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Objective: The aim of this in vitro study was to investigate the expression of SARS-CoV-2 entry and processing 
genes in human gingival fibroblasts (HGnF) following treatment with Porphyromonas gingivalis-derived lipo-
polysaccharide (PgLPS) or inflammatory cytokines/mediators. 
Design: We assessed the expression of SARS-CoV-2 entry and processing genes; angiotensin-converting enzyme 2 
(ACE2), cellular serine proteases transmembrane serine protease 2 (TMPRSS2), Furin, and basigin (BSG) in HGnF 
by real-time PCR. To further asses the contribution of PgLPS and inflammatory cytokines/mediators to prolif-
eration and SARS-CoV-2 entry and processing gene expression, HGnF were treated with PgLPS, IL1β, TNFα, and 
PGE2. 
Results: The expression for ACE2 in HGnF was significantly elevated after PgLPS or IL1β, TNFα, PGE2 treatment. 
The expression of TMPRSS2 was increased by PgLPS, IL1β, or PGE2 while BSG was elevated by PgLPS and IL1β. 
The expression of BSG and FURIN decreased after TNFα treatment. 
Conclusion: SARS-CoV-2 entry and processing genes are expressed in human gingival fibroblasts and their ex-
pressions are altered by PgLPS, IL1β, TNFα and PGE2 treatment.   

1. Introduction 

Since the first discovery of pneumonia of unknown cause in 
December 2019, later designated coronavirus disease 2019 (COVID-19) 
(Huang et al., 2020), World Health Organization reported more than 
174 million confirmed cases of COVID-19 including more than 3.7 
million death worldwide as of June 9, 2021 (https://covid19.who.int/). 
COVID-19 is caused by transmission of novel severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) 
(Zhu et al., 2020). Presence of SARS-CoV-2 is detected in different types 
of clinical specimens such as nasopharyngeal swabs, faces, blood (Wang, 
Xu et al., 2020), saliva (Fernandes et al., 2020; Huang et al., 2021; To 
et al., 2020) and gingival crevicular fluid (Gupta et al., 2021). In addi-
tion, COVID-19 can affect multiple systems such as lungs, airways, 
gastrointestinal tract, kidney, liver, heart (Chen et al., 2020; Huang 
et al., 2020; Wang, Hu et al., 2020), and oral regions (Corchuelo & Ulloa, 
2020; Halboub et al., 2020; Halepas et al., 2020; La Rosa et al., 2021; 

Mortazavi et al., 2020). In addition, patients with COVID-19 exhibited 
wide range of symptoms, ranging from mild symptoms to severe illness. 
According to data from China, nearly 80 % of people with Covid-19 had 
mild or moderate symptoms while 20 % of the patients had severe dis-
ease with mortality rate of 6% (Huang et al., 2020; Xu, Li et al., 2020). 
Older age (65 years old and older) is identified as one of the highest risk 
factors for developing severe symptoms of COVID-19 (Wu et al., 2020). 
In addition, sex, patients with chronic lung disease, moderate to severe 
asthma, severe obesity, diabetes, chronic kidney disease, and liver dis-
ease are also at high risk for severe COVID-19 symptoms (Garibaldi 
et al., 2020; Wu et al., 2020; Xu, Li et al., 2020). 

Recent research on SARS-CoV-2 has identified a list of key entry and 
processing genes used by the virus to infect host cells. SARS-CoV-2 en-
ters host cells by binding spike (S) protein embedded in the viral lipid 
envelope to human host cell receptor, angiotensin-converting enzyme 2 
(ACE2) (Hoffmann et al., 2020). For viral entry via ACE2, it is thought 
that the SARS-CoV-2 S protein is primed, and ACE2 is cleaved by the 
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cellular serine proteases transmembrane serine protease 2 (TMPRSS2) 
(Hoffmann et al., 2020). Furin cleaves viral enveloping proteins, 
providing another putative priming step for the S protein of SARS-COV-2 
(Coutard et al., 2020). In addition, basigin (BSG, also known as cluster of 
differentiation 147; CD147, or extracellular matrix metalloproteinase 
inducer; EMMPRIN) is reported as an alternative receptor by which 
SARS-CoV-2 may enter host cells (Ulrich & Pillat, 2020; Wang, Chen 
et al., 2020). For viral entry via BSG, less is known about specific re-
ceptor and viral processing partners for SARS-CoV-2 (Ahmetaj-Shala 
et al., 2020). 

