probit regression (base: Probitl)

3. Probit regression with intensive care unit (ICU)
providers as FE (Probit2)

4. Random effects (RE) logit (Logit3) and probit
regression (Probit3) with patients nested within
ICU providers considered as RE; that is a random
intercept model.

a. The intra-class correlation (ICC), the correlation
between patients in ICU providers [33], was cal-
culated for the null model (unconditional) and
the full model (conditional) [34].
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5. A base LPM (LPM1), and with ICU providers as FE

(LPM2)

a. For the LPM, predictions were constrained
within [0,1] using the linear discriminate
function as suggested by Haggstrom [35, 36]:
the LPM was estimated by ordinary least
squares regression (OLS); the parameters were
transformed (multiplied by K= N/RSS, where N
is sample size, RSS is the residual sum of
squares and K is > > 1); predicted probabilities
were then generated using logistic regression
[37]. The user written Stata command
“reg2logit” [38] was utilised. Model indices were
provided for this model (“LPM_ldm”) and for
the vanilla linear regression model with
probabilities constrained to the [0,1] range
(“LPM [0,1]).

6. Where of interest, predicted mortality probabilities

were compared graphically using a limits of
agreement (LOA) method, whereby the mean
difference and the data were presented as paired
differences plotted against pair-wise means. The
user written Stata module “concord” was employed
[39].

Model performance was assessed thus:

1.

The traditional criteria of discrimination (receiver
operator characteristic curve area, AUC) and
calibration (Hosmer-Lemeshow (H-L) statistic).
Although the H-L statistic will invariably be signifi-
cant (P<0.1 and H-L statistic > 15.99) in the pres-
ence of large N and increments to the grouping
number (default = 10) of the H-L test have been
recommended [40], the default grouping number
was used.

a. Calibration plots (observed binary responses
versus predicted probabilities) were undertaken
using the user-written Stata module “calibra-
tionbelt” [41]. The relationship of predictions to
the true probabilities of the event was formu-
lated with a second logit regression model,
based upon a polynomial transformation of the
predictions, the degree of the polynomial (begin-
ning with second order) being forwardly se-
lected on the basis of a sequence of likelihood
ratio tests. The deviation of the calibration belt
from the line of identity is indicated by the re-
ported P value (< 0.05).

The potential for overfitting, or shrinkage statistics

(determined by in-sample and out-of-sample pre-

dictive bias and overfitting, expressed in percent-

ages) was undertaken using the user-written Stata
module “overfit” [18, 42]; that is, a focus on
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predictive calibration. Ten-fold cross-validation

with 500 repeated iterations were used.

a. Under conditions of non-applicability of the al-
gorithm, a more traditional approach was used;
development and validation model data sets
were generated and various indices were gener-
ated on each data set using the user-written
Stata module “pmcalplot” [43]: calibration-in-
the-large [44], calibration slope, C-statistic for
model discrimination and ratio of expected and
observed events.

3. Model residual analysis was undertaken using the
“binned residual” approach as recommended by
Gelman and Hill [45] and implemented in Stata by
Kasca [46]: the data was divided into categories
(bins) based upon the fitted values and the average
residual (observed minus expected value) versus the
average fitted value was plotted for each bin; the

boundary lines, computed as 21/p(1-p)/n where n
was the number of points per bin, indicated +2SE
bounds, within which one would expect about 95%
of the binned residuals to fall.

4. Model comparison was also undertaken by the
Akaike Information Criterion (AIC), with the
Bayesian Information Criterion (BIC) for non-
nested models; lower values being optimal [47].

5. In view of the burgeoning literature on coefficient
comparison between nested and non-nested non-
linear probability models [48—50], we undertook full
(X-Y) standardisation of logistic, probit and LPM
(for both the full sample “LPM (all N)” and LPM
[0,1]) coefficients using the “listcoef” Stata user-
written command [51, 52]. Graphical display of the
standardised coefficients utilised violin plots [53]:
box plots incorporating estimated kernel density in-
formation via the user-written Stata command “vio-
plot” [54].

6. The Stata™ command “margins” was used to frame
predictions under various scenarios [55, 56];
mortality effect over variables such as MV status
was generated with due note of the overlapping
95% CI conundrum that such overlapping does not
necessarily indicate lack of statistical difference [57,
58]. Although the analyses were performed using
Stata ™ statistical software, similar functionality is
provided in R statistical software [59].

