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Abstract

Motivation: Proteases are enzymes that cleave target substrate proteins by catalyzing the hydrolysis of peptide
bonds between specific amino acids. While the functional proteolysis regulated by proteases plays a central role in
the ‘life and death’ cellular processes, many of the corresponding substrates and their cleavage sites were not found
yet. Availability of accurate predictors of the substrates and cleavage sites would facilitate understanding of pro-
teases’ functions and physiological roles. Deep learning is a promising approach for the development of accurate
predictors of substrate cleavage events.

Results: We propose DeepCleave, the first deep learning-based predictor of protease-specific substrates and cleav-
age sites. DeepCleave uses protein substrate sequence data as input and employs convolutional neural networks
with transfer learning to train accurate predictive models. High predictive performance of our models stems from
the use of high-quality cleavage site features extracted from the substrate sequences through the deep learning pro-
cess, and the application of transfer learning, multiple kernels and attention layer in the design of the deep network.
Empirical tests against several related state-of-the-art methods demonstrate that DeepCleave outperforms these
methods in predicting caspase and matrix metalloprotease substrate-cleavage sites.

Availability and implementation: The DeepCleave webserver and source code are freely available at http:/deep
cleave.erc.monash.edu/.

Contact: Ikurgan@vcu.edu or Jiangning.Song@monash.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protease substrate cleavage plays important roles in a variety of bio-
logical processes, such as cell cycle, pathway regulation and protein
degradation (Hilt and Wolf, 1995; Lopez-Otin and Overall, 2002).
Knowledge of protease-specific substrate cleavage is important for
understanding the mechanisms and biological functions of pro-
teases. In contrast to relatively expensive and time-consuming con-
ventional experimental methods for identifying protease substrate

cleavage events, computational methods provide a more cost- and
time-efficient alternative that is suitable for proteome-wide annota-
tion and which can be used to guide hypothesis-driven experimental
design.

Several computational predictors of the protease-specific substrates
and cleavage sites that rely on machine learning algorithms have been
developed in the past two decades (Li et al., 2018a). They include
Pripper (Piippo et al., 2010), Cascleave (Song et al., 2010), PROSPER
(Song et al., 2012), LabCaS (Fan et al., 2013), ScreenCap3 (Fu et al.,
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2014), CleavPredict (Kumar et al., 2015), PROSPERous (Song et al.,
2018a), iProt-Sub (Song ez al., 2018b) and Procleave (http://procleave.
erc.mo-nash.edu), etc. These methods rely on a variety of different fea-
tures extracted from the input protein sequences, such as amino acid
frequencies, information extracted position-specific scoring matrices,
and a wide range of physicochemical properties of amino acids (Chen
et al., 2018, 2019). These features are used to train predictive models
utilizing several different types of machine learning algorithms. While
the strategy that depends on the feature-based sequence encoding has
resulted in the development of several well-performing predictors, it
has a few shortcomings. First, the already large feature space must be
enlarged by combination of existing features and manual design of add-
itional features in order to further improve the prediction performance.
The design of new and informative features is typically done via a trial-
and-error approach that requires a substantial amount of manual
work. Second, the manually developed features could be irrelevant to
this prediction and/or redundant (correlated), which negatively impacts
the training of the accurate predictive models with the machine learn-
ing algorithms. Thus, inclusion of the new features usually involves ap-
plication of feature selection techniques to reduce the risk of using
irrelevant and redundant features. Third, the design of the new features
and the use of feature selection methods have to be coupled with the se-
lection of a suitable machine learning algorithm. To sum up, the design
of these methods is rather complex and requires handing of three tasks:
feature design, feature selection and algorithm selection.

Deep learning-based approach to building the predictive models
alleviates these issues. In contrast to the conventional feature-based
methods, deep learning is a form of representation learning. That is,
it automatically learns a suitable representation from the raw input
data, such as protein sequences, without the need to design and se-
lect features. Furthermore, the use of the deep learning models, espe-
cially when combined with the application of transfer learning, may
produce competitive predictive quality when compared with more
conventional machine learning-based methods. Consequently, sev-
eral deep learning-based methods for the protein sequence analysis
were published in recent years. For instance, deep neural networks
were used for the prediction of protein crystallization (Elbasir et al.,
2018), PTM sites (Wang et al., 2018), phosphorylation sites (Luo
et al., 2019; Wang et al., 2017), promoters (Umarov et al., 2019)
and protein function (Zhang et al., 2019). However, deep learning
has not been so far used for the prediction of the protease-specific
substrate cleavage sites (Li et al., 2018a).

