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Abstract

Motivation: Alternative polyadenylation (APA) plays a key post-transcriptional regulatory role in mRNA stability and
functions in eukaryotes. Single cell RNA-seq (scRNA-seq) is a powerful tool to discover cellular heterogeneity
at gene expression level. Given 30 enriched strategy in library construction, the most commonly used scRNA-seq
protocol—10� Genomics enables us to improve the study resolution of APA to the single cell level. However,
currently there is no computational tool available for investigating APA profiles from scRNA-seq data.

Results: Here, we present a package scDAPA for detecting and visualizing dynamic APA from scRNA-seq data.
Taking bam/sam files and cell cluster labels as inputs, scDAPA detects APA dynamics using a histogram-based
method and the Wilcoxon rank-sum test, and visualizes candidate genes with dynamic APA. Benchmarking results
demonstrated that scDAPA can effectively identify genes with dynamic APA among different cell groups from
scRNA-seq data.
Availability and implementation: The scDAPA package is implemented in Shell and R, and is freely available at
https://scdapa.sourceforge.io.
Contact: yec@xmu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative polyadenylation (APA) is increasingly recognized as an
important regulation mechanism for many biological processes (e.g.
cell development, differentiation and proliferation) and molecular
functions (e.g. mRNA stability, translation efficiency and localiza-
tion) via dynamically using different polyadenylation sites during
maturation of nuclear pre-mRNA (Chen et al., 2017). More and
more evidence shows widespread occurrences of cell type-specific
APA in eukaryotes (Cao et al., 2019; Hwang et al., 2017; Velten
et al., 2015). To profile APA dynamics among different cell types,
one traditional way is to dissociate tissues and purify cell types be-
fore performing Poly(A)-tag sequencing (Cao et al., 2019), which
may introduce unexpected cellular stress and affect the APA profile

consequently. An alternative way is using methods like cTag-
PAPERCLIP (Hwang et al., 2017), which could directly profile indi-
vidual cell types from tissues without enzymatic digestion and
fluorescent-activated cell sorting. The common limitation of these
two strategies is that they cannot deal with unknown cell types or
rare cell subpopulations. The ideal way to differentiate APA profiles
from different cell types is to perform single cell RNA-seq (scRNA-
seq), which can isolate cells of different states and/or types by dis-
secting their transcriptome profiles (Saliba et al., 2014; Zheng et al.,
2017). By integrating a conventional scRNA-seq protocol and a 30

enriched bulk population RNA-seq protocol, Velten et al. (2015)
developed a method BATseq to investigate the APA profile at single
cell resolution. However, the low sensitivity and complex steps of
BATseq limit its wide application (Chen et al., 2017). Promising
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experimental protocols for quantifying APA at single cell level are
still lacking.

One commonly used scRNA-seq protocol, i.e. 10� Genomics,
applying a 30 selection/enriched strategy in library construction, pro-
vides the potential of quantifying APA dynamics at single cell reso-
lution (Chen et al., 2017; Saliba et al., 2014; Ye et al., 2019). In our
recent study (Ye et al., 2019), we found out 30 ends extracted from
the 10� Genomics scRNA-seq data are quite adjacent to authentic
poly(A) sites or 30 UTR annotations defined by sequencing experi-
ments, and investigated the role of APA in acute myeloid leukemia
using several scRNA-seq datasets from 10� Genomics, demonstrat-
ing the high validity and value of existing scRNA-seq data in per-
forming APA analysis. However, currently there is no easy-to-use
computational tool available for investigating APA profiles from
scRNA-seq data. In this work, we developed a package scDAPA for
exploration and visualization of APA dynamics in different cell types
and conditions from scRNA-seq data.

2 Implementation

The scDAPA consists of three major steps (Supplementary Fig. S1):
(i) 30 ends extraction and annotation; (ii) dynamic APA detection;
and (iii) dynamic APA visualization. First, scDAPA takes the se-
quence alignment results (a bam/sam file) and cell type information
(a cell barcode-cell type data in csv format) as inputs, and extracts
valid mapping records (uniquely mapped in genomic region, with
valid cell barcode and not PCR duplicates etc.) into different files of
distinct cell types. 30 ends of extracted reads are annotated to genes
based on the given genome annotation file (a gff/gtf file). Second,
the dynamic APA is detected among different cell types within the
same biological samples or among different samples of the same cell
type. Briefly, we use a histogram-based method to divide the dis-
persed 30 ends into distinct bins with the same width (default 100
bp), and a Site Distribution Difference (SDD) index is calculated to

quantify the APA difference between conditions as SDD ¼
PN

n¼1

pn
A � pn

Bj j=2; SDD 2 ½0; 1�, where N is the number of bins, A and B
denote two different cell groups, and pn