Covariate endogeneity and selection bias

Endogeneity arises when there is a correlation between
an explanatory variable and the regression error term(s),
either in OLS (ordinary least squares) regression [60, 61]
or probit and logit [62]; the causes being omitted vari-
ables, simultaneity (contemporaneous or past) and
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measurement error [60]. The paradigmatic econometric
model is the Heckman selection model [63]. The conse-
quences of non-random assignment and (self) selection
bias, in terms effect estimate bias, have also been well
documented in the biomedical literature [64—66]. Pre-
dictor variable endogeneity and the impact of endogen-
ous treatment assignment were formally addressed
utilizing the Extended Regression (ERM; “eprobit”) mod-
ule of Stata™ statistical software [67]; in particular, the
demonstration of a significant correlation between the
error term of the variable in question and the error term
of the dependent variable, hospital mortality. The
method used by “eprobit” was to apply instrumental var-
iables (IV), [68, 69]) which predict the endogenous vari-
able(s) and have an outcome (mortality) effect via these
endogenous variables [70], with robust standard errors
(“vce (robust”) as recommended [71]. A third (unverifi-
able) assumption is that the IV-outcome association is
unconfounded [72]. Using a potential outcomes sce-
nario, the ventilation average treatment effect (ATE) and
the average treatment effect of the treated (ATET, the
mortality of those ventilated as opposed to the counter-
factual mortality of these ventilated patients considered
to be not ventilated) were estimated. Again, the “mar-
gins” command, suitably specified for “eprobit”, was used
to estimate various scenarios on the probability scale; in
particular, comparisons were “fixed” such that for en-
dogenous treatment assignment patients were compared
assuming all were ventilated and then all were not-
ventilated (a counter-factual scenario). The variance-
covariance matrix was specified as “unconditional” [73];
that is, via the linearization method, non-fixed covariates
were treated in a way that accounted for their having
been sampled, allowing for heteroskedasticity or other
violations of distributional assumptions and for correl-
ation among the observations in the same manner as vce
(robust).

Stata™ Version 16.1 was used for all analyses and stat-
istical significance was ascribed at P < 0.05. For continu-
ous variables, results are presented as mean (SD) unless
otherwise indicated.

Results
Cohort description
The cohort comprised 92,693 patients from 124 inten-
sive care units (ICU) in calendar year 2016; 17% of ICUs
were metropolitan (non-tertiary), 32.5% in private, 6.5%
rural / regional and 44% were tertiary, as defined in the
ANZICS-APD data dictionary [74]. Patient mean age
was 61.8 (SD 17.5) years, 41.6%.

were female and APACHE III score 54.5(SD 25.6);
43.7% were ventilated. ICU length of stay was 3.1(SD
4.5) days and HLOS was 11.8(SD 13.0) days. ICU and
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hospital mortality were 6.45% (95%CI: 6.30, 6.61) and
8.82% (95%CI: 8.64, 9.00) respectively.

Model performance: logit, probit and LPM

For the base logit (Additional file 1), probit and LPM_
ldm models, the number of parameters at 110 was large
but the shrinkage and overfitting indices did not indicate
problematic overfitting (Table 1).

Similarly, the use of ICU providers as FE substantially
increased the number of parameters but again there was
no evidence of overfitting, although the specification of
the FE logit model (Logit2) dominated the FE probit
(Probit2). The “overid” module was not applicable to the
RE models and a more conventional development / val-
idation data set approach was undertaken; the RE logit
model had superior performance, at least by information
criteria (BIC). The unconditional ICC in the RE logit
model was 0.201 indicating a modest patient correlation
within ICUs; not surprisingly, the conditional ICC de-
creased to 0.018. Patient number for the LPM [0,1]
model it was 68,264 as the generated probabilities were <
0 in 24,179 (35.4%) and > 1 in 250 (0.4%). There was lit-
tle difference in the pattern of the residual graphs be-
tween the eight models, except for the vanilla probit
model where there was more asymmetry about the null
(zero) line as seen in Fig. 1.

Despite having a satisfactory discrimination (AUC:
0.884), the LPM [0,1] model demonstrated poor calibra-
tion as displayed by the lack of fit in the residual analysis
(Fig. 1). The predicted probabilities of the vanilla logistic
and LPM_ldm models were of some interest and were il-
lustrated using a LOA graph (Fig. 2); the differences
were exceptionally small, although in opposite directions
for vanilla models versus those with ICU provider FE.

Model effect of potentially endogenous covariates

As consideration was also given (see below) to the im-
pact of two potentially endogenous covariates (HLOS
and a ROD score), both in log form, a summary of the
effect of the addition of these two covariates upon model
performance for logit (Logitl, Logit2 and Logit3) is pre-
sented in Table 2 and Fig. 3.

Small increments in the AUC and decrements in both
AIC and BIC were seen for all logit models compared
with the base models (Table 2). There was, however,
substantial loss of model calibration and disturbances in
residual distribution, more so for the addition to the
base model of HLOS than for ROD.

Model coefficients

For the models Logitl, Probitl, LPM (all N) and LPMO,
using robust SE [71], the fully standardised  coefficients
are seen in Fig. 4. The LPM_ldm model (LPM1) was not
used as the P coefficients were transformed.
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There was moderate conformity between the density dis-
tribution of the four models, but this belied a quantitative
comparison using simple regression of the scalar values of
the full (X-Y) standardised B coefficients (n = 100) with lo-
gistic as the comparator (Table 3).

