
Sequence analysis

Improved representation of sequence bloom trees

Robert S. Harris1 and Paul Medvedev2,3,4,*

1Department of Biology, 2Department of Computer Science and Engineering, 3Department of Biochemistry and Molecular Biology and
4Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA 16801, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on March 25, 2019; revised on August 15, 2019; editorial decision on August 19, 2019; accepted on August 20, 2019

Abstract

Motivation: Algorithmic solutions to index and search biological databases are a fundamental part of bioinformat-
ics, providing underlying components to many end-user tools. Inexpensive next generation sequencing has filled
publicly available databases such as the Sequence Read Archive beyond the capacity of traditional indexing meth-
ods. Recently, the Sequence Bloom Tree (SBT) and its derivatives were proposed as a way to efficiently index such
data for queries about transcript presence.

Results: We build on the SBT framework to construct the HowDe-SBT data structure, which uses a novel partitioning
of information to reduce the construction and query time as well as the size of the index. Compared to previous SBT
methods, on real RNA-seq data, HowDe-SBT can construct the index in less than 36% of the time and with 39% less
space and can answer small-batch queries at least five times faster. We also develop a theoretical framework in
which we can analyze and bound the space and query performance of HowDe-SBT compared to other SBT
methods.

Availability and implementation: HowDe-SBT is available as a free open source program on https://github.com/med
vedevgroup/HowDeSBT.

Contact: pzm11@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Public read databases such as the Sequence Read Archive (SRA) con-
tain a treasure trove of biological information and have the potential
to become a ubiquitous community resource by enabling broad ex-
ploratory analyses. For example, given a long nucleotide sequence,
which experiments in the database contain reads matching it? More
concretely, which human RNA-seq experiments from the SRA con-
tain a transcript of interest? Unfortunately, there does not exist a
way for today’s biologist to answer such a question in a reasonable
amount of time. Tapping into the potential of these databases is
hampered by scalability challenges and will require novel
approaches from the algorithm community.

The computational problem falls into the widely-studied cat-
egory of string alignment problems (Gusfield, 1997; Mäkinen et al.,
2015). However, it differs in several regards. The strings to be
matched are rarely present in the database in their entirety. Instead,
sequencers produce many highly fragmented copies of the desired
string, each subjected to potential sequencing error. Furthermore,
the scale of the databases makes traditional sequence alignment
methods, such as SRA-BLAST (Camacho et al., 2009), inadequate
(Solomon and Kingsford, 2016).

The seminal paper of Solomon and Kingsford (2016) demon-
strated that the above transcript question can be simplified to a

question of approximate k-mer membership. Each experiment can
be viewed as a collection of its constituent k-mers, and the biological
question can be answered by finding all experiments which contain
a high percentage of the k-mers in the query transcript. They demon-
strated that this approach, even if only done approximately, is a
good proxy for the answer to the transcript question. It also lends it-
self to answering a more broad range of questions, such as SNP pres-
ence, viral contamination, or gene fusion (Bradley et al., 2017).
Their work has opened the door to a slew of data structures imple-
menting various k-mer indices, roughly falling into two categories.

The first category of approaches are based on the Bloofi
(Crainiceanu and Lemire, 2015) data structure. Each experiment’s
k-mers are first stored in a Bloom filter (BF) (Bloom, 1970), an effi-
cient but lossy data structure for storing sets. The experiments are
then grouped into a hierarchical structure (i.e. tree) based on their
similarity, where each leaf corresponds to the k-mers in an experi-
ment. Each internal node represents the union of the k-mers in its
descendants. The tree allows an efficient search for experiments
matching a given k-mer profile by pruning non-promising branches.
Bloofi was first adapted to the sequencing context by the Sequence
Bloom Tree (SBT) data structure (Solomon and Kingsford, 2016),
and further work improved the representation of the internal nodes
(Solomon and Kingsford, 2017; Sun et al., 2018) and the clustering
of the tree topology (Sun et al., 2018).