We introduce DeepCleave, the first deep learning framework for
the caspase and matrix metalloprotease substrate cleavage site pre-
diction. Our approach does not require manual feature engineering
and transfers generic protease-family models using transfer learning
to generate accurate protease-specific predictors. The use of the
transfer learning addresses the problem of relatively small sample
sizes of the protease-specific substrate cleavage site datasets.
Empirical tests illustrate that the use of the transfer learning
improves the quality of the protease-specific substrate cleavage sites
prediction when compared to the deep network designed without
the transfer learning. Extensive empirical benchmark on an inde-
pendent test dataset demonstrates that DeepCleave outperforms cur-
rent state-of-the-art computational approaches. A user-friendly and
free webserver that implements DeepCleave is available at http://
deepcleave.erc.monash.edu/.

2 Materials and methods

2.1 Design and assessment process

We summarize the design and assessment process of DeepCleave in
Figure 1A. There are four major steps in this process: (i) dataset col-
lection, (ii) model training, (iii) performance evaluation and (iv)
webserver construction. In the first step, we collect the benchmark
and independent test datasets from the MEROPS database
(Rawlings ez al., 2018). In the second step, we design and optimize a
convolutional neural network (CNN) (LeCun et al., 2010) using the
training dataset. In the third step, we comparatively evaluate the
trained CNN models on the independent test against the existing

state-of-the-art methods. In the fourth step, we implement and re-
lease the DeepCleave webserver and the corresponding source code.

2.2 Dataset collection

We extract the experimentally validated protein substrate annota-
tions from the release 12.0 of the MEROPS database (Rawlings
et al., 2018). We reduce sequence similarity of the corresponding
substrate sequences using the CD-HIT program (Fu et al., 2012)
with the identity threshold of 50% at full protein sequence level. We
randomly partition the remaining sequences into the training dataset
and the independent test dataset (not used for training) with a ratio
of 7:3. Next, we further reduce identity between the test proteins
and the proteins from the training dataset to 20% by clustering both
datasets together using CD-HIT with the identity threshold of 50%
and removing the test proteins that are in clusters with the training
proteins. This ensures that the remaining test proteins share <20%
identity with the training dataset, while we keep the 50% pairwise
similarity within the training set to enlarge the amount of the train-
ing data. We note that the 20% cut-off is stricter than the similarity
levels maintained in other related studies, which include 80
(Fu et al., 2014), 70 (Song et al., 2010; Song et al., 2018a, b) and
50% (Wang et al., 2017). Details concerning the size and compos-
ition of the training and test datasets are summarized in
Supplementary Tables S1-S3. We use the training dataset exclusive-
ly to optimize the design and parameters of DeepCleave. We utilize
the independent (low similarity) test dataset to validate the predict-
ive performance of DeepCleave and compare it with the existing
methods.

2.3 Model training

We use the substrate sequences as input and we employ the one-hot
encoding to present these sequences for the CNN. We train CNN
using the training dataset to self-learn features that best represent in-
formation that is relevant for the protease substrate cleavage site
prediction from the one-hot encoded input chains. The output from
the DeepCleave predictor consists of two numeric scores for each
residue in the input protein sequence: one that quantifies propensity
for cleavage site and the other that quantifies propensity for non-
cleavage site. The two scores are combined together to produce a
binary prediction, i.e. every residue is predicted as either cleavage
site (if cleavage site score > non-cleavage site score) or non-cleavage
site (otherwise). We provide further details in the following sections.

2.3.1 One-hot encoding of the input protein sequence

The CNN model requires the input with a fixed length, while the
lengths of the substrate sequences vary widely. Thus, we use a local
sliding window approach with a fixed window size of 30 (P15-P15’
sites: 15 residues upstream and downstream of the cleavage site).
We pad the positions of the window that extend beyond the
protein sequence at either terminus with symbol X. We encode the
protease subsequence using the one-hot encoding which produces a
21-dimensional vector (20 types of common amino acids and X)
with a value of 1 corresponding to the amino acid in the sliding win-
dow and 0 at all other positions. Consequently, the input used to
predict the cleavage site for the residue in the middle of the window
is 21 x 30 matrix. Each residue/matrix is labeled as 1 (if this is a na-
tive cleavage site) or 0 (otherwise) for the purpose of training the
CNN network.

2.3.2 Architecture of the deep CNN

We use the Keras package (Gulli and Pal, 2017) with a Theano
backend (Team et al., 2016) to implement the DeepCleave model.
Classical CNNs consist of a convolution layer, max-pool layer and
fully connected layers from lower layers to higher layers. The lower
layers learn simple sequence features which aggregate into more
complex features in the higher network levels. The topology of the
CNN used in DeepCleave is shown in Figure 1B. It consists of three
convolutional layers, attention layer, two fully connected layers and
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Fig. 1. Development flowchart and the deep network architecture. (A) The flowchart of the development and assessment process. (B) The topology of the deep CNN. The
CNN takes input sequences and sequentially transforms them into a ‘flattened” output vector using convolutional, pooling and fully connected layers. The elements of the out-
put vector (softmax layer) represent the probabilities of the cleavage sites. During the training process, the internal parameters of the neural network layers are iteratively
adjusted to improve accuracy. Typically, lower layers (left side of B) learn simple features, which then influence the high-level representations (right side of B)

the output layer. We describe these layers in the subsequent
paragraphs.