There was a sizeable overall difference between the
average scalar f model coefficients. Of interest, the num-
ber of model significant coefficients was 50 in the logit,
55 in the probit, 63 in the LPM (all N) and 69 in the
LPMO.
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Table 2 Model performance for logit with addition of log HLOS and ROD (NC: not computed)
Model title Logit1: Inday Logit1: Inrod Logit2: Inday Logit2: Inrod Logit3:Inday Logit3:Inrod
Index
ROC AUC 0.921 0.934 0.923 0.936 0917 0.935
H-L statistic; P-value 0.000 0.060 0.000 0013 0.000 0.054
Out-of-sample shrinkage % 0.940 0.020 —-1.370 0.750
In-sample-shrinkage % 0.380 —0.500 —2.350 —0.380
Overfitting % 0.560 0.510 0.960 1.120
Calibration belt: P-value 0.000 NC 0.000 0.000 0.000 0.000
AIC 31,306.41 30,574.13 31,077.06 30,492.24 31,148.98 30,523.52
BIC 3224211 3148952 33,039.96 32,/455.96 32,073.81 3144836
Development set
CITL 0.005 0017
C-slope 1.005 1.004
AUC 0923 0.935
E:O ratio 0.997 0.998
Validation set
CITL 0.005 0.017
C-slope 1.005 1.004
AUC 0923 0.935
E:O ratio 0.997 0.990
P
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Fig. 3 Binned residual graphs for logistic models with added variables (log) HLOS and ROD
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Endogeneity and non-random assignment

APACHE III severity of illness score As the APACHE
III score [2] was a key variable measuring patient se-
verity of illness, the status of this variable with re-
spect to endogeneity was tested using age, hospital
level (4 level categorical variable) and APACHE III
diagnosis (categorical variable denoting 28 collapsed
APACHE III diagnostic codes; see Additional file 1)
as IV. There was no evidence for endogeneity; error
correlation of APACHE III score v mortality outcome:
0.000(- 1.000, 1.000, p = 1.0000).

Endogenous covariates

Models with both risk of death and HLOS as endogen-
ous variables failed to converge and the use of ICU pro-
viders as instruments failed to yield marginal estimates
after 36 h of computation. The attempt to estimate the
MV effect over the span of HLOS and risk of death
using margins was also unsuccessful due a nonsymmet-
ric or highly singular matrix. For log HLOS and log
ROD as endogenous variables, and MV status as an en-
dogenous treatment assignment, the best model by

Table 3 Standardised {3 coefficients, logit versus probit and LPM

Logit B P-value 95%Cl: lower 95%(Cl: upper
Probit 1.204 0.000 1.186 1.221

LPM: all N 0.028 0.536 —0.061 0.116

LPM: [0,1] -0.301 0.000 —-0.400 -0.202

information criteria used the APACHE III score, hospital
level, APACHE III diagnostic categories and annual pa-
tient volume (as deciles) as IV, with a substantial reduc-
tion (up to 13%) of both AIC and BIC compared with
models using a lesser number of IV.

There was a significant correlation between the error
terms of the dependent variable (hospital mortality) and
both ventilation status and log HLOS, and between ven-
tilation status and log HLOS, as seen in Table 4. The
ATE and ATET were 5.38% (95%CI: 1.33, 9.44) and
4.55% (95%CI: 0.98, 8.13) respectively. For a comparable
probit model with log HLOS added as an extra covariate
(using the “margins” command), the ventilation mortal-
ity effect was 0.48 (95%Cl: 0.10, 0.85).

Mechanical ventilation effect

Log HLOS The mortality MV effect over the span of
the APACHE III score is shown in Fig. 5 with the log
HLOS modelled as an endogenous variable; the com-
parator is the probit model with log HLOS as an added
covariate to the base model. There is an apparent mor-
tality increment across high APACHE III scores for non-
ventilation in the probit model, but this is reversed in
the "eprobit" model.

The ventilation mortality contrast (absolute differ-
ence, MV versus non-ventilated, y-axis: + about the
null difference of 0) for both models is seen in Fig. 6
and exhibits model differences with greater clarity.
The mortality increment across high APACHE III
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Table 4 Correlation of model error terms “.e” for mortality, ventilation and HLOS

Correlation Estimate Robust SE z-value p-value 95%Cl_lower 95%Cl_upper
Ventilation.e vs mortality.e —-0.248 0.085 -293 0.003 -0.405 -0.076

Log HLOS.e vs mortality.e -0.315 0.007 —45.50 0.000 -0328 —0.301

Log HLOS.e vs ventilation.e 0.119 0.005 24.56 0.000 0.109 0.128

scores (range 105-175) for non-ventilation in the pro-
bit model reached statistical significance but was
quite small. The mortality contrast in the eprobit
model was substantial across almost the entire range
of APACHE III scores 5-175.

Log ROD For the log risk of death score modelled as an
endogenous variable there was significant correlation be-
tween the error terms of the dependent model variable
(hospital mortality) and both MV status and log risk of
death, and between MV status and log risk of death, as
seen in Table 5. The ATE and ATET were 3.07%
(95%CI: - 0.28, 6.43) and 2.95% (95%CI: - 0.35, 6.24) re-
spectively. For a comparable probit model with log risk
of death score added as an extra covariate (using the
“margins” command), the MV mortality effect was -
0.58% (95%CI: - 0.93, - 0.23).

The mortality MV effect of the above ERM model is
shown in Fig. 7 with the log risk of death modelled as an
endogenous variable; the comparator is a probit model
with log risk of death as an added covariate to the base
model. There was an apparent differential mortality

increment for non-ventilation versus MV in the probit
model at an APACHE III score of 85, but this reversal was
not apparent in the eprobit model. The overall mortality
effect of the added variable log risk of death in the probit
model was quite modest compared with that of log HLOS.

The MV mortality contrast (MV versus non-
ventilated) for both models is seen in Fig. 8, and again
demonstrated the difference with more transparency.
For the probit model there was a small mortality incre-
ment for non-ventilation across APACHE III score 75—
195, but this was not reflected in the eprobit model
where a marked ventilation mortality increment oc-
curred across APACHE III scores 85-195.

