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Abstract

Motivation: The biclustering of large-scale gene expression data holds promising potential for detecting condition-
specific functional gene modules (i.e. biclusters). However, existing methods do not adequately address a compre-
hensive detection of all significant bicluster structures and have limited power when applied to expression data
generated by RNA-Sequencing (RNA-Seq), especially single-cell RNA-Seq (scRNA-Seq) data, where massive zero
and low expression values are observed.

Results: We present a new biclustering algorithm, QUalitative BIClustering algorithm Version 2 (QUBIC2), which is
empowered by: (i) a novel left-truncated mixture of Gaussian model for an accurate assessment of multimodality in
zero-enriched expression data, (ii) a fast and efficient dropouts-saving expansion strategy for functional gene mod-
ules optimization using information divergency and (iii) a rigorous statistical test for the significance of all the identi-
fied biclusters in any organism, including those without substantial functional annotations. QUBIC2 demonstrated
considerably improved performance in detecting biclusters compared to other five widely used algorithms on vari-
ous benchmark datasets from E.coli, Human and simulated data. QUBIC2 also showcased robust and superior per-
formance on gene expression data generated by microarray, bulk RNA-Seq and scRNA-Seq.

Availability and implementation: The source code of QUBIC2 is freely available at https://github.com/OSU-BMBL/
QUBIC2.

Contact: czhang87@iu.edu or qin.ma@osumc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the advent of high throughput sequencing technologies, large
scale gene expression profiles have been accumulating at an increas-
ingly faster pace (Goodwin et al., 2016). Recent single-cell RNA-Seq
(scRNA-Seq) techniques enable the measuring of the whole-genome
level transcriptome of 103–108 individual cells at the same time
(Gierahn et al., 2017; Hwang et al., 2018). The wealth of gene ex-
pression datasets available provides an opportunity to computation-
ally identify condition-specific functional gene modules (FGMs),
each of which is defined as a highly structured expression pattern on
a specific gene set (Chen et al., 2016; Wang et al., 2012). These
FGMs tend to be functionally related or co-regulated by the same
transcriptional regulatory signals (TRSs) under a specific condition

or in a particular disease cell type. Specifically, the identification of
FGMs from scRNA-Seq data can further facilitate the discovery of
gene signatures of specific cell types, and most importantly, the iden-
tified FGMs can be used to study the complex interactions among
individual cells in response to certain stimuli, that is, cell type pre-
diction. Our recent identification of FGMs specific to a subset of
patients revealed biological characteristics of different disease sub-
types and alternative drug resistance mechanisms in colorectal can-
cer (Cao et al., 2018). In addition, we have demonstrated the
correspondence between the cell sample-specific FMGs and gene co-
regulation modules in scRNA-Seq data (Wan et al., 2019). Overall,
successful derivation of the FGMs may grant a higher-level inter-
pretation of large-scale gene expression data, improve the functional
annotation of condition-specific gene activities, facilitate the
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inference of gene regulatory relationships, hence, providing a better
mechanism level understanding of complex diseases.

The computational identification of FGMs can be modeled as
detecting data patterns occurring over a subset of genes and samples/
cells that represents a highly distinguishable structure (a submatrix
with significant local low-rank, more details can be found in
Supplementary Note S1). This computational formulation falls under a
biclustering approach (Ulitsky et al., 2010), which is a two-
dimensional data mining technique that simultaneously identifies co-
expressed genes under a subset of conditions. Substantial efforts have
been made to advance the biclustering algorithm and tool development
since 2000 (Monier et al., 2019; Xie et al., 2018; Zhou et al., 2012),
and a few review studies provided considerable guidance in choosing
suitable algorithms in different contexts. Eren et al. (Eren et al., 2013)
compared 12 algorithms and concluded that our in-house method,
QUBIC (Li et al., 2009; Zhang et al., 2016), is one of the top-
performing methods, as it achieved the highest performance in synthet-
ic datasets and captured a high proportion of enriched biclusters on
real datasets in comparison to Plaid (Lazzeroni and Owen, 2002),
FABIA (Hochreiter et al., 2010), ISA (Bergmann et al., 2003) and
Bimax (Preli�c et al., 2006). In 2018, Saelens et al. ranked QUBIC, ISA
and FABIA as the top biclustering methods in terms of predicting gene
modules from human and synthetic data (Saelens et al., 2018).