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 721

Bioinformatics, 36(3), 2020, 721–727

doi: 10.1093/bioinformatics/btz662

Advance Access Publication Date: 22 August 2019

Original Paper

https://github.com/medvedevgroup/HowDeSBT
https://github.com/medvedevgroup/HowDeSBT
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz662#supplementary-data
https://academic.oup.com/

The SBT approaches aggregate k-mer information at the level of an
experiment. The second category of approaches aggregate experiment
information at the level of the k-mers. In such an approach, each query
k-mer is independently looked up in an index to retrieve information
about which experiments contain the k-mer (Almodaresi et al., 2017,
2018; Bradley et al., 2017; Holley et al., 2015; Holley and Melsted,
2019; Muggli et al., 2017; Mustafa et al., 2018; Pandey et al., 2018;
Yu et al., 2018). In this context, experiments are referred to as colors,
and such a data structure is sometimes called a colored de Bruijn graph.
These approaches are complementary to the SBT and the best choice
depends on the particular properties of the queries and the dataset,
such as the sharedness of k-mers between experiments.

In this paper, we make two main contributions. First, we develop
an alternative way to partition and organize the data in an SBT such
that it becomes more compressible and faster to query. To demonstrate
the performance advantages of our method, called HOWDE-SBT, we
compare it on real data to the previous SBT methods. We also propose
and explore a culling procedure to remove non-informative nodes from
the tree and create a non-binary forest (Supplementary Material).

Second, we introduce a theoretical framework which allows us
to prove bounds on the performance of HOWDE-SBT in comparison
with Split-SBT (abbreviated as SSBT) (Solomon and Kingsford,
2017). Previous papers in the field have focused on experimental
metrics for comparison, but, while these are very valuable and ne-
cessary, they can vary greatly depending on the dataset or the system
used. Theoretical bounds can deepen our understanding of why
algorithms perform well and can drive the development of better
methods. In this paper, we derive an information theoretic bound on
the space used by an SBT (Theorem 1) and quantify the number of
bit lookups necessary for a query (Theorem 2).

2 Preliminaries

Let x and y be two bitvectors of the same length. A bitvector can be
viewed as a set of the positions that are set to 1, and in this view, the
set union (intersection, respectively) of x and y is equivalent to bit-
wise OR (AND, respectively). We write the bitwise AND between x
and y as x \ y, and the bitwise OR as x [y. The bitwise NOT oper-
ation on x is written as �x. The set difference of x and y is written as
x n y and can be defined as x n y ¼ x \ �y. The empty set is repre-
sented as a bitvector of zeros. The universal set, denoted by n, is rep-
resented as a bitvector of ones. Given that the fraction of 1 s in x is
p, the empirical entropy of x is defined as HðpÞ ¼ �ðp log 2pþ
ð1� pÞ log 2ð1� pÞÞ.

A BF is a bitvector of length b, together with q hash functions,
h1; . . . ; hq, where b and q are parameters. Each hash function maps
a k-mer to an integer between 0 and b� 1. To add a k-mer x to the
set, we set the position hiðxÞ to 1, for all i. To check if a k-mer x is in
the set, we check that the position hiðxÞ is 1, for all i. Note that a
false positive may occur, i.e. x may have never been added but all its
corresponding positions were still set to 1 and it is considered to be
contained in the BF. In this paper, we restrict the number of hash
functions to be q¼1 (as is done in other SBT approaches).

Next, consider a rooted binary tree T. The parent of a non-root
node u is denoted as parent(u), and the set of all the leaves of the
subtree rooted at a node u is denoted by leaves(u). Let children(u)
refer to the child nodes of a non-leaf node u. Define ancestors(u) as
1 if node u is the root, and parentðuÞ [ancestorsðparentðuÞÞ other-
wise. That is, ancestors(u) are all the nodes on the path from u to
the root, except u itself.