For the "eprobi't graphic displays, 95%CI span was
greater than that of the probit.

Discussion

Of the eight models considered in predicting hospital
mortality, logit regression (with or without ICU pro-
viders as FE) and RE logit dominated, more so using in-
formation criteria indices, in accordance with a recent
extensive simulation study [75]. The LPM suffered from

Mortality probability

APACHE lIl score

Fig. 5 Mortality MV effect over the span of the APACHE Il score with the log HLOS modelled as an endogenous variable for probit model on left,
"eprobit" (HLOS endogenous) on right. MV effect as black triangles circles and non-ventilation as solid black circles with 95%Cl
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many predictions outside the unit interval, but the
LPM_ldm model demonstrated, perhaps not surpris-
ingly, a performance similar to that of the logit model.
HLOS and the ROD score were demonstrated to be en-
dogenous variables and patient ventilation status as an
endogenous treatment assignment variable. Marked dif-
ferences in the MV mortality effect was demonstrated
between the vanilla probit and the eprobit models which
were scenario dependent. These findings are further
discussed.

Logistic regression as the preferred estimator

In biomedicine binary data analysis invariably pro-
ceeds using logistic regression in its various forms.
Vach notes that “... probit regression and logistic re-
gression give very similar results with respect to the
order of the magnitude of the effect estimates” [76];
that is, the familiar scalar multiplier: /;’Logitzl.6/3’1,mbit
[77]. This belies the demonstrated differences in the
fully standardised (X-Y) coefficients of the logistic and
probit models in the current study. That the OR is
difficult to interpret and is mis-conceived as a RR
[78] has become a mantra. However, the

interpretation of the probit coefficient is not immedi-
ately apparent, being the difference in Z score associ-
ated with each one-unit difference in the predictor
variable. More generally, it must be noted that the
three popular indices of risk, OR, RR and risk differ-
ence (RD), are neither related monotonically nor are
interchangeable and the “... results based upon one
index are generally not translatable into any of the
others” [79]. A substantial literature in the social sci-
ences has addressed the problem of coefficient com-
parison across groups in non-linear probability
models, probit and logit, on the basis of unobserved
heterogeneity, beginning with the seminal 1999 paper
of Allison [80]. We do not pursue this theme [81]
further, rather, submit that coefficilent non-
concordance is a function of the well described non-
collapsibility of both odds ratios and probit regression
coefficients [56, 82] and may be suitably resolved
using marginal effects, including effect derivatives, on
the probability scale [16, 83]: “... the output from
non-linear models must be converted into marginal
effects to be useful. Marginal effects are the (average)
changes in the CEF [conditional expectation function:
the expectation, or population average, of Y;

Table 5 Correlation of model error terms “.e” for mortality, ventilation and ROD

Correlation Estimate Robust SE z p-value 95%ClI_lower 95%Cl_upper
Ventilation.e vs mortality.e -0.235 0.089 —2.640 0.008 -0.399 —0.055

Log ROD.e vs mortality.e 0471 0.008 58.29 0.000 0455 0486

Log ROD.e vs ventilation.e -0.052 0.005 -10.35 0.000 -0.062 -0.042
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(dependent variable) with X; (covariate vector) held
fixed] implied by a non-linear model. Without mar-
ginal effects, it’s hard to talk about the impact on ob-
served dependent variables” [84].

Most models achieved an AUC of >0.9 with between
model AUC differences being small; the lack of import

of such small AUC differences has been canvassed [85].
The primacy of AUC [86] in model assessment, as in
machine learning, would appear to be misplaced [87]
and calibration indices should be fully incorporated into
analysis [88]. Certainly, the graphic residual analysis pro-
vided an extra dimension in revealing the effect on
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model goodness-of-fit with the addition of the two sus-
pect (see below) endogenous predictor variables, HLOS
and ROD score (Table 1 and Fig. 2). The stability of the
logit and probit FE estimation, with 123 extra parame-
ters (Table 2 and Fig. 1), was reassuring. There has been
considerable debate in both the econometric and statis-
tical literature regarding performance (consistency) of
the maximum likelihood estimator in the presence of
FE, particularly large group numbers; the “incidental pa-
rameters problem” [89]; such concerns may be more ap-
parent than real [90-93].

The choice between vanilla logistic regression (Logitl)
and logistic regression with fixed site effects (or dummies
[94], Logit 2) and random effects (Logit 3), would appear
to depend upon purpose [95]. Transportable models, such
as APACHE III [2] and the Australian and New Zealand
Risk of Death model [31], eschew site fixed effects for lo-
gical reasons. The RE model is “sensible for modelling
hierarchical data” [96], perhaps de rigeur, and with large
data sets the computational demands of implementing,
say, adaptive Gauss-Hermite quadrature, can be reason-
ably overcome by parallelisation, available in Stata™ The
RE constraint of independence of provider effect (the ran-
dom effects) from risk factors is often assumed, but it is
plausible that such a correlation may “commonly occur”
with consequent estimation bias [97]. Such constraint is
not shared by high dimensional logistic FE models, which
may have advantage [96], not the least of which is ac-
counting for unobserved heterogeneity and, within the do-
main of profiling analysis, a smaller error for “exceptional”
providers [96, 97]. Such conclusion was endorsed by
Roessler et al. [98], who also noted the “sparse literature
on fixed effects approaches”. Correlated RE models, for in-
stance the Mundlak approach, are estimable for binary
outcomes within the generalised linear mixed model
framework (GLMM), as in the user-written Stata com-
mand “xthybrid” [99] and has been used in hospital out-
come analysis [100]. Based upon our findings (Table 2 and
Fig. 1), a probit RE model (Probit 3) had no advantage
over the logit RE (Logit 3) and the inherent complexities
of probit coefficient interpretation would not recommend
it, albeit marginal effects on the probability scale are trans-
parent. Moreover, the explained variance (McKelvey &
Zavoina [101]) of the two RE models favoured the logit (

R0t = 0.62 (logit) versus 0.52 (probit)), where R%, .