Although numerous biclustering methods have been developed, our
preliminary results indicated that they encountered an average 30.4%
performance drop in FGMs prediction on RNA-Seq data compared to
microarray data (the drop can be up to 73.8% as shown in
Supplementary Fig. S1). There are multiple underlying reasons, includ-
ing, but not limited to, the following two: (i) The gene expression data
derived from RNA-Seq has massive zero expression values, e.g. up to
60% of all the genes in a cell have zero read counts for scRNA-Seq data
(Bacher and Kendziorski, 2016; Lun et al., 2016). The expression distri-
bution is thus highly skewed, and the normalized read counts roughly
follow lognormal distributions. However, unquantifiable errors occur as
the raw zero counts of specific genes will result in negative infinity values
after logarithmic transformation (Bengtsson et al., 2005; Hebenstreit
et al., 2011) (see more details in Supplementary Note S2). (ii) Existing
biclustering methods adopt various optimization functions (e.g. CC
employs mean squared residue; ISA requires that the gene expression in
each row and column have an average value above some pre-defined
thresholds), yet most of them cannot deal with a large gene pool and/or
up to tens of thousands of conditions. Thus, these methods fail to effect-
ively select the significantly function-related candidate genes in such
scenarios. Additionally, existing algorithms lack rigorous statistical sig-
nificance evaluations for the identified biclusters, besides pathway
enrichment-based evaluations. The common practice is to output a
group of biclusters and then assess their biological significance.
However, some statistically significant biclusters may carry novel bio-
logical meaning that are unavailable in the limited functional annotation.
Considering these, novel biclustering methods taking full consideration
of the particular statistical distribution of RNA-Seq data, integrating a
new optimization function for FGM identification, and providing a ro-
bust statistical significance evaluation framework are urgently needed.

In this paper, we developed a novel QUalitative BIClustering algo-
rithm version 2 (QUBIC2) for large-scale gene expression data analysis.
Inheriting the qualitative representation and graph-theory based model
from QUBIC, QUBIC2 has the following unique features: (i) it uses a
mixture truncated model to handle the unquantifiable errors in RNA-
Seq data and a reliable qualitative representation to reflect expression
states corresponding to various potential TRSs; (ii) it integrates an
information-divergence based objective function and a drop-outs sav-
ing expansion strategy in support of functional gene modules optimiza-
tion; and (iii) it presents a novel method to enable the general statistical
significance evaluation of all the identified biclusters in any organism.

2 Materials and methods

2.1 Data acquisition
A total of eight expression datasets were used in this study: two syn-
thetic RNA-Seq datasets, two microarray datasets (one from E.coli

and one from Human), two bulk RNA-Seq datasets (one from E.coli
and the other from Human) and two scRNA-Seq human datasets
(one SMART-Seq2 and one 10X Genomics data). The synthetic
datasets were simulated using our in-house simulation method
(Supplementary Method S1 and Supplementary Table S1). A total of
10 and 30 co-regulated modules were embedded in these two data-
sets, respectively. The E.coli microarray data were downloaded
from M3D (Faith et al., 2008), and the human microarray data were
retrieved from (Saelens et al., 2018). The E.coli RNA-Seq data were
integrated and aggregated by our group. In short, 155 fastq files
were downloaded from SRA (Leinonen et al., 2011) using sratoolkit
(v2.8.1) and then processed following a pipeline with quality check
(FastQC), reads trimming (Btrim), reads mapping (HISAT2) and
transcript counting (HTseq). Finally, the raw read counts were nor-
malized to get the RPKM values. The human RNA-Seq data were
obtained from (Saelens et al., 2018). The scRNA-Seq data were
downloaded from (Kiselev et al., 2017) as an RPKM expression ma-
trix. The 10X Genomics peripheral blood mononuclear cells
(PBMC) dataset was downloaded from https://support.10xgenom
ics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k.

Multiple sets of known modules/biological pathways were pro-
vided or collected to support the enrichment analysis of the above
eight datasets. For synthetic data, the groups of pre-defined up-regu-
lated genes were used as co-regulated modules. For E.coli data, we
used five kinds of biological pathways, i.e. complex regulons
(ComTF) and regulons extracted from the RegulonDB database
(version 9.4, accessed on August 5, 2017), KEGG pathways col-
lected from the KEGG database (accessed on August 8, 2017),
SEED subsystems from the SEED genomic database (accessed on
August 8, 2017) (Overbeek et al., 2005) and EcoCyc pathways from
the EcoCyc database (version 21.1, as of August 8, 2017) (Keseler
et al., 2017). ComTF were defined as a group of genes that are regu-
lated by the same transcription factor (TF) or the same set of TFs.
For the human microarray and RNA-Seq data, we used the modules
provided by (Saelens et al., 2018). For Yan’s scRNA-Seq data and
10X Genomics PBMCs data, we downloaded 647 ChIP-Seq datasets
on embryonic stem cells from the Cistrome database (Mei et al.,
2017). Detailed information on the datasets is listed in
Supplementary Table S2.