A represents the percentage of
30 ends located in the nth bin of a specific gene in cell group A.
Then, the Wilcoxon rank-sum test is applied to measure the signifi-
cance of differential APA usage. A gene with a SDD value above a
given cutoff (e.g. 0.2) and a p-value below a given cutoff (e.g. 0.05)
will be recognized a gene with significant differential APA usage
(DE-APA gene). For multiple statistical tests, the Benjamini-
Hochberg method is employed to control the false discovery rate.
Last, scDAPA allows intuitive visualization of APA profiles of candi-
date genes under different conditions, which presents diverse iso-
forms of a target gene, and a smooth density plot alongside the gene
to show the 30 ends distribution. The Supplementary Material con-
tains a user manual of the scDAPA package.

3 Application example

We investigated the application of scDAPA on a scRNA-seq dataset
of live microglia/macrophages from pooled neuroretinas of normal
and light damaged mice generated by the 10� Genomics platform
(O’Koren et al., 2019). We extracted the 30 ends of valid reads from
the scRNA-seq dataset and compared them to the latest mouse
poly(A) site annotations from PolyA_DB 3/Ensembl (Wang et al.,
2018). The distribution of the distances between 30 ends of the
aligned scRNA-seq reads and their nearest poly(A) annotations is
similar to that of our previous work (Fig. 1a) (Ye et al., 2019), indi-
cating a high stability of 10� Genomics scRNA-seq data in repre-
senting APA site usage. Next, we performed a cell type-to-cell type
comparison to detect genes with dynamic APA across different cell
groups (DE-APA genes). DE-APA genes were categorized into two
groups: APA gene and non-APA gene. Referring to the annotations
from PolyA_DB 3/Ensembl, a gene with only one poly(A) site is rec-
ognized as a non-APA gene, otherwise it’s recognized as an APA
gene. Approximately 98% of 3137 detected non-redundant DE-
APA genes are annotated as APA genes (Fisher’s exact test p-value

< 2.2� e�16, Fig. 1b), representing a high confidence of scDAPA in
dynamic APA detection using scRNA-seq data.

Additionally, in pair-wise cell type comparisons of APA usage, the
cell type MG0 (microglia solely came from normal neuroretinas) al-
ways shows the highest percent of DE-APA genes compared with other
nine cell types (Supplementary Fig. S2), suggesting a dramatically dis-
tinct APA preference of the nine cell types (IcMG1�3, sMG1�3, mo-
MFs, pv-MFs, repMG: microglia mainly came from light damaged
neuroretinas) compared to steady state MG0. Among the identified
DE-APA genes, e.g. a gene AI607873 prefers using a distal poly(A) site
in MG0 compared with other nine cell types (Fig. 1c). Moreover,
among the three small microglia clusters (sMG1, sMG2 and sMG3),
sMG3 shows the most APA dynamics compared to MG0
(Supplementary Fig. S2). This result is consistent with the previous ob-
servation that sMG3 was particularly distinct from MG0, and was
found at the final state of a trajectory analysis (O’Koren et al., 2019).
Considering that sMG3 is corresponding to the subretinal microglia in
light damaged sample (O’Koren et al., 2019), KEGG and
REACTOME pathway enrichment analyses for DE-APA genes be-
tween MG0 and sMG3 were further performed. We found that these
DE-APA genes were significantly over-represented in many signaling
pathways, such as NF-kappa B, JAK-STAT and TNF signaling path-
ways (Supplementary Fig. S3a and b), which are associated with the
retinal photoreceptor degeneration (Rashid et al., 2018). These results
demonstrate that scDAPA can effectively identify genes with dynamic
APA among different cell groups from scRNA-seq data.

4 Conclusion

In summary, we developed a package scDAPA to detect and visual-
ize dynamic APA from scRNA-seq data. We demonstrated its util-
ities through application to a real dataset. It is believed that scDAPA

Fig. 1. An application example of scDAPA on a scRNA-seq dataset of neuroretinas

from mouse. (a) Cumulative distribution of distances between 30 ends and nearest

authentic poly(A) sites; (b) categories of DE-APA genes detected from scRNA-seq

data; (c) illustration of a gene AI607873 showing dynamic APA profiles across dif-

ferent cell groups. Top panel, isoforms of gene AI607873 from Ensembl; bottom

panel, density distribution of 30 ends of various cell groups; purple triangles repre-

sent the poly(A) site annotation from PolyA_DB 3. (Color version of this figure is

available at Bioinformatics online.)
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is a useful tool in studying APA at single cell resolution, and will
broadly extend the application scope of scRNA-seq data.
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