2
g . . . . .
= e 0% is the linear predictor variance, 73 is the
F 0 R
intercept variance and ¢% is the level one residual variance

(fixed at 77%/3 = 3.29 for the logit and 1 for the probit).

With respect to the profiling paradigm, which was not
formally addressed, the contemporary choice between
so-called “caterpillar plots” of provider effect estimates
(plus 95% CI) [100] and funnel plots [102] would appear
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to have favoured the latter. The confidence intervals of
the caterpillar plot “... are appropriate for testing single
hypotheses ... They are not appropriate for drawing in-
ference about whether a given hospital’s performance is
different from a set of their peers’ performances” [100].
This belies the difference between marginal and simul-
taneous confidence sets for ranks, whereby simultaneous
confidence sets are robust to the latter inferential com-
parisons [103]. Such confidence sets for ranks have been
implemented as “csranks” in both the Stata and R statis-
tical environments.

The use of the LPM for binary data has generated con-
troversy in the social science and econometric literature,
but not in the biomedical; perhaps not surprisingly.
However, these issues are addressed here. Firstly, a dis-
tinction must be made between the LPM as a preferred
model versus its use as an alternative to logistic regres-
sion because of OR interpretational differences [104,
105]. We have alluded to this problem above, but it is
disconcerting to find in a recent paper that the authors
[104], whilst sympathetic to the average marginal effect
(AME) as satisfying the criteria of comparability across
both models and studies, quote the paper of Mood [56],
published in 2010, to the effect that “deriving AME from
logistic regression is just a complicated detour”. They
conclude that “... we explore this procedure no further
given its similarity to OLS results and the need for
special-purpose routines to no notable advantage” and
proceed to offer the LPM and a Poisson working model
to compute risk differences and risk ratios, respectively.
This ignores the fact that both risk differences and risk
RR are collapsible metrics, as opposed to OR and probit
coefficients. In Stata™, the “margins” command, intro-
duced in Version 11 (July 2009), is a seamlessly inte-
grated post-estimation tool, albeit it has undergone
relevant computational revisions [16].

The question of bias and inconsistency of LPM esti-
mates is somewhat moot: Horace and Oaxaca [14] ar-
gued from a theoretical perspective that the LPM was an
inconsistent and biased estimator; simulation studies
[49, 104, 105] suggest that LPM coefficient estimates
were similar in magnitude and significance to that of lo-
gistic and probit regression but may be sensitive to con-
tinuous covariate distributional shape [106]. In finite
examples, as in this study, such similarity was not fully
achieved despite using robust standard errors to correct
for LPM heteroscedasticity [49]; see Results. Model
choice is properly determined by analytic purpose [9]. If
outcome probability generation constrained to the unit
interval is of importance, for instance the calculation of
provider standardised mortality ratios, then the LPM
cannot be endorsed, despite recommendations for pre-
diction truncation, which may dramatically reduce study
number, 26% in our data set, and converting continuous
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variables to factor levels [9, 48, 49, 54, 105]. The utility
of a command such as “re2logit” for the purpose of gen-
erating probabilities from a LPM consonant with that of
logit appears unclear. The method assumes multivariate
normality which would not appear to be a fatal weakness
[107, 108] and although complete or quasi-complete
separation may occur with logistic regression [109, 110]
and not with LPM, it was not observed in the current
large N study [111]. Separation in logistic regression has
been addressed from within the Social and Political Sci-
ence domains in terms of advocacy for the LPM [94,
112] based upon estimation bias due to data omission.
Under conditions of sparse data and separation alternate
estimators are currently available, such as Firth’s pena-
lised logit and the Mundlak correlated RE formulation
which do not incur the prediction penalty of the LPM
[94, 113-115]. There may be domain specific preference
for the LPM: “... while a non-linear model may fit the

Table 6 Model performance indices, vanilla probit vs “eprobit”

CEF for LDVs [limited dependent variables; in this case,
binary] more closely than a linear model, when it comes
to marginal effects, this probably matters little” [84].
Where probability generation is required, “reg2logit”
provides a useful addendum [37].