2.2 Overall design of QUBIC2
The essence of the algorithm design in QUBIC2 is outlined as fol-
lows, with an overview of the workflow showcased in Figure 1. The
original expression data was first qualitatively represented based on
the assumption that a gene should receive K possible TRSs under all
the conditions; hence, its expression profile would follow a mixture
of K Gaussian distributions. Specifically, a mixture of Gaussian dis-
tributions was used to fit the microarray data, while for bulk RNA-
Seq and scRNA-Seq data, a large number of observed zeros and low
expressions was treated as left-censored data in the mixture
Gaussian model of each gene (Cohen, 1959; Stegle et al., 2015). In
our recent study, the mixture of Left-truncated Gaussian distribu-
tions (LTMG) model was applied to fit large-scale gene expression
data (Wan et al., 2019). An Expectation-Maximization algorithm
was employed to estimate the parameters of the distributions, and
the gene expression value under a specific condition was labeled to
the most likely distribution. Accordingly, a row consisting of dis-
crete values (1, 2, . . ., K) for each gene was generated. Then this
qualitative row was split into K new rows, such that in the ith row
those labeled initially as i are labeled as 1, denoting that the gene
received a particular TRS under the current condition, while the rest
were labeled as 0, meaning that the gene did not receive any TRS
under the condition. Finally, a binary representing matrix MR was
generated (Fig. 1a).

All the gene pairs (seeds) were sorted in decreasing order of their
weight, which is defined as the number of conditions under which
the two genes have 1 s in MR (Fig. 1b). The algorithm will iterate
this list of seeds. Specifically, given a feasible seed, it will recruit
genes and conditions to build an initial Core. We assumed that a
bicluster should consist of genes receiving the same TRSs in a subset
of conditions, while the genes outside the bicluster may receive
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different TRSs. According to our LTMG model, genes receiving the
same TRSs under certain conditions will be labeled as 1 s under
those conditions, giving rise to a clue to group these genes. The
Kullback–Leibler divergence score (KL score) is designed to select
candidate genes and conditions such that the 1 s concentrate within
biclusters while 0 s mainly appear in the outside, i.e. it makes sure
the difference between a bicluster and its background is more signifi-
cant than the difference between an arbitrary same-size submatrix
and its background. The KL score can quantify this difference and
facilitate bicluster optimization and candidate selection (Fig. 1b.
Details in KL score for biclusters optimization).

The above process will generate a Core bicluster consisting of
1 s. We believe that some 0 s outside the cores might be dropouts,
therefore the core needs to be expanded. Since it is difficult to deter-
mine cutoffs for the expansion, we first expand the Core both hori-
zontally and vertically, and then we heuristically search for another
Core in the expanded region, so-called a Dual bicluster (Fig. 1c).
The genes and conditions from both the Core and Dual constitute a
submatrix (I, J) of MR, which is one bicluster ready for output. We
assumed that 0 s induced in this way are more likely to be dropouts
and can support gene expression recovery and further FGM
identification.

Furthermore, a statistical framework based on the size of the
biclusters was implemented to calculate a P-value for each of the
identified biclusters. The problem of assessing the significance of
identified biclusters was formulated as calculating the probability of
finding at least one submatrix enriched by 1 from a binary matrix
with a given size, with a beta distribution employed during the pro-
cess. This P-value framework enables users to evaluate the statistical
significance of all the identified biclusters, especially for those from
less-annotated organisms.

2.3 Left-truncated Mixed Gaussian (LTMG) model for

gene expression data discretization
To accurately model the gene expression profile of RNA-Seq and
scRNA-Seq data, we specifically developed a mixed Gaussian model
with a left truncation assumption. Denoting the log-transformed
FPKM, RPKM, or CPM expression values of gene X over N condi-
tions as X ¼ x1; . . . xnf g, we assumed that xj 2 X follows a

mixture of k Gaussian distributions corresponding to k possible
TRSs. The density function of xj is:
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where ai is the mixing weight, li and ri are the mean and standard
deviation of ith Gaussian distribution, which can be estimated by an
EM algorithm with given X:

H� ¼argmaxLðH;XÞ
H

To model the errors at zero and the low expression values, we
introduce a parameter Zcut for each gene expression profile and con-
sider the expression values smaller than Zcut as left-censored data.
With the left truncation assumption, the gene expression profile is
split into M truly measured expression values (>Zcut) and N �M
left-censored gene expression values (�Zcut) for the N conditions.
Latent variables yj and Zj are introduced to estimate H by the fol-
lowing Q function:
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The parameters H that maximize the likelihood function can be
estimated by an EM algorithm (Supplementary Method S2), and the
number of Gaussian components is selected by the Bayesian
Information Criterion (Supplementary Method S3). Then the origin-
al gene expression values are labeled to the most likely distribution
under each cell. In detail, the probability that xj belongs to distribu-
tion i is formulated by:

p xj 2 TRS ijK;H�
� �
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And xj is labeled by TRS i if p xj 2 TRS ijK;H�
� �

¼
maxi¼1;...;K p xj 2 TRS ijK;H�

� �� �
. In such a way, a row consisting

of discrete values (1, 2, . . ., K) for each gene will be generated.

2.4 KL score for biclusters optimization
A KL score is introduced in QUBIC 2 to guide candidate-selection and
biclustering optimization. The KL score of a bicluster is defined as:

KLB ¼
1

N

XN

j¼1

X
i2f0; 1gR i; jð Þ � log

R i; jð Þ
Q i; jð Þ

þ 1

M

XM

k¼1

X
i2f0; 1gC i;kð Þ � log

Cði; kÞ
P i;kð Þ

where N and M are the numbers of rows and columns of a subma-
trix B in MR, respectively. R i; jð Þ represents the proportion of elem-
ent i in row j of B, Q i; jð Þ is the proportion of i in the corresponding
entire row, C i; kð Þ is the proportion of i in column k of B and Pði;kÞ
is the proportion of i in the entire corresponding column.
Meanwhile, the KL score for a gene quantifies the similarity between
a candidate gene j and a bicluster, which is defined as follows:

KLj ¼
X

i2f0; 1gR i; jð Þ � log
R i; jð Þ
Q i; jð Þ

where R i; jð Þ represents the proportion of i under corresponding col-
umns of the current bicluster.

Fig. 1. Illustration of QUBIC2 algorithm design. (a) Discretization of gene

expression data. The LTMG model was applied to fit the expression profile

of a gene. A representing row for each gene was generated with integers denoting

the most likely component distribution that an expression value belongs to, and

then this representing row was split into multiple rows. Finally, a binary represent-

ing matrix was generated after applying the above procedure to all the genes;

(b) Core biclustering. By sorting all the gene pairs (seeds) in decreasing order

of their weight, an initial seed list was obtained. For a feasible seed, QUBIC2

selected highly correlated genes with the seed in support of the build of an initial

Core. (c) Dual biclustering. QUBIC2 expanded the Core vertically and horizontally

to recruit more genes and conditions under a preset consistency level, respectively.

The intersected zone created by extended genes and conditions formed a searching

pool. QUBIC2 identified a Core in the pool (denoted as Dual) using the same pro-

cedure in b and output the bicluster with genes and conditions that came from the

Core and Dual
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2.5 Evaluation of the functional modules
The capability of algorithms to recapitulate known functional mod-
ules is assessed using precision and recall. First, for each identified
bicluster, we use the P-value of its most enriched functional class
(biological pathway) as the P-value of the bicluster (Li et al., 2009).
The bicluster is deemed enriched with that function if its P-value is
smaller than a specific cutoff (e.g. 0.05).

Given a group of biclusters identified by a tool under a param-
eter combination, the precision is defined as the fraction of observed
biclusters whose genes are significantly enriched with the one bio-
logical pathway/known modules (Benjamini-Hochberg adjusted
p<0.05),

Precision ¼ # of significant biclusters

# of biclusters

For recall, we compute the fraction of known modules that were
rediscovered by the algorithms among all known modules in a func-
tional annotation database,

Recall ¼ # of significant modules

# of modules

Precision and recall reflect relevance and diversity of the biclus-
ters, respectively. To balance these two aspects, the harmonic mean
of precision and recall was calculated to represent the performance
of an algorithm on a given dataset and parameter setting, denoted as
f score:

f ¼ 2
1

Precisionþ 1
Recall

Note that the number of biclusters used to calculate precision
and recall may affect the results. To make sure the evaluation is as
fair as possible, for each dataset, we select the first 30 biclusters.