Periodontal diseases are highly prevalent inflammatory diseases 
affecting the periodontal tissue initiated by microbial pathogens in oral 
biofilm (Pihlstrom et al., 2005). Although periodontopathic bacteria (i.e. 
Porphyromonas gingivalis) are essential for the initiation and progression 
of the disease, periodontal tissue damage and formation of periodontal 
pockets are primarily mediated by inflammatory cytokines and media-
tors (e.g. interleukin 1β; IL1β, tumor necrosis factor α; TNFα, prosta-
glandin E2; PGE2) (Cekici et al., 2014). In addition, it is known that 
periodontal disease is highly prevalent among older adults (65 years old 
and older) (Eke et al., 2016) and affect systemic conditions such as 
cardiovascular disease, diabetes mellitus, and adverse pregnancy out-
comes (Beck et al., 2019). Moreover, several studies have reported the 
existence of a bidirectional link between periodontal diseases and sys-
temic disease (Kim & Amar, 2006). Since the prevalence of both 
COVID-19 and periodontal disease are high in older adults and the fact 
that periodontal health is linked to systemic disease, there might be a 
link between COVID-19 and periodontal disease. Indeed, Kara et al. 
(Kara et al., 2020) recently emphasized possible relationship between 
periodontal diseases severity and COVID-19 infections. 

Progression of periodontal disease leads to ulcerated periodontal 
pocket epithelium with an exposed connective tissue (Takata & Donath, 
1988). Gingival fibroblasts are the major constituents of the periodontal 
connective tissue. Although few studies reported expression profiles of 
ACE2 and TMPRSS2 in oral mucosa (Hamming et al., 2004; Huang et al., 
2021; Sakaguchi et al., 2020; Xu, Zhong et al., 2020; Zhong et al., 2020), 
expression of SARS-CoV-2 entry and processing genes in gingival fi-
broblasts have not been studied in detail. In addition, effect of Por-
phyromonas gingivalis-derived lipopolysaccharide or inflammatory 
cytokines and inflammatory mediators on the expression of these genes 
is not well understood. Identifying and studying cell types that can be 
infected by SARS-CoV-2 via expression of SARS-CoV-2 entry and pro-
cessing genes could inform our understanding of COVID-19 heteroge-
neity in disease outcomes. For this, the current study utilized human 
gingival fibroblasts to determine the expression level of SARS-CoV-2 
entry and processing genes upon treatment with Porphyromonas gingi-
valis-derived lipopolysaccharide or inflammatory cytokines/mediators, 
in vitro. 

2. Materials & methods 

2.1. Cell culture 

Primary human gingival fibroblasts (HGnF), isolated from human 
gingiva, were purchased from ScienCell Research Laboratories and were 
cultured in alpha-minimum essential medium (αMEM; Sigma-Aldrich) 
containing 10 % fetal bovine serum (FBS, Sigma-Aldrich), 100 U/mL 
penicillin and 100 U/mL streptomycin (FUJIFILM Wako Pure Chemical) 
as described previously (Noguchi et al., 2002). During culturing, cells 
were incubated in a humidified atmosphere of 5% CO2 and 95 % air at 
37 ◦C. The cells between the third and six passages were used in this 
study. 

For experiments, HGnF were seeded at a density of 1 × 104 cells/cm2 

in multiwell culture plates. After confluence, cells were serum-starved in 
αMEM containing 0.5 % FBS to minimize the effect of serum compo-
nents. After 24 h of starvation, the cells were treated either with lipo-
polysaccharide from the gram-negative bacteria Porphyromonas 

gingivalis (PgLPS, InvivoGen), recombinant human interleukin 1 beta 
protein (IL1β, Sigma-Aldrich), recombinant human tumor necrosis fac-
tor alpha protein (TNFα, R&D Systems), or prostaglandin E2 (PGE2, 
FUJIFILM Wako Pure Chemical), in the concentrations indicated. After 
further 24 h of incubation, cells were either processed for cell prolifer-
ation assay or collected and stored at − 80 ◦C until further analysis. 

2.2. Cell proliferation assay 

Cells were seeded into 96-well plates. Cell Counting Kit-8 (CCK-8, 
Dojindo) was used to investigate cell proliferation after 24 h of treat-
ment. In brief, after 24 h treatment, a ready-to-use WST-8 solution was 
added, and incubation continued for 2 h at 37 ◦C. The WST-8 formazan 
complex was quantitatively measured at a wavelength of 450 nm using a 
microplate reader according to the manufacturer’s protocol. 