Endogeneity

Endogeneity, as opposed to exogeneity, is conventionally
ascribed to an explanatory variable (x), if the stochastic
error (¢) in modelling the dependent variable (y) is not
independent of x; that is, if E(e| x) =0, then E(y| x, ¢) =
E(y| x) [116]. The causes of endogeneity include omitted
variables [63], measurement error, simultaneity (current
or past), autocorrelated errors and sample selection [17];
the end result being biased and inconsistent estimates
[70]. Endogeneity may occur in the presence [117] or ab-
sence of unobserved heterogeneity [118] and is to be dis-
tinguished from confounding; endogeneity articulated as

Model Probit:InHLOS Probit: InROD eProbit:InHLOS eProbit: INROD
Index

ROC AUC 0.921 0.934 0.923 0.930

H-L statistic; P-value 0.000 0.000 0.000 0.013

Calibration belt: P-value 0.000 0.000 0.001 0.001

CITL -0.017 -0.008 —-0.050 0.059

C-slope 1.014 1.004 1.096 0911

AUC 0.920 0934 0917 0913

E:O ratio 1.010 1.004 1.033 0.967
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Table 7 Main effects parameter coefficients (dy/dx) for probit and eprobit

Probit eProbit
dy/dx  P-value 95% Cl (lower) 95% ClI dy/dx P-value 95% ClI (lower) 95% ClI
(upper) (upper)
Age_centered 00001 05810  —0.0002 0.0004 00001 03890  —0.0002 0.0004
APIIl score_centered 00002 01570  —0.0001 0.0004 00022 00000  0.0020 0.0025
Gender
Female 0.0000 0.0000
Male 0.0001 09700  —0.0029 0.0030 00000 09810 —0.0026 0.0026
AP Il diagnostic codes
Cardiovascular_medical 0.0000 0.0000
Respiratory medical -00056 00330 -0.0107 —0.0005 00038 04040 —0.0052 0.0128
Liver_GIS_medical -0.0025 05190 -0.0100 0.0050 -00166 00120 -0.029 -0.0036
CNS_medical 0.0123  0.0000  0.0063 0.0183 -0.0030 06480 -0.0158 0.0098
Sepsis —-0.0103 00000 —-0.0156 —0.0050 -00128 01330 —0.029 0.0039
Trauma 0.0050 02280  -0.0031 0.0132 -0.0213 00180 -0.0388 -0.0037
Metabolic Hormonal 0.0006 09110 -0.0107 0.0120 -0.1066 0.0000 —-0.1178 —0.0955
Haematologic -00065 04590 —0.0237 0.0107 00352 02230 -0.0214 0.0918
Renal_GUS -0.0244 0.0000  -0.0349 -0.0140 —-0.0839 00000 —0.0975 -0.0702
Other medical disorders 00142 03020 -0.0128 0.0413 -0.0472 00070 —0.0815 -0.0130
Musculoskeletal / Skin —-0.0074 05730  —0.0329 0.0182 —0.0583 00000 —0.0879 -0.0287
Cardio-Vascular surgery -0.0006 09070 -0.0103 0.0091 -0.0710 0.0000 -0.0875 —-0.0545
Thoracic surgery 0.0264 00070  0.0071 0.0457 —0.0536 00000 —0.0742 -0.0329
GIS surgery —-0.0015 06730  —0.0085 0.0055 —0.0481 00000 —-0.0615 —0.0346
CNS surgery 0.0141 00150  0.0027 0.0254 0.0168 0.1070  -0.0036 0.0373
Traumatic/Orthopaedic surgery 0.0004 09470 -0.0107 0.0114 —0.0475 00000 —0.0664 -0.0286
Renal_GUS surgery -0.0176 0.1000  —0.0387 0.0034 —0.0998 00000 —0.1148 —0.0848
Gynaecological 0.0834 0.0540 -0.0014 0.1681 -0.1142 00000  —-0.1380 -0.0904
Musculoskeletal / Skin Surgery 0.0004 09530 -0.0138 0.0147 -0.0672 00000 -0.0814 —-0.0530
Metabolic Surgery 00427 02800 —0.0348 0.1201 —0.0854 00000 —0.1286 —-0.0421
Cardiovascular surgery elective -0.0073 0.1330 -0.0168 0.0022 -0.11779 00000  —0.1302 -0.1056
Thoracic surgery elective -0.0074 05570 -0.0320 0.0172 -0.0839 00000 -0.1056 -0.0622
GIS surgery elective -00179 00040  —0.0300 —-0.0059 —0.0885 00000 —0.0998 —-0.0771
CNS surgery elective 0.0227  0.0980  —-0.0042 0.0496 -0.0685 00000 -0.0916 -0.0453
Traumatic/Orthopaedic surgery el —0.0345 0.1880  —0.0857 0.0168 -0.0946 00000 —-0.1302 —0.0591
Renal_GUS surgery elective 00220 02250 -0.0135 0.0575 -0.0972 00000 -0.1185 —-0.0760
Gynaecological surgery elective -0.0491 0.1040 -0.1084 0.0101 -0.1264 00000 -0.1414 -0.1114
Musculoskeletal / Skin Surgery el —0.0058 05760  —0.0262 0.0146 —0.0982 0.0000 -0.1151 -0.0813
Annual volume_deciles
Base 0.0000 0.0000

2 00016 06740  -0.0058 0.0090 00010 07740  -0.0058 0.0077
3 00092 00180 0.0016 0.0167 00064 00690  —0.0005 0.0134
4 00017 07270  -0.0080 00114 00085  0.1110  -0.0020 0.0190
5 —0.0008 0.8430  —0.0090 0.0074 00023 05740  -0.0057 0.0104
6 00047 02750  -0.0038 0.0133 00050 02680  —0.0038 0.0138
7 00032 04300 —0.0048 0.0112 00129  0.0040  0.0042 0.0217
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Table 7 Main effects parameter coefficients (dy/dx) for probit and eprobit (Continued)