2.6 Size-based P-value framework
For well-annotated organisms, the P-value of an identified bicluster
enriched with a specific regulatory pathway can be calculated based
on a hypergeometric distribution. However, known experimental
annotations are currently limited, even for most well-studied model
organisms (for example, half of the protein-coding genes of E.coli
have solid experimental evidence for their functions in KEGG and
GO) (Monk et al., 2014). This status still limits the capability of a
systematic evaluation of all the identified biclusters. To fill this gap,
we calculate an alternative size-based P-value as follows. For a bin-
ary representing matrix MR containing m0 rows and n0 columns,
suppose we obtain an m1-by-n1bicluster M1 with all the elements
being 1 s. The probability of n1 �W can be assessed by the follow-
ing formula (Sun and Nobel, 2008), giving rise to a P-value for the
bicluster M1:

Pðn1 �WÞ ¼ lim
n!1

n0
�ðbþ1ÞðW�sðn1 ;n0 ;bÞÞð logbn0Þbþ1

where a ¼ m0
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; b ¼ 1

p
; p ¼ PðMi;j ¼ 1Þ ¼ 1� PðMi;j ¼ 0Þ for 8i; j

sðn1;n0; bÞ ¼
bþ 1

b
logbn0 �

bþ 1

b
logb

bþ 1

b
log bn0

� �
þ logba

þð1þ bÞ log be� b log bb
b

2.7 Pseudo algorithm design of QUBIC2
Step 1 (Data discretization and qualitative representation): Given an
expression matrix with log-transformed FPKM, RPKM or CPM val-
ues for genes, use the LTMG model to fit the data. Label the values
to the most likely distribution to get a representing row for each
gene. Split these rows into multiple rows to get the representative
matrix MR (Supplementary Fig. S2a).

Step 2 (Graph construction and seed selection): Construct a
weighted graph for MR, where nodes correspond to genes and edges
connect every pair of genes. The edge weight indicates the similarity

between the two corresponding genes, which is defined as the num-
ber of conditions in which the two genes have 1 s in MR. Sort the list
of edges in G in decreasing order of their weights
(i.e. wðe1Þ � wðe2Þ � � � � ;wðejEjÞÞ: An edge eij ¼ gigj is selected as a
seed if and only if at least one of gi and gj is not in any previously
identified biclusters, or gi and gj are in two nonintersecting biclus-
ters in terms of genes. Select a feasible seed from the seed list. Go to
Step 6 if the seed list is empty (Supplementary Fig. S2b).

Step 3 (Build core bicluster): Build an initial bicluster by finding
all the conditions under which the two genes of the seed have 1 s in
MR. Set these columns of the two genes as the current bicluster B ¼
(I, J). Expand B by adding a new gene that has the most 1 s in J, giv-
ing rise to a new bicluster B’ ¼ (I’, J’), where I’ is I after adding the
new gene and J’ is J by deleting those columns with 0 s. If two genes
have the same number of 1 s in J, choose the one with larger KL
similarity with B (Supplementary Fig. S2c). If KLB0 > KLB, set B to
B0 and repeat Step 2, otherwise stop and denote B as Core. Go to
Step 4.

Step 4 (Core expansion): Expand the Core horizontally and ver-
tically under preset consistency level as follows: for each gene (row)
i not in B, if the ratio between the number of 1 s in row i under J and
jJj is �c, mark it as an extended gene; for each condition (column) j
not in B, if the ratio between the number of 1 s in the column j
among I and jIj is �c, mark it as an extended condition.
(Supplementary Fig. S2d). Mark the intersected zone created by
extended genes and conditions as a Dual searching pool (light blue
box in Supplementary Fig. S2e). Go to Step 5.

Step 5 (Search Dual): Search Dual in the intersected expanded
zone, using the same process in Step 3, output the bicluster with
genes and conditions that come from Core and Dual (red box in
Supplementary Fig. S2e). Delete current seed, go to step 2.

Step 6 (Biclusters filtering): Rank all the identified biclusters in
decreasing order of their sizes (#row x #column). Output the first
bicluster. Go to the second bicluster, skip it if its overlap with the
first bicluster exceeds f, otherwise output it. Go to the next bicluster,
skip it if it overlaps with the either of the biclusters in output exceeds
f, otherwise output it. Continue until the last bicluster is checked.
Go to Step 7.

Step 7 (Enrichment validation): For each output bicluster, we
use the P-value of its most enriched functional class (biological path-
way) as the P-value of the bicluster (details in Evaluation of the
functional modules section). A bicluster is deemed enriched with a
function if its P-value is smaller than a specific cutoff (e.g. 0.05).