Suppose that there is a BF associated with each leaf of T. Then,
define B[ðuÞ for a leaf node u as its associated BF and B[ðuÞ for an
internal node as [i2leavesðuÞ B[ðiÞ. Note that B[ðuÞ of an internal
node u can be equivalently defined as B[ðuÞ ¼ [i2childrenðuÞ B[ðiÞ.
Define the intersection of leaf BFs in the subtree rooted at a node u
as B\ðuÞ ¼ \i2leavesðuÞ B[ðiÞ. Equivalently, at internal nodes,
B\ðuÞ ¼ \i2childrenðuÞ B\ðiÞ.

In this paper, we solve the following problem:
Database input: A database D ¼ fD1; . . . ;Dng, where each Di is

a BF of size b that represents experiment i. Typically, Di contains all
the non-erroneous k-mers that appear in the reads of experiment i.

Query input: A multi-set of k-mers Q (called the query), and a
threshold 0 < h � 1.

Query output: The set of experiments whose Di contains at least
a fraction h of the query k-mers, i.e. fi : jfx 2 Q : x exists in
Digj � h � jQjg

Note that in this formulation, we assume that D (along with param-
eter b) is already given to us. How to choose b and construct D from
raw reads was already described in Solomon and Kingsford (2016).

3 Representation and querying

Initially, we determine a tree topology T using the clustering algo-
rithm of Sun et al. (2018) as a black-box. A topology is a binary tree
with a bijection between its leaves and the experiment BFs in our
database; a topology does not yet have bitvectors assigned to the in-
ternal nodes. We now show how to assign these bitvectors—Bdet

and Bhow—and how they can be used to answer a query.
Conceptually, each node u represents the set of experiment BFs

corresponding to leaves(u). We observe that some positions are
determined in u: they have the same value in each of leaves(u).
Moreover, for the positions that are determined, we know exactly
how they are determined. Formally, we define

BdetðuÞ¢B\ðuÞ [B[ðuÞ BhowðuÞ¢B\ðuÞ (1)

Note that Bhow is intended to only be informative for those positions
that are in Bdet. Figure 1 shows an example of a tree and its Bdet and
Bhow representation.

Having Bdet and Bhow at each node can enable the following effi-
cient query search; it is essentially the same strategy as in Sun et al.
(2018) and Solomon and Kingsford (2017), but adapted to the
HOWDE-SBT tree. When we receive the set of query k-mers Q, we
hash each one to determine the list of BF positions corresponding to
Q (recall that our BF uses only one hash function, hence each k-mer
corresponds to just one position). We call this list the unresolved
positions. We also maintain two counters: the number of positions
that have been determined to be 1 (present), and the number of posi-
tions determined to be 0 (absent). These counters are both initially
0. We then proceed in a recursive manner, starting at the root of the
tree. When comparing Q against a node u, each unresolved position
that is 1 in BdetðuÞ is removed from the unresolved list and the corre-
sponding bit in BhowðuÞ determines which counter, present or ab-
sent, is incremented. If the present counter is at least hjQj, we add
leaves(u) to the list of matches and terminate the search of u’s sub-
tree. If the absent counter exceeds ð1� hÞjQj, Q cannot match any
of the descendant leaves so we terminate the search of u’s subtree. If
neither of these holds, we recursively pass the two counters and the
list of unresolved positions down to u’s children. When we reach a
leaf, the query unresolved list will become empty because Bdet is all
ones at a leaf, and the algorithm will necessarily terminate. Figure 1
shows an example of a query execution.

We observe that some bit positions will never be looked at during a
search, as follows. First, if a position is determined at a node v, it will
be removed from the query unresolved list (if it was even there) after
node v is processed. We say that this position is inactive in v’s descend-
ants, since a search will never query that position. Formally, a position
is active in BdetðuÞ if it is not determined at its parent (equivalently, at
any of its ancestors). Second, the only positions that are queried in
BhowðuÞ are those that are active and set to one in BdetðuÞ. We say