The three convolutional layers that aim to capture features from
the one-hot encoding matrix. In the first convolutional layer, we use
kernel size=1 x 200 (convolutional filter in first convolutional
layer) to extract simple features from the one-hot encoding matrix.
The convolution of the kernel matrix and the input portion of the
neuron window size is the output of the neurons on each

convolutional layer. The second convolutional layer uses three par-
allel convolution blocks, each with a different convolution window
size (kernel sizes = 3 x 150, 6 x 150 and 9 x 150; convolutional fil-
ter =150 in the second convolutional layer) to convert the features
from the first convolutional layer in a parallel manner. We apply
three different kernel sizes to diversify the extracted features, ultim-
ately leading to a potentially more robust and more accurate predict-
ive model. This strategy diversifies the high-level features that are
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extracted from the features generated in the previous layer. Next,
we utilize a merge layer to combine the feature representations gen-
erated by the three convolution blocks into a higher-dimensional
feature representation. The third convolutional layer also uses three
convolution blocks with different convolution window sizes (kernel
sizes = 5 x 200, 10 x 200 and 15 x 200; convolutional filter =200
in the third convolutional layer) to further diversify and improve the
extracted features. A detailed visualization of three different kernel
sizes in the first and the second convolutional layer is provided as an
example in Supplementary Figure S1.

The attention layer aims to selectively discover relevant features
from a large number of features generated in the convolutional
layers. Inspired by the implementation of attention mechanism in
previous studies (Luo et al., 2019; Wang et al., 2017), we implement
the DeepCleave’s attention layer to learn two types of feature repre-
sentations from the output of each convolution block of the third
convolution layer. One representation considers the direction of the
sequence and the other focuses on the direction of the features. The
‘transposition’ in Figure 1 means transposed matrix. The feature
representation matrix in the direction of features is the transposed
matrix in the direction of sequence. This results in the total of six
feature representations that are combined together in the merge
layer.

The merged attention layer is followed by two fully connected
layers. These two layers reassemble more localized features pro-
duced in the merge layer to produce features that cover the entire
context of the input matrix. They also act as classifiers that map the
resulting feature space onto the corresponding labels using nonlinear
transformations. The two fully connected layers use 149 and 8 neu-
rons, respectively.

The output layer has two neurons that quantify propensity for
cleavage site and for the non-cleavage site. The two neurons are fully
connected to the previous layer and the activation function is soft-
max. The softmax activation is commonly used in the final output
layer to distribute the probability throughout each of the multiple
output nodes (Armenteros, 2019; Luo et al., 2019; Wang et al.,
2017, 2018). We use transfer learning to convert generic protease
family models into protease-specific models. We implement the
transfer learning by keeping the layers before the 2nd fully con-
nected layer of the base network (protease-family level model) fro-
zen and training the 2nd fully connected layer and output layer for
protease-specific cleavage sites prediction.

2.3.3 Training of the CNN
We employ the ‘Adam’ optimizer (Kingma ef al., 2014) with the
classification cross-entropy as a loss function to train our model.
Moreover, we use grid search to adjust the DeepCleave hyperpara-
meters. We utilize several strategies that are detailed below to pre-
vent over-fitting into the training dataset. They include the use of
ReLU activation function, L2 regularization, dropout (Sainath ez al.,
2013) and ‘early stopping’ (Yao et al., 2007).

ReLU, which fixes the gradient disappearance problem in the
backpropagation training algorithm, is defined as

RelLU = {0 if x <0
x else
L2 regularization imposes large penalties on sparse spiked
weight vectors, preferring uniform parameters. This results in the
neural nodes taking advantage of a larger number of the inputs com-
ing from the upper network layer, rather than only a part of the in-
put. After the L2 term is added, the absolute value of the weights
tends to overall decrease, especially if there is no particularly large
value, that is, the network tends to learn relatively small weights.
Dropout refers to the random removal of some neurons (‘eras-
ure’ of these neurons from the network) when training a large neural
network. Since randomly removed neurons are different in each
batch of the training process, the corresponding networks are also
different, resulting in ‘new’ models. Dropout reduces a potentially
harmful co-adaptation of neurons because this way neurons do not
depend on the presence of other specific neurons. Therefore, the

network is forced to learn new features that are used in combination
to improve predictions. As such, dropout is a useful to ensure that
the prediction network model is robust to the loss of individual fea-
tures (Krizhevsky et al., 2017).