2.3. Isolation of total RNA and cDNA synthesis 

Total RNA was extracted from the cells with TRIzol reagent (Invi-
trogen), according to the manufacturer’s instructions. Reverse- 
transcription was performed to generate cDNA by the ReverTra Ace 
qPCR RT Master Mix with gDNA Remover kit (Toyobo). cDNAs were 
used for the PCR template as described below. 

2.4. Quantification of mRNAs by real-time polymerase chain reaction 
(real-time PCR) 

Quantitative gene-expression analyses were carried out using real- 
time PCR by means of the Thunderbird SYBR qPCR mix (Toyobo) and 
the Real-time PCR System 7300 (Applied Biosystems) as described 
previously (Furue et al., 2017). Genes studied in this investigation were 
angiotensin-converting enzyme 2 (ACE2), transmembrane serin prote-
ase 2 (TMPRSS2), basigin (BSG, also known as CD147 or EMMPRIN), 
and furin (FURIN). 

All data were normalized to 18 s ribosomal RNA (18S) expression. 
Information on the primer sets is listed in Table 1. 

2.5. Statistical analysis 

For cell proliferation assay and real-time PCR, values are presented 
as mean ± SD of at least three replicates. All experiments were repeated 
twice and similar results were obtained. The results from one repre-
sentative experiment are shown. The statistical significance of differ-
ences between groups was analyzed using one-way ANOVA and 
Bonferroni’s multiple comparisons test (GraphPad Prism 9, Version 
9.1.0). Values of P < 0.05 were considered to be statistically significant. 

Table 1 
Primer sequences used in this study for real-time PCR.  

Gene 
symbol 

Primer sequence Product size (bp)   

Accession No. 

ACE2 forward: 5′- 
GGGATCAGAGATCGGAAGAAGAAA-3′

124  

reverse: 5′-AGGAGGTCTGAACATCATCAGTG-3′ NM_001371415 
TMPRSS2 forward: 5′-AATCGGTGTGTTCGCCTCTAC-3′ 106  

reverse: 5′-CGTAGTTCTCGTTCCAGTCGT-3′ NM_001135099 
BSG forward: 5′-GCAGCGGGCAGCACC-3′ 61  

reverse: 5′-CCACCTGCCTCAGGAAGAGTT-3′ AB085790 
FURIN forward: 5′-CCTGGTTGCTATGGGTGGTAG-3′ 187  

reverse: 5′-AAGTGGTAATAGTCCCCGAAGA-3′ NM_002569 
18S forward: 5′-GTAACCCGTTGAACCCCATT-3′ 151  

reverse: 5′-CCATCCAATCGGTAGTAGCG-3′ M10098 

ACE2, angiotensin-converting enzyme 2; TMPRSS2, cellular serine proteases 
transmembrane serine protease 2, BSG; basigin, 18S; 18 s ribosomal RNA. 
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3. Results 

3.1. Effect of PgLPS, IL1β, TNFα, and PGE2 on HGnF cell proliferation 

To investigate the effect of PgLPS, IL1β, TNFα and PGE2 on SARS- 
CoV-2 entry gene expression, cell proliferation assay was performed to 
investigate the cytotoxicity of PgLPS, IL1β, TNFα, and PGE2 on HGnF. 
Our results indicated that PgLPS, IL1β, TNFα, and PGE2 treated with 
different concentrations for 24 h did not inhibit the proliferation of the 
HGnF (Fig. 1). These data suggest that 0.1− 10 μg/mL of PgLPS, 0.01− 1 
ng/mL of IL1β, 1− 100 ng/mL of TNFα, or 1− 1000 nM of PGE2 did not 
have significant cytotoxicity against the growth of HGnF. 

3.2. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of ACE2 

Elevated expression of ACE2 was observed by PgLPS, IL1β, TNFα, 
and PGE2 treatment. For PgLPS, significantly higher expression of ACE2 
was observed at 1 μg/mL (P < 0.0001, Fig. 2A). At 10 μg/mL of PgLPS, 
the levels of gene expression were similar to the control group. The level 
of ACE2 after PgLPS stimulation at 1 μg/mL was 244-fold higher 
compared to control. For IL1β, ACE2 gene expression level was signifi-
cant higher at 1 ng/mL (P = 0.0006, Fig. 2B) which was 44-fold higher 
than control. With TNFα treatment, biphasic significant increase in 
ACE2 expression was observed at 1 ng/mL (P = 0.0017) and 100 ng/mL 

(P = 0.0059) compared to control (Fig. 2C). Increased expression of 
ACE2 was observed by 10− 1000 nM PGE2 stimulation (Fig. 2D). 
Significantly higher level of ACE2 was observed at concentration as low 
as 10 nM of PGE2 (P = 0.0277) and dose dependent increase was noted 
at 100 nM (P < 0.0001) and 1000 nM (P < 0.0001) concentration. 