Probit eProbit
dy/dx  P-value 95% Cl (lower) 95% ClI dy/dx P-value 95% ClI (lower) 95% ClI
(upper) (upper)
8 00020 06310 —0.0063 0.0104 00066  0.1300  —0.0020 0.0152
9 —-00030 05860 —0.0139 0.0078 —0.0042 04180 -0.0145 0.0060
10 -0.0047 02280 -0.0125 0.0030 -0.0022 06290 -00112 0.0068
Hospital classification
Metropolitan 0.0000 0.0000
Private 0.0145  0.0000  0.0089 0.0201 0.0124 0.0000  0.0071 0.0178
Rural / Regional 0.0034 02420 -0.0023 0.0092 0.0062 0.0260  0.0007 0.0117
Tertiary 00164 00000 00120 0.0209 00117 00010  0.0049 0.0184
Ventilation status
Not-ventilated 0.0000 0.0000
Ventilated —-0.0058 00010  —0.0093 —-0.0023 00309 00710 -0.0026 0.0645

“confounding by indication” would appear to be a
contradiction [119]. Large sample size (‘big data”) does
not limit the consequences of endogeneity [120, 121]. In
the current analysis, where some of the effect of the
error term(s) was attributed to the explanatory variable,
the optimal course of action would be to “purge” the
model of the correlation between the explanatory vari-
able and the error term [19]; to wit, the use of the “epro-
bit” estimator.

Variables may be conceived by the analyst as endogen-
ous, but it is not evident that in biomedical observational
data analysis that particular attention has focused on the
modelling consequences [120, 122]. The adverse effect
of mechanical ventilation per se has been incorporated
seamlessly into mortality prediction models without ad-
justment for patient selection; that is, a non-random
physician treatment decision. The use of mortality prob-
ability as an independent variable in mortality prediction
would appear to qualify as the regression of a variable
upon its components [26]. Prolonged hospital length of
stay is conventionally associated with mortality incre-
ment but displays a recursive effect or (current) simul-
taneity. With a large data set, it may not be obvious why
the inclusion of one of the two endogenous covariates
(HLOS or ROD score) should produce substantial loss
of model calibration and disturbances in residual distri-
bution; this may be a signal of an over-parameterised
model and / or covariate endogeneity. We previously
[123] demonstrated endogeneity of duration of mechan-
ical ventilation in the critically ill ([123], Supplementary
Appendix, figure E3) and performance of a tracheostomy
as a non-random treatment variable, giving support to
the notion that in the critical care domain, the effect of
data variables realising complex patient-physician inter-
action may be endogenous. Similar studies have ad-
dressed the endogeneity of ICU admission decisions

[124] and therapeutic titration based upon patient sever-
ity of illness [120, 121].

Within the limits detailed in Results, substantial dif-
ferences in both magnitude and direction of the ven-
tilatory effect were demonstrated between the vanilla
probit and the “eprobit” models by virtue of account-
ing for endogeneity. Contrast graphics also possessed
merit in that they more clearly demonstrated effect
differences obfuscated by seemingly overlapping 95%
CI. The difference between the predicted marginal
ventilation effects of vanilla probit and eprobit were
not accompanied by any substantive improvement in
model fit of “eprobit” versus probit and model re-
sidual analysis did not substantially favour “eprobit”,
as seen in Fig. 9 (see also Duke and co-authors [123],
Supplementary Appendix, figure E1 AND E2).

Similarly, model performance indices were not sub-
stantially different as seen in Table 6.

Not surprisingly, the parameter coefficients for the
two models were different, in magnitude and direction,
as shown in Table 7 for InROD considered as an en-
dogenous variable. Estimates, as response derivatives
(dyldx), are displayed for main effects only.

The IV paradigm is not without its limitations [21,
125] and has been subject to recent theoretical re-
evaluation from within its archetypal domain, economet-
rics [126]. Such reviews have been relatively silent on
the use of IV with binary outcome models [68, 125], al-
though the LPM has been recommended [127]. The sta-
tus of IV logistic regression, not implemented in current
Stata™, was formally addressed by Foster in 1997 [128]
using the Generalized Method of Moments, and more
recently by two-stage residual inclusion estimation [129,
130], a preferred method in Mendelian randomisation
[131], where identification of causal risk factors is the
focus, rather than precise effect estimation [132]. This
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being said, two-stage residual inclusion has been shown
to be a consistent estimator [129, 130]. IV logistic re-
gression has seen implementation within the R statistical
framework in the “naivreg” [133] and “ivtools” [134]
packages.

Conclusions

For modelling large scale binary outcome data, logistic
regression, particularly the RE model, was the preferred
estimator compared with probit and the LPM. The latter
estimator cannot be recommended for probability gener-
ation. Endogeneity was demonstrated for hospital length
of stay, risk of death and for MV treatment status. Ac-
counting for endogeneity produced markedly different
effect estimates about patient ventilation status com-
pared with conventional methods. Exploration of and
adjustment for endogeneity should be incorporated into
modelling strategies, failure to do so may produce re-
sults that are “... less likely to be roughly right than they
are to be precisely wrong” [120].