The ‘early stopping’ strategy stops training when the loss on the
training set is not decreasing (i.e. the degree of reduction is less than
a certain threshold). This solves the problem of manually setting the
number of epochs and reduces chances of overfitting the network to
the training set.

2.4 Balancing the training dataset

The number of cleavage sites is much smaller than the number of non-
cleavage sites. We apply bootstrapping (Wallace et al., 2011) to tackle
this imbalance problem in the training dataset. We visualize this strat-
egy in the ‘Bootstrap’ part of Figure 1B. Let P and N be the positive set
(cleavage sites) and negative set (non-cleavage sites), respectively, and
#P and #N be the number of the corresponding positive and negative
residues. We selected the same numbers (#P) of negative and positive
residues to train a model in each bootstrap iteration. We split the nega-
tive residues into 7 = N/P subsets and we apply 7 bootstrap iterations
to traverse the negative residue and train one prediction model. We re-
peat this procedure five times to train five prediction models. We use
the average output of these five models as the final prediction.

2.5 Optimization of the model training parameters

We tune the training parameters of the CNN to maximize the pre-
dictive performance. We use 90% of the training dataset to perform
bootstrapping and the remaining 10% of the training dataset for
validation. We employ Bayesian optimization (Snoek et al., 2012) to
tune the following parameters: learning rate (values in the 0.0001-
0.1 range), L2 regularization weight decay (0.0001-0.1), the batch
size (64-1024), the dropout probability (0.2-0.8), the convolutional
filter (100-250) and the dense filter (8-200). We show the best per-
forming on the validation set parameter values in Table 1.

2.6 Evaluation metrics

We assess the predictive performance with five commonly used
measures including sensitivity (Sn), specificity (Sp), precision, accur-
acy (Acc) and Matthew’s Correlation Coefficient (MCC):

Gno_ P
TP + FN
Sp— N
TN + FP
Precision = L
TP + FP
Acc — TP+ TN
TP + TN + FP + FN

TP x TN — FP x FN

MCC =
/(TP + FP) x (TP + FN) x (IN + FP) x (TN + FN)

where TP, TN, FP and FN denote the numbers of true positives (cor-
rectly predicted cleavage sites), true negatives (correctly predicted

Table 1. Values of the tuned parameters

Parameters Tuned setting
Batch size 1024
Learning rate 0.001

L2 regularization 0.001
Dropout rate 0.75

‘Early stopping’ patience 20

Initializer he_normal
Convolutional filter 200, 150, 200
Dense filter 149, 8,2
Activation function ReLU
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non-cleavage sites), false positives (non-cleavage sites incorrectly
predicted as cleavage sites) and false negatives (cleavage sites incor-
rectly predicted as non-cleavage sites), respectively. Moreover, we
also plot the Receiver-Operating Characteristic (ROC) curves and
calculated the Area Under the Curve (AUC) values based on the
scores produced by the output layer.

3 Results and discussion

3.1 Predictive performance of the protease-family and

protease-specific deep CNNs

The protease-specific datasets have relatively small sizes when com-
pared to the needs of the deep network training. Small training data-
sets may cause overfitting when used to train deep networks
(Yosinski et al., 2014). To address this, we utilize the deep transfer
learning technique that is commonly used in the deep learning stud-
ies (Hurtado et al., 2018; Wang et al., 2017, 2018). The deep trans-
fer learning first trains a base network, and then copies the first #
layers of this base network to the first # layers of the target network.
Next, the remaining layers of the target network are randomly ini-
tialized and trained for a target problem. There are two main strat-
egies for training the target network. The first is to back-propagate
errors in the entire target problem network to fine-tune them to the
new problem. The second is to keep the transferred feature layers
frozen, which means that they are fixed during the training of for
the target problem. Choosing whether to fine-tune the first 7 layers
of the target network depends on the size of the target dataset. If the
dataset is small and the number of parameters is large, fine-tuning
may lead to over-fitting and thus these layers should be kept frozen.
On the other hand, if the target dataset is large or the number of
parameters is small, the over-fitting should not be a concern and the
base layers should be fine-tuned (Yosinski ez al., 2014). We apply
the second strategy to implement the deep transfer learning since the
target dataset is small and the number of parameters is relatively
large. We first generate protease-family level deep CNNss for the cas-
pases and matrix metallopeptidases (MMPs) (by combining all the
caspases/MMPs cleavage data together) given the relatively small
sizes of the protease-specific substrate cleavage site data. Next, we
copy the all layers before the 2nd fully connected layer of the base
network (protease-family level model), keep these layers frozen, and
trained the 2nd fully connected layer and output layer to produce
protease-specific predictors. We evaluate and compare the predictive
performance of the family level and protease-specific deep CNNs in
this section. We contrast the protease-specific predictors with cur-
rent state-of-the-art predictors in Section 3.4.