3.3. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of TMPRSS2 

Higher mRNA level for TMPRSS2 was observed with PgLPS, IL1β, 
and PGE2 treatment in HGnF. PgLPS treatment resulted in significantly 
higher expression of TMPRSS2 at 1 μg/mL (P < 0.0003, Fig. 3A). With 
IL1β at the dose of 1 ng/mL, significantly higher expression of TMPRSS2 
was noted (P = 0.0054, Fig. 3B). TNFα did not affect expression level of 
TMPRSS2 at all doses (1− 100 ng/mL) utilized in the current study 
(Fig. 3C). Treatment of HGnF with PGE2 concentration at 100 nM 
showed significantly higher level of TMPRSS2 expression compared to 
control (P < 0.0001, Fig. 3D). 

3.4. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of BSG 

Significantly elevated expression of BSG by PgLPS and IL1β, while 
decreased expression by TNFα and PGE2 was observed with some con-
centrations. Compared to control, significantly elevated levels of BSG 
expression were noted at the dose of 1 μg/mL (P < 0.0001) and 10 μg/ 

Fig. 1. Effect of PgLPS, IL1β, TNFα and PGE2 on HGnF cell proliferation. Cell numbers were analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/mL), (B) IL1β 
(0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown as mean ±
SD. n = 5. O.D., optical density. 
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mL (P = 0.0036) of PgLPS (Fig. 4A). Administration of IL1β increased 
the expression of BSG at 0.1 ng/mL (P = 0.0059) and 1 ng/mL (P =
0.0166) (Fig. 4B). For TNFα or PGE2 administration, significant decrease 
of BSG was observed by TNFα at 1 ng/mL (P < 0.0001, Fig. 4C) as well as 
PGE2 at 100 nM (P = 0.0097, Fig. 4D) while the expression remained at 
the level of control for the other concentration studied. 

3.5. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of FURIN 

Administration of PgLPS, IL1β or PGE2 did not alter the expression 
level of FURIN in HGnF (Fig. 5A, B, and D). By TNFα administration, 
significant decrease of FURIN was observed by TNFα at 1 ng/mL (P <
0.0001, Fig. 5C) while the expression level remained same to the level of 
control for 10 ng/mL and 100 ng/mL group. 

4. Discussion 

The results of the present study revealed that SARS-CoV-2 entry and 
processing genes are expressed in gingival fibroblasts and these ex-
pressions were altered by PgLPS, IL1β, TNFα, and PGE2 treatment. HGnF 
were used in this study, since these cells are the major constituents of the 
periodontal connective tissue and not an established cell line that may 
harbor possible by-products of transformation process. 

The increased expression level of ACE2 was observed after treatment 
with PgLPS or inflammatory cytokines/mediators; IL1β, TNFα, and 
PGE2, while elevated expression of TMPRSS2, and BSG was evident by 
PgLPS and not all but some of the inflammatory cytokines/mediators in 
HGnF. Decreased expression level of TMPRSS2, BSG and FURIN was 
noted after treatment with some of the cytokines. 

Expression of ACE2 as well as BSG in HGnF has been reported pre-
viously (Santos et al., 2015). ACE2 is a cell surface receptor and pepti-
dase that cleaves angiotensin II and other peptide hormones (Xu, Zhong 
et al., 2020). ACE2 is the known binding partner of the SARS corona-
virus S protein and recent study reveal ACE2 to be the receptor for the 
entry of SARS-CoV-2 (Walls et al., 2020). Although, several studies have 
shown that ACE2 was highly expressed in respiratory epithelium, kid-
ney, cardiovascular system and testis, it has also been reported that 
ACE2 was expressed in oral tissues based on RNA sequencing data based 
in public databases (Hoffmann et al., 2020). Xu et al. utilized single-cell 
sequencing data to further prove the expression of ACE2 receptor in 
tongue, buccal mucosa and gingiva (Xu, Zhong et al., 2020). More 
recently, mRNA expression of ACE2 was reported in epithelial cells of 
the glands and oral mucosa by in situ hybridization (Huang et al., 2021). 
Our findings on the expression of ACE2 gene using real-time PCR is in 
line with these reports. Furthermore, expression of ACE2 has been re-
ported to be affected by aging, sex hormones, smoking, and diet (Li 