3 Results

3.1 QUBIC2 achieves a better performance in the

identification of FGMs compared to other methods
We compared QUBIC2 with eight biclustering algorithms, which in-
clude those evaluated as the top performed algorithms in the public
domain (Bimax, ISA, FABIA, Plaid and QUBIC) and those published
in the recent three years [BicMix (Gao et al., 2016), Runibic and
EBIC (Orzechowski et al., 2018)] (Supplementary Method S4 and
Supplementary Tables S3 and S4). The comparison performance in
FGMs identification was evaluated by the precision, recall and
f-score defined by the harmonic mean of the precision and recall.
Eight gene expression datasets were used in the evaluation covering
simulated, microarray, bulk RNA-seq and scRNA-Seq data in E.coli
and Human. To minimize the biases in performance comparison
among multiple tools, for each of the eight datasets, we run the nine
tools using more than 50 parameter combinations by adjusting their
critical parameters around default/recommended values (Details in
the Section 2).

As showcased in Figure 2a, QUBIC2 achieved the highest median
f-scores (f) on almost all the eight datasets. On simulation data,
QUBIC2, QUBIC and FABIA were the top three algorithms with
very close median f-scores. On microarray data and bulk RNA-Seq
data from E.coli, QUBIC2 demonstrated particularly outstanding
advantages. Specifically, the f-scores of QUBIC2 were significantly
higher than the second-best algorithms, i.e. FABIA, Plaid and

1146 J.Xie et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz692#supplementary-data


QUBIC, with one-tailed Wilcoxon test P-values as 1.67e-10, 6.72e-
30 and 2.23e-62, respectively. It is also noteworthy that QUBIC2
and ISA were the best choices on the scRNA-Seq datasets. EBIC
achieved the best performance on only one scRNA-Seq dataset,
while its performance on the other scRNA-Seq dataset was
disappointing.

In regards to f-scores under the default parameters (d), QUBIC2
consistently had the highest values across all eight datasets, suggest-
ing that users can trust QUBIC2’s default settings in practical studies
for getting satisfactory results. QUBIC ranked as the second-best on
two datasets, namely one simulated dataset and one RNA-Seq data-
set from E.coli; ISA was suboptimal on two scRNA-Seq datasets;
and Bimax, FABIA and BicMix occupied second place on one
simulated dataset, microarray dataset from E.coli and RNA-Seq
dataset from human, respectively. QUBIC2 performed well in both
precision (p) and recall (r), indicating that the identified FGMs are
relevant and diverse. QUBIC2 also had a relatively small variance of
f-score (v), while the performance of some algorithms on specific
datasets was susceptible to parameter changes (e.g. FABIA, Bimax
and EBIC). ISA, QUBIC and BicMix were generally very stable, and
their variances were often the second smallest among datasets. As
for Bimax, although its recall was relatively low, it was character-
ized with high precision on four datasets.

3.2 QUBIC2 reaches robust performance across various

datasets and different sequencing technologies
To intuitively show the performance of a given algorithm, we
further assigned scores to it based on its rank among all the six algo-
rithms, in terms of f, d, v, p and r, respectively. Specifically, a score
of 9 was assigned to the algorithm that has the best performance,
and a score of 1 was assigned to the algorithm that has the worst
performance. For f, d, p and r, algorithms with higher values had
higher scores, while for v, those with lower values had higher scores.
We then calculated each algorithm’s summed and average scores on
eight datasets to get an idea about their overall performance and
their respective strengths and weaknesses. Specifically, QUBIC2,
QUBIC and BicMix were the top three algorithms across the eight

datasets according to the above scores (Fig. 2b). Overall, QUBIC2
achieved the highest median f-scores and default f-scores, and for
most of the cases, it also had higher precision and recall as well as
lower variance than the others. The rest of the algorithms had
unique advantages: QUBIC and BicMix had higher default and me-
dian f-scores, and QUBIC also had higher recall. ISA was remark-
able for its low variance, and both Plaid and Bimax had relatively
high precision. EBIC and FABIA were rather balanced tools, per-
forming neither badly nor well in the five aspects.

The performance of these nine algorithms across various datasets
and different sequencing technologies was also evaluated. QUBIC2
is recommended among simulation, microarray, RNA-Seq and
scRNA-Seq data due to its highest median f-score, default f-score,
median precision and median recall, as well as its lowest variance.
QUBIC had obvious advantages on simulation and RNA-Seq data;
BicMix was also a good choice for RNA-Seq data; FABIA performed
well on microarray data; both ISA and EBIC proved to be outstand-
ing on scRNA-Seq data; and Plaid ranked the third-best on simula-
tion and microarray data. While Bimax had no comprehensive
advantages, it is known for high precision on simulation and
RNA-Seq data. As far as species/organisms are concerned, QUBIC2
had the best performance on E.coli and human data, with its
ranks in terms of f, d, v, p and r almost always at the top; Plaid was
extraordinary in terms of low variance on data from E.coli and
high precision on data from human; and ISA was balanced and
second only to QUBIC2’s performance on data from human
(Supplementary Fig. S3).