Figure 2 shows change in the average training loss and accuracy
for the two family-level networks over the consecutive training
epochs. We monitor accuracy changes when testing for when to stop
training. Therefore, the training process of the network for the cas-
pase cleavage site prediction (‘caspase base network’) converges
after about 400 epochs, while the training for the MMP cleavage
site prediction (‘MMP base network’) requires about 1000 epochs to
converge. The caspase base network secures a lower training loss
than the network for MMPs. Moreover, the caspase base network
converges to a higher accuracy (>0.9 after about 400 epochs) than
the MMP base network (around 0.8). However, both results indi-
cate that these networks provide high-quality family level

caspases matrix metallopeptidases

—- uaining loss

S validation loss 02
—— training accuracy

—— validation accuracy

—- tainingloss
validation loss 02

0 100 300 400 0 500 1000 1500 2000
hs.

200
Epochs Epoc

Fig. 2. The average training loss and accuracy of the family level networks for the
caspase (left) and for the matrix metallopeptidase (right) cleavage site prediction

predictions of the cleavage sites. These accurate results provide a
strong foundation for the transfer learning of the protease-specific
predictors.

We also compare the predictive performance of the DeepCleave
models trained with and without transfer learning. We summarize these
results in Supplementary Tables S4 and S5. The results reveal that the
DeepCleave models trained with transfer learning achieves a significant-
ly better performance than the models trained without transfer learning
for all 12 proteases. The average AUC of DeepCleave trained with
transfer learning over the 12 proteases is 0.92, while the models trained
without transfer learning achieve an average AUC of 0.75. In addition,
DeepCleave trained with transfer learning also achieves a significantly
better accuracy (0.89 versus 0.76), MCC (0.77 versus 0.52), sensitivity
(0.88 versus 0.79) and precision (0.89 versus 0.76) than the models
trained without the transfer learning. Taken together, these results indi-
cate that the transfer learning strategy is effective for training accurate
DeepCleave models using limited protease-specific cleavage data.

3.2 Ablation analysis for the protease-specific deep

CNNs on the training dataset

As shown in Figure 1B, the DeepCleave’s network uses three differ-
ent kernel sizes in the second (kernel sizes=3, 6, 9) and the third
(kernel sizes=35, 10, 15) convolutional layers. The two-dimensional
attention layer is applied after the convolutional layers. We perform
an ablation analysis to investigate whether the inclusion of the atten-
tion layer and the three different kernel sizes in the convolutional
layers provide improvements in the predictive performance.
Specifically, we compare results generated by DeepCleave (the com-
plete architecture with the attention layer and three kernel sizes)
with (i) DeepCleave without the attention layer, (ii) DeepCleave
with only one kernel size (one kernel size model) in the second and
the third convolutional layers (kernel sizes are 3 and 3, respectively)
and (iii) DeepCleave with two kernel sizes (two kernel sizes model)
in the second (kernel sizes are 3 and 6) and the third convolutional
layers (kernel sizes are 5 and 10). The comparison was done based
on the 5-fold cross-validation tests on the training dataset. We sum-
marize the results in Figure 3 and Supplementary Figure S2.

The results reveal that the complete DeepCleave framework has
achieved the best predictive performance for all test scenarios. On the
other hand, the DeepCleave without the attention layers performed the
worst, with the exception of MMP-9 where the DeepCleave version
with one kernel size model performed the worst. These results demon-
strate that the attention layer plays an important role in ensuring high
quality of predictions produced DeepCleave. Moreover, the empirical
results also justify the use of the three kernel sizes in the second and the
third convolutional layers of the DeepCleave framework.

3.3 Feature representation in the DeepCleave predictor
Figure 4 gives the UMAP plots (McInnes et al., 2018) that visualize fea-
ture representations that are automatically learned inside of the
DeepCleave model. The UMAP plots cluster the actual feature represen-
tations into a two-dimensional space. This figure includes the mapped
feature representations for the one-hot encoding, after the attention
layer, and for the 2nd fully connected layer. Each dot in the figure repre-
sents a positive sample (i.e. a cleavage site for a given protease).
Figure 4A and B reveals that the one-hot encoding cannot be directly
used to accurately discriminate proteases. The cleavage data for the dif-
ferent proteases are almost randomly distributed within the UMAP plot
space. However, use of the attention layer visibly improves the ability to
discriminate protease cleavage data (Fig. 4C and D). The features repre-
sented further down the network at the 2nd fully connected layer gener-
ate even better results (Fig. 4E and F). The UMAP plots demonstrate
that the DeepCleave framework learns informative feature representa-
tions from the one-hot encoding that is easy to extract from the input
protein chains. However, even the results at the 2nd fully connected
layer show overlap between some cleavage points associated with differ-
ent caspases. This is not surprising since some sites are cleaved by sev-
eral different proteases. In addition, we obtain similar results when
using another visualization tool, t-SNE (van der Maaten and Hinton,
2008). The t-SNE plots are shown in Supplementary Figure S3.
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Fig. 3. Comparison of the predictive performance for the four models considered in
the ablation study on the test dataset using five-fold cross-validation. The results
concern six proteases: caspase-1, caspase-3, caspase-6, matrix metallopeptidase-2,
matrix metallopeptidase-9 and matrix metallopeptidase-7; the identifier inside the
brackets (e.g. ‘C14.005’) is the protease ID in MEROPS. The following models are
included: DeepCleave, DeepCleave without attention layer, DeepCleave with only
one kernel size in the second and the third convolutional layer, and DeepCleave
with two kernel sizes in the second and the third convolutional layer

To sum up, our empirical results in Sections 3.1-3.3 suggest that
the models trained on the protease-family cleavage data can be used
to develop accurate cleavage prediction models.

3.4 Comparison of predictive performance on the test

dataset
We compare the predictive performance of the protease-specific
DeepCleave models on the independent test dataset (up to 20%
similarity with the training dataset) against state-of-the-art predic-
tion tools that have been developed for the caspase and MMP cleav-
age sites prediction. The considered tools include Cascleave, CAT3,
ScreenCap3, SitePrediction and PROSPERous. We collect predic-
tions from these methods using their webservers or implementations
provided by the authors. We provide the corresponding ROC curves
in Figure 5 and Supplementary Fig. S4. Moreover, we report MCC,
ACC, sensitivity, specificity and precision for these methods for the
five caspases and the seven MMPs in Supplementary Table Sé6.
DeepCleave achieves competitive predictive performance meas-
ured with AUC. Specifically, for the five tested caspases (caspase-1,
caspase-2, caspase-3, caspase-6 and caspase-7) and four out of the
seven tested MMPs (MMP-2, MMP-7, MMP-12 and membrane-
type MMP-1), it secures the best AUC value. For the other three
types of MMPs (MMP-3, MMP-8 and MMP-9), PROSPERous
achieves the best AUC values for two, SitePrediction for one, while
DeepCleave ranks either second (MMP-8 and MMP-9) or third
(MMP-3). The DeepCleave’s average AUC over the 12 proteases is
0.947. When compared with the second-best PROSPERous on the

E UMAP of the 2nd fully connected layer (caspases) F

s Fad

Fig. 4. UMAP plots of the input one-hot encoding (A and B), feature representation
after the attention layer (C and D) and the feature representation of the 2nd fully
connected layer (E and F) for the models for the caspases (on the left) and the
MMPs (on the right). These results were produced using the training dataset

four caspases that both methods can predict, DeepCleave secures
average AUC = 0.981 versus 0.965 for PROSPERous. For the seven
MMPs, DeepCleave achieves average AUC = 0.920 versus 0.910 for
PROSPERous. The two predictors with the third and fourth highest
average AUCs are SitePrediction (average AUC = 0.872 over the
four caspases and six MMPs that it predicts) and ScreenCap3 (aver-
age AUC = 0.869 over the five caspases it covers). DeepCleave pro-
vides the average AUCs = 0.985 (caspases) and 0.920 (MMPs) for
the two corresponding sets of proteases, respectively. Similar obser-
vation can be made for the assessment of the binary predictions
using MCC and accuracy. The average MCC of DeepCleave equals
0.828 over all proteases, 0.945 for the five caspases and 0.744 for
the seven MMPs. These values reveal that the correlation between
the cleavage sites predicted by DeepCleave and the native annota-
tions is high. The average (over the 12 proteases) accuracy of
DeepCleave is 0.914 with balanced values of specificity (0.921), sen-
sitivity (0.908) and precision (0.916). Overall, the empirical tests
demonstrate that DeepCleave provides accurate predictions of the
caspase- and MMP-specific cleavage sites that outperform results
generated by the currently available tools.

3.5 One-hot encoding provides favourable predictive
quality

Previous studies have used a variety of input including the compos-
ition of k-spaced amino acid pairs (CKSAAP), BLOSUM62 matrix,
position-specific scoring matrix (PSSM) and sequence conservation
to predict protease-specific cleavage sites (Song et al., 2018b; Wang
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Fig. 5. ROC curves and corresponding AUC values generated by seven considered
protease cleavage site predictors (DeepCleave, Cascleave, SitePrediction, CleavPredict,
CATS3, ScreenCap3 and PROSPERous) for caspase-1, caspase-3, caspase-6, matrix
metallopeptidase-2, matrix metallopeptidase-9 and matrix metallopeptidase-7; the
identifier in the brackets (e.g. ‘C14.005’) is the protease ID in MEROPS

et al., 2014). Predicted structural features, such as secondary struc-
tures and solvent accessibility, are also used to predict functional sites
in proteins (Zhang et al., 2010, 2017). We investigate whether these
inputs can be used to further improve the prediction performance of
DeepCleave. We compare performance between the DeepCleave and
the deep networks trained using each feature types individually
(CKSAAP, BLOSUMBS62, putative secondary structure, putative solv-
ent accessibility, PSSM with the PSSM-derived conservation scores)
and using all inputs together. The PSSM was calculated by perform-
ing PSI-BLAST search against the UniRef90 database. The secondary
structure was predicted with PSIPRED (Jones, 1999) while solvent ac-
cessibility was predicted with ASAquick (Faraggi et al., 2014). We
provide a detailed description of how these data were encoded into
the inputs for the DeepCleave’s network in Supplementary Methods
section in Supplementary Materials.

We compare the predictive quality of these approaches on the
training and independent test datasets in Supplementary Tables S7
and S8, respectively. Results reveal that majority of these input
types, except for the putative secondary structure, can be used to
predict the cleavage sites reasonably well. The average AUCs com-
puted over the 12 proteases equal 0.605 for the putative secondary
structure, 0.766 for CKSAAP, 0.798 for the putative solvent accessi-
bility, 0.806 for the PSSM and conservation scores, 0.922 when
using the BLOSUMG62 matrix-derived inputs and 0.947 when using
the one-hot encoding from DeepCleave. Similar trend is true when
using the average MCC, with the corresponding values equal 0.181,

0.463, 0.527, 0.510, 0.732 and 0.828. These results demonstrate
that the one-hot encoding utilized in DeepCleave provides the best
solution for the prediction of the protease cleavage sites using this
particular neural network topology, although several other types of
inputs are also predictive. The deep network that uses all inputs
secures relatively high average AUC = 0.865 and average MCC =
0.635. However, these results are still lower than the results secured
by the one-hot encoding. Again, we believe that this stems from the
architecture of the network that favours the binary inputs. One im-
portant advantage of the one-hot encoding is that it can be efficient-
ly computed from the input protein sequence, particularly when
compared to a computationally expensive calculation of some other
inputs like PSSM, putative secondary structure and putative solvent
accessibility. This leads to a short prediction runtime, allowing for a
large-scale application of the DeepCleave method.

3.6 Webserver

The DeepCleave’s webserver allows the users to perform high-
throughput bioinformatics analyses of the protease specific cleavage
sites. This server is freely available at http://deepcleave.erc.monash.
edu/. The calculations are done on the server side, freeing the user
from utilizing their own hardware. The website of the webserver
also provides access to the trained DeepCleave’s models. The front
page was implemented using PHP and the webserver runs using
Tomcat7 on the Linux system. The underlying hardware is an eight-
core CPU, 500 GB hard disk and 16 GB memory, which ensures
that predictions are produced efficiently.

To utilize the webserver, the users should paste the sequences of
the proteins of interest into the “TEXTAREA’ or upload a protein se-
quence file that is formatted using the FASTA format. The website
provides an example of correctly formatted inputs. The webserver
allows for a batch submission of up to 100 sequences at a time, which
is possible due to computational efficiency of the underlying predictive
model. Users can download and run the trained models of DeepCleave
using their own hardware to process larger protein sets. At the submis-
sion time, users can input an e-mail address to receive notification
when the submitted task is completed. This email includes links to the
web page with the predictions. Detailed step-by-step instructions of
how to use the DeepCleave webserver are available on the help page
of the webserver.

3.7 Case studies

We illustrate the results produced by DeepCleave using two substrate
proteins selected from the independent test dataset, one that is cleaved
by caspases and another that is cleaved by MMPs. The first protein is
the human Claspin (UniProt ID: Q9HAW4) (Chini and Chen, 2003),
while the second is Heat shock 70kDa protein 4 from mouse
(UniProt ID: Q61316) (McCallister et al., 2015). We visualize the
predictions in Supplementary Figure S5. There are three experimen-
tally validated cleavage sites in Claspin that are cleaved by caspases,
i.e. site 25 is cleaved by caspase-3, site 82 is cleaved by caspase-6 and
site 1072 is cleaved by caspase-7 (Clarke et al., 2005; Julien et al.,
2016; Semple et al., 2007). DeepCleave is able to identify all three of
these sites among the highest-valued predictions generated by the cor-
responding three models. The Heat shock 70kDa protein 4 has five
cleavage sites processed by MMPs, i.e. sites 97, 182, 356 and 678 are
cleaved by MMP-2 and site 678 is cleaved by MMP-9 (auf dem Keller
et al., 2010; Prudova et al., 2010). The MMP-2 and MMP-9 models
from the DeepCleave server generate high scores for these positions,
leading to accurate identification of these cleavage sites.

3.8 Human proteome-wide prediction of the substrate

cleavage sites and gene ontology enrichment analysis

We apply DeepCleave to pre-compute a human proteome-wide pre-
diction of protease substrate cleavage sites. To this end, we collect
20 413 human proteins from the Swiss-Prot database (The UniProt
Consortium, 2017), 14/02/2019). We parameterize the outputs gen-
erated by DeepCleave for these proteins to obtain putative cleavage
sites that are predicted with high-confidence, i.e. we use threshold
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that corresponds to the 99% specificity on the training dataset (Li
et al., 2015, 2016, 2018b; Song et al., 2018a, b). We provide sum-
mary of the predicted cleavage substrates and sites for the five cas-
pases and seven MMPs in Supplementary Table S9. A complete list
of the predicted cleavage substrates and their cleavage sites can be
freely downloaded from the DeepCleave webserver page at http://
deepcleave.erc.monash.edu/.

We perform functional analysis of these putative human sub-
strates for the five caspases and seven MMPs. We generate a set of
gene ontology (GO) terms that are significantly enriched for each set
of the putative substrates when compared to the human proteome.
We run two-sided hypergeometric tests to quantify significance of en-
richment and we divide the significantly enriched terms (p-value <
0.05) into three categories: cellular components, biological processes
and molecular functions. The top five significantly over-represented
GO terms for each protease are given in Supplementary Table S10.
Summarized results in Supplementary Figure S6 demonstrate that pu-
tative substrates of different proteases are associated with different
GO terms. However, putative substrates targeted by the same prote-
ase family tend to be enriched in more similar GO terms than when
comparing GO terms across the families. For instance, the putative
substrates targeted by caspase-1, caspase-3, caspase-6 and caspase-2
are enriched in the RNA-binding function (GO: 0003723) (Matthews
et al., 1994), which is supported by a close relationships between
RNA-binding proteins and specific caspases (Janakiraman et al.,
2017; Subasic et al., 2016; Talwar et al., 2011). Moreover, the puta-
tive substrates of all caspases are enriched in the cytosol term (GO:
0005829), which is consistent with experimental studies of subcellu-
lar localization for caspases (Juin et al., 1998; Mesner et al., 1999).
On the other hand, the putative substrates of all MMPs, except for
MMP-2, are enriched in the ‘extracellular region’ (GO: 0005576) and
‘extracellular space’ (GO: 0005615) terms, which is again consistent
with the actual subcellular localization for MMPs (Christensen and
Shastri, 2015; Hakulinen ez al., 2008; Oh et al., 2001; Schmidt-
Hansen et al., 2004; Wiesner et al., 2013). These observations sup-
port validity of the underlying DeepCleave’s predictions.

4 Conclusions

We introduce DeepCleave, the first deep learning-based approach for
accurate prediction of the caspase and matrix metalloprotease sub-
strate cleavage sites. DeepCleave employs substrate sequences as the
sole input and utilizes the one-hot encoding to convert these sequences
into the input for the deep network. We apply transfer learning to ex-
tend generic protease family models for the prediction of 12 specific
proteases. This approach also allowed us to address the problem of a
small sample sizes of the protease-specific cleavage site data.

We empirically demonstrate that the DeepCleave framework
learns feature representations that accurately differentiate between
different caspases and MMPs. We also show that the use of multiple
kernel sizes and the attention layer lead to substantial improvements
in the predictive performance of our method, and that the one-hot
encoding provides favorable results when compared with several
other input types. We empirically compare DeepCleave with several
state-of-the-art predictors. The results reveal that DeepCleave provides
accurate predictions that outperform previously proposed methods for
the large majority of the considered proteases (9 out of 12). We antici-
pate that this deep learning framework will be useful for other similar
predictive tasks, such as prediction of glycosylation and other PTM
sites.

A user-friendly webserver and the source code of DeepCleave are
freely available at http:/deepcleave.erc.monash.edu/. This website
also provides access to a pre-computed set of putative cleavage site
for the entire human proteome. To sum up, DeepCleave is a computa-
tional tool for high-throughput and accurate cleavage site prediction,
which has the potential to produce novel biological hypotheses.
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