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512874-021-01251-8.

[ Additional file 1. ]

Acknowledgments

The authors and the ANZICS CORE management committee would like to
thank clinicians, data collectors and researchers at the following contributing
sites:

Alfred Hospital ICU, Alice Springs Hospital ICU, Armadale Health Service ICU,
Austin Hospital ICU, Ballarat Health Services ICU, Bankstown-Lidcombe Hos-
pital ICU, Bendigo Health Care Group ICU, Blacktown Hospital ICU, Box Hill
Hospital ICU, Bunbury Regional Hospital ICU, Bundaberg Base Hospital ICU,
Caboolture Hospital ICU, Cabrini Hospital ICU, Cairns Hospital ICU, Calvary
Adelaide Hospital ICU, Calvary Hospital (Canberra) ICU, Calvary Hospital
(Lenah Valley) ICU, Calvary Mater Newcastle ICU, Campbelltown Hospital ICU,
Canberra Hospital ICU, Concord Hospital (Sydney) ICU, Dandenong Hospital
ICU, Epworth Eastern Private Hospital ICU, Epworth Freemasons Hospital ICU,
Epworth Hospital (Richmond) ICU, Fiona Stanley Hospital ICU, Flinders Med-
ical Centre ICU, Flinders Private Hospital ICU, Footscray Hospital ICU, Frank-
ston Hospital ICU, Gold Coast Private Hospital ICU, Gold Coast University
Hospital ICU, Gosford Hospital ICU, Gosford Private Hospital ICU, Grafton Base
Hospital ICU, Hervey Bay Hospital ICU, Hornsby Ku-ring-gai Hospital ICU, Ips-
wich Hospital ICU, John Fawkner Hospital ICU, John Flynn Private Hospital
ICU, John Hunter Hospital ICU, Joondalup Health Campus ICU, Knox Private
Hospital ICU, Latrobe Regional Hospital ICU, Launceston General Hospital
ICU, Lismore Base Hospital ICU, Liverpool Hospital ICU, Logan Hospital ICU,
Lyell McEwin Hospital ICU, Mackay Base Hospital ICU, Macquarie University
Private Hospital ICU, Manly Hospital & Community Health ICU, Maroondah
Hospital ICU, Mater Adults Hospital (Brisbane) ICU, Mater Health Services
North Queensland ICU, Mater Private Hospital (Brisbane) ICU, Mater Private
Hospital (Sydney) ICU, Melbourne Private Hospital ICU, Monash Medical
Centre-Clayton Campus ICU, Mount Hospital ICU, Mulgrave Private Hospital
ICU, Nambour General Hospital ICU, National Capital Private Hospital ICU, Ne-
pean Hospital ICU, Newcastle Private Hospital ICU, Noosa Hospital ICU, North
Shore Private Hospital ICU, Northeast Health Wangaratta ICU, Norwest Private
Hospital ICU, Orange Base Hospital ICU, Peninsula Private Hospital ICU, Pin-
dara Private Hospital ICU, Prince of Wales Hospital (Sydney) ICU, Prince of
Wales Private Hospital (Sydney) ICU, Princess Alexandra Hospital ICU, Queen
Elizabeth Il Jubilee Hospital ICU, Redcliffe Hospital ICU, Robina Hospital ICU,
Rockhampton Hospital ICU, Rockingham General Hospital ICU, Royal Adelaide
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Hospital ICU, Royal Brisbane and Women's Hospital ICU, Royal Darwin Hos-
pital ICU, Royal Hobart Hospital ICU, Royal Melbourne Hospital ICU, Royal
North Shore Hospital ICU, Royal Perth Hospital ICU, Royal Prince Alfred Hos-
pital ICU, Shoalhaven Hospital ICU, Sir Charles Gairdner Hospital ICU, South
West Healthcare (Warrnambool) ICU, St Andrew’s Hospital (Adelaide) ICU, St
Andrew’s Hospital Toowoomba ICU, St Andrew’s War Memorial Hospital ICU,
St George Hospital (Sydney) CICU, St George Hospital (Sydney) ICU, St
George Private Hospital (Sydney) ICU, St John Of God Health Care (Subiaco)
ICU, St John Of God Hospital (Geelong) ICU, St John Of God Hospital (Mur-
doch) ICU, St Vincent's Private Hospital Northside ICU, St Vincent's Hospital
(Melbourne) ICU, St Vincent's Hospital (Sydney) ICU, St Vincent's Hospital
(Toowoomba) ICU, St Vincent's Private Hospital (Sydney) ICU, St Vincent's Pri-
vate Hospital Fitzroy ICU, Sunshine Hospital ICU, Sutherland Hospital & Com-
munity Health Services ICU, Sydney Adventist Hospital ICU, Tamworth Base
Hospital ICU, The Memorial Hospital (Adelaide) ICU, The Northern Hospital
ICU, The Prince Charles Hospital ICU, The Queen Elizabeth (Adelaide) ICU,
The Wesley Hospital ICU, Toowoomba Hospital ICU, Townsville University
Hospital ICU, Tweed Heads District Hospital ICU, University Hospital Geelong
ICU, Wagga Wagga Base Hospital & District Health ICU, Warringal Private Hos-
pital ICU, Westmead Hospital ICU, Westmead Private Hospital ICU, Wollon-
gong Hospital ICU.
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