3.3 QUBIC2 identifies FGMs with more biological

characteristics
The above section demonstrated the outstanding performance of
QUBIC2 on FGMs identification, and in this section, we used a spe-
cific case to illustrate why QUBIC2 has such excellent power. Since
QUBIC was overall the second-best algorithm, we took it as a refer-
ence in the illustration. A bicluster with 963 genes and 30 embryonic
cells (BC001_Q) was identified from Yan’s data using QUBIC, with
16 cells being in the eight-cell stage and 14 cells being in the

Fig. 2. Overall performance of QUBIC2. (a) Bar plot: Distribution of f-scores on each of the eight datasets under multiple runs (with at least 50 parameter combinations). Bars

denote the median of the dots. Q2, E, Bic, R, F, Q, B, I and P represent QUBIC2, EBIC, BicMix, Runibic, FABIA, QUBIC, Bimax, ISA and Plaid, respectively; Heatmap:

Relative performance of six algorithms regarding d, v, p and r, respectively (normalized over six algorithms). Note that v depends on the increment of parameters and therefore

is only indicative; (b) Lollipop plot: Overall scores of each algorithm summed across eight datasets; Spider plot: averaged scores of each algorithm in terms of f, d, v, p, r
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Morulae stage; and QUBIC2 found a bicluster consisting of 1, 264
genes and 15 embryonic cells (BC018_Q2), with all the cells being
in the eight-cell stage. Six hundred thirty-one genes appeared in both
BC018_Q2 and BC002_Q (shared genes) (Fig. 3a). Due to the con-
siderable overlap between the two biclusters, we concluded that
BC001_Q and BC018_Q2 share the same Core. Functional enrich-
ment analysis was conducted for the 631 shared genes based on the
Reactome database, and the top ten most enriched pathways were
identified (Fig. 3b). For each of the ten pathways, the adjusted P-val-
ues were significantly lower in the genes of BC018_Q2 than in the
shared genes (one-tailed paired Wilcoxon-test P-value¼0.000976),
while genes of BC001_Q always had a significantly higher adjusted
P-value than did the shared genes (one-tailed paired Wilcoxon-test
P-value¼0.000977). The above phenomena suggest that given a
pathway, QUBIC2 tends to capture a higher proportion of genes
involved in that pathway than does QUBIC. Hence, it is appropriate
to claim that given the same Core, QUBIC2 is more likely than
QUBIC to recruit genes that are functionally related to the core.

Among the top ten most enriched pathways, DNA methylation
encountered the most apparent change in terms of adjusted P-values.
DNA methylation provides a potential epigenetic mechanism for
maintaining cellular memory during self-renewal. The DNA methy-
lation pathway consists of 32 genes, and QUBIC2 captured 20
of them. Compared to QUBIC, QUBIC2 additionally secured
seven genes DNMT1, DNMT3L, HIST1H2BO, HIST1H2BJ,
HIST1H2AJ, HIST1H2BB and HIST1H2AB, all of which play es-
sential roles in the DNA methylation pathway. It is also noteworthy
that QUBIC2 has more comprehensive coverage of the histone fam-
ily genes, which play essential roles in DNA strands compaction and
chromatin regulation. An overview of pathways that BC018_Q2
genes are involved in are provided in Supplementary Figure S4.

3.4 QUBIC2 provides a robust statistical evaluation

framework for all the identified biclusters
The significance of gene modules from the identified biclusters is
usually evaluated by pathway enrichment analysis. However, many
organisms (including E.coli and human) have limited functional
annotations supported by experimental verifications, which makes a
systematic evaluation of all identified biclusters non-trivial. To fill
this gap, a statistical method was proposed in this study, which can
calculate a P-value for a bicluster purely based on its size (number of
genes and conditions).

To validate the rationality of our statistical method, QUBIC2
was run on the RNA-Seq data from E.coli under multiple parameter
settings, and a correlation test was conducted between the P-values
of biclusters calculated via pathway enrichment analysis (named

knowledge-based P-value) and the corresponding size-based
P-values (Fig. 4a, details in Supplementary Method S5). Note that to
distinguish the two, italic lowercase p was used to denote the p-
value of the Spearman correlation test, while italic uppercase P was
used to denote the significance of biclusters. Interestingly, we found
that there was a strong correlation between the size-based P-values
and the knowledge-based P-values. The average Spearman correl-
ation coefficients (q) were higher than 0.40 (ComTF_q¼0.50,
TF_q¼0.57, KEGG_q¼0.47, SEED_q¼0.46 and ECO_q ¼0.44),
and the average p-values for the correlation tests were smaller than
0.01 (Fig. 4b and c), suggesting that the correlations between
knowledge-based P-values and size-based P-values were statistically
significant at 0.01 level. As showcased in Figure 4, all the qs in the
five groups were positive. Also, qs related to regulatory pathways
(i.e. TF_ q and ComTF_ q) were generally larger than qs those
related to metabolic pathways (i.e. KEGG_ q and SEED_ q). This
indicated that the size-based P-value seemed to be more suitable for
the evaluation of biclusters in terms of their regulatory significance.
Besides, the parameter f, which controls the level of overlaps be-
tween biclusters, had a negative association with q (Supplementary
Fig. S5), signifying that the size-based P-values had a stronger asso-
ciation with knowledge-based P-values when the overlaps between
biclusters are relatively low.

4 Conclusion and discussion

QUBIC2 is a novel biclustering algorithm developed for FMGs de-
tection from both simulated and real gene expression data and
shows superior and robust performance across diverse biotechnol-
ogy platforms, including microarray, bulk RNA-Seq and scRNA-
Seq. It is empowered by three unique features, which contribute to
its significant advantages in functional gene modules detection. The
proposed significance evaluation framework based on bicluster size
will provide a solid foundation for the systematic evaluation of all
identified biclusters, especially for those from non-model species.
We believe that QUBIC2 can serve for biologists and bioinformati-
cians as a useful tool to extract novel biological insights from large-
scale gene expression data, and we believe that it can facilitate the
study of distinct responses by different cell types in the same popula-
tion when encountered by the same stimuli or stresses. However,
most of the biclustering methods, including QUBIC2, encountered a
dramatic performance drop on scRNA-Seq data, especially 10X gen-
omics based scRNA-Seq data, compared to other RNA-Seq data. To
fully excavate the potential of scRNA-Seq data, we must overcome
several challenges.

First, as sequencing costs decrease, more massive scRNA-Seq
datasets will become increasingly common [e.g. researchers can

Fig. 3. Comparison of two biclusters identified by QUBIC2 and QUBIC, respective-

ly. (a) Visualization of the two biclusters. Red box denotes bicluster from QUBIC2,

and a blue box indicates bicluster from QUBIC. The overlapped genes are marked

as shared genes. The colors of the bar at the top denote cell types, with blue repre-

senting the eight-cell stage and red being the Morulae stage; (b) Comparison of

adjusted P-values for the top ten most enriched pathways of shared genes, QUBIC

genes and QUBIC2 genes

Fig. 4. Validation on the rationality of the statistical framework. (a) The workflow

of correlation test between knowledge-based P-value and size-based P-value; (b)

The distribution of correlation coefficients (q) between P-value obtained from en-

richment analysis and size-based P-value. We run QUBIC2 under 70 different par-

ameter settings, and q was calculated under each run; (c) Scatter plot of correlation

coefficients and p-values. The y-axis denotes the correlation coefficient for the spear-

man association test, and the x-axis denotes the p-value of the association test
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easily obtain scRNA-Seq data covering tens of thousands of cells via
10x Genomics (Freytag et al., 2018)]. Thus, the scalability to large
datasets and the efficiency of tools will become the bottlenecks.
Currently, the discretization and dual searching functions of
QUBIC2 are time-consuming (Supplementary Note S3 and
Supplementary Fig. S6). To improve the efficiency of QUBIC2, the
OpenMP method will be implemented in the EM steps for
discretization.

Another challenge lies in the interpretation of time series data,
which provides the potential to elucidate the cell trajectory process
and reconstruct causal gene regulatory networks from observational
data. However, current scRNA-Seq protocols lose the true temporal
coupling between measurements; thus existing tools fail to identify
causal interactions to a satisfactory level (Qiu et al., 2018). QUBIC2
was applied to another temporal dataset (Supplementary Result S1
and Supplementary Fig. S7) and discovered biclusters specific to
time point. However, QUBIC2 could only separate cells collected at
different time points, and the further finer differentiation was not
captured. We are developing a new framework to rebuild the time-
line of cell differentiation from scRNA-Seq data, followed by a new
algorithm to extract causal interactions from time-series expression
data. The new algorithm will first group the expression change ten-
dencies into several representative patterns to reduce the dimension
of the timeline but keep the correlation with time delay. Then it will
detect significant biclusters by taking expression values and change
tendency patterns into consideration simultaneously.
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