Fig. 2. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of ACE2. Expression level of ACE2 mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/ 
mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown 
as mean ± SD. n = 3-8. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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et al., 2020). In this report, we have identified significant increase in 
ACE2 expression by PgLPS and inflammatory cytokines/mediator (IL1β, 
TNFα, and PGE2) treatment which suggests periodontal disease may 
affect local expression of ACE2 in periodontal tissues. This finding fol-
lows report from a previous study which characterized the local 
renin-angiotensin system in human and rat periodontal tissues between 
healthy and periodontally affected tissue (Santos et al., 2015). ACE2 
expression in HGnF was detected by PgLPS as well as E. coli-derived LPS 
while its expression was not detected in the control group (without LPS 
treatment) (Santos et al., 2015). In addition, modulation of ACE2 as well 
as other renin-angiotensin-system by cytokines such as IL1β has been 
reported in osteosarcoma cells (Ender et al., 2014). Due to the fact that 
ACE2 is the known binding partner of the SARS-CoV-2, the expression of 
ACE2 in HGnF may suggest gingiva/periodontal tissue as a potential 
infection routes of SARS-CoV-2 and contracting gum disease as a risk 
factor for SARS-CoV-2 infection or progression of COVID-19. 

BSG is a highly glycosylated and plasma membrane-bound glyco-
protein that belongs to the immunoglobulin superfamily (Gabison et al., 
2005; Muramatsu, 2016). The expression of BSG is considered to be 
responsible for the induction of fibroblasts to produce or secrete matrix 
metallopeptidases (Foda et al., 2001) and play a critical role in devel-
opment, tissue repair, rheumatoid arthritis, cardiovascular diseases, and 
inflammation (Gabison et al., 2005). An elevated expression of BSG has 

been found in the gingival tissue (Dong et al., 2009; Wang et al., 2014) 
and gingival crevicular fluid (Emingil et al., 2006) collected from 
chronic periodontitis patients and it has been indicated that BSG regu-
late the collagenolytic balance in favor of the expression and activation 
of matrix metallopeptidases in periodontal disease (Wang et al., 2014). 
Lai et al. reported expression of BSG in HGnF and its effect on the 
enhancement of matrix metallopeptidase expression stimulated by 
monocytes (Lai et al., 2020). Recently, BSG is implicated as a possible 
alternative receptor for the SARS-CoV-2 S protein (Wang, Chen et al., 
2020). In our study, BSG expression was detected by real-time PCR and 
significant increase was noted by PgLPS and IL1β treatment while sig-
nificant decrease was noted by TNFα at 1 ng/mL, and PGE2 at 100 nM. 
To the best of our knowledge, altered expression of BSG has not been 
previously reported in response to PgLPS, inflammatory cytokines, and 
PGE2 in HGnF. Our results indicate that in addition to its role in peri-
odontal disease to destruct periodontal connective tissue, BSG expres-
sion in HGnF may act as a potential infection routes of SARS-CoV-2. 

TMPRSS2 is a cell surface protease known to cleave both ACE2 and 
the S protein of coronaviruses (Heurich et al., 2014; Hoffmann et al., 
2020). Its cleavage of ACE2 is considered to promote viral uptake 
(Heurich et al., 2014), while cleavage of S primes the viral particle for 
membrane fusion into the host cell (Hoffmann et al., 2020). FURIN is 
another protease known to cleave inactive precursor proteins into their 

Fig. 3. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of TMPRSS2. Expression level of TMPRSS2 mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 
10 μg/mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are 
shown as mean ± SD. n = 3-4. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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biologically active product (Thomas, 2002). Notably, it functions in 
cleaving viral envelope proteins including those of HIV, influenza, 
dengue virus, ebolavirus, and some coronaviruses (Izaguirre, 2019). 
While a FURIN-specific cleavage site has not been found in the SARS 
coronavirus, a site has been discovered in the protein sequence of the 
SARS-CoV-2 spike protein (Coutard et al., 2020). So far, compared to 
ACE2 and BSG, expression of TMPRSS2 as well as FURIN has not been 
studied in HGnF. However, a search of the GEO Profiles database (Bar-
rett et al., 2013; Edgar et al., 2002) revealed that not only ACE2 and BSG 
but also TMPRSS2 and FURIN are expressed in HGnF (Agis et al., 2014; 
Kuk et al., 2015). Our findings detecting the expression of TMPRSS2 and 
FURIN by real-time PCR are in agreement with these reports. In addition, 
high level of TMPRSS2 was noted by PgLPS, IL1β, and PGE2 treatment 
while only a significantly decrease by TNFα treatment was observed of 
FURIN expression. Interestingly, among the genes studied, expression of 
FURIN was either not affected or decreased by inflammatory cytokines 
and PGE2. These results suggest FURIN might be modulated in different 
manner compared to ACE2, TMPRSS2, and BSG. Further study is 
required to elucidate the regulation of FURIN in HGnF. 

The pathophysiological mechanisms underlying COVID-19 disease 
severity and progression remain unclear. Several cohort studies have 
observed markedly elevated levels of circulating proinflammatory cy-
tokines (cytokine storm), significantly correlating to disease severity 
and mortality. Due to the fact that periodontal disease is an 

inflammatory disease and elevated levels of inflammatory cytokines are 
detected in locally inflamed gingival tissue and in the systemic circu-
lation, Sahni and Gupta (Sahni & Gupta, 2020) emphasized possible 
association between periodontitis and COVID-19 related adverse out-
comes. Our current results may provide another piece of information to 
support association between periodontitis and COVID-19 by showing 
the expression of SARS-CoV-2 entry and processing genes in HGnF and 
its regulation by PgLPS, IL1β, TNFα, and PGE2. As they stated, under-
standing of this association underscores the importance of keeping 
periodontal disease under check and the value of maintaining meticu-
lous oral hygiene in the COVID-19 era and also points towards the 
possibility of the presence of periodontal disease as predisposing to-
wards COVID-19-related adverse outcomes. More recently Marouf et al. 
(Marouf et al., 2021) reported an association between periodontitis and 
severity of COVID-19 infection in a case-control study. In their report, 
periodontitis was associated with higher risk of ICU admission, need for 
assisted ventilation and death of COVID-19 patients, and with signifi-
cantly higher blood levels of white blood cells, D-dimer and C-reactive 
protein linked to worse disease outcomes (Marouf et al., 2021). Infection 
of SARS-CoV-2 to periodontal tissues may cause oral manifestation. 
Indeed, recent review by Santos (Amorim dos Santos et al., 2021) on oral 
symptoms in COVID-19 patients reported taste alterations as the most 
prevalent oral manifestation but also a low certainty of evidence of oral 
mucosal lesions, including gingiva. Patel and Wooley (Patel & Woolley, 

Fig. 4. Effect of PgLPS, IL1β, TNFα, and PGE2 on expression of BSG. Expression level of BSG mRNA was analyzed after treatment with (A) PgLPS (0, 0.1, 1, 10 μg/ 
mL), (B) IL1β (0, 0.01, 0.1, 1 ng/mL), (C) TNFα (0, 1, 10, 100 ng/mL) or (D) PGE2 (0, 1, 10, 100, 1000 nM) for 24 h. Data are presented as dot plots. Values are shown 
as mean ± SD. n = 3. *P < 0.05, **P < 0.01, ****P < 0.0001. 
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2020) presented a case of a patient with necrotizing periodontal disease 
and suspected COVID-19. Taken together, our results suggest that, with 
reference to the expression of SARS-CoV-2 entry and processing genes in 
HGnF, periodontal tissue could potentially be infected by SARS-CoV-2 
and presence of periodontal diseases may affect clinical outcomes of 
COVID-19. 

Since the purpose of the current investigation was to determine 
whether periodontal pathogen-derived lipopolysaccharide or inflam-
matory cytokines/mediator could affect the expression level of SARS- 
CoV-2 entry and processing factors in HGnF by means of gene expres-
sion, the exact roles of these genes in HGnF were not investigated. In 
addition, we do not know whether the increased expression of SARS- 
CoV-2 entry and processing genes relates to disease severity of COVID- 
19. However, to date, research on COVID-19/ SARS-CoV-2 in dental 
field is mainly focused on prevention of the disease. Further research 
aimed toward elucidating the association between periodontal disease 
and COVID-19 are strongly warranted. 

5. Conclusion 

In conclusion, SARS-CoV-2 entry and processing genes are expressed 
in human gingival fibroblasts and their expressions are altered by PgLPS, 
IL1β, TNFα and PGE2 treatment. Therefore, periodontal tissue could 
potentially be infected by SARS-CoV-2. In addition, the results may 

indicate that presence of periodontal diseases as a predisposition to the 
negative consequences associated with COVID-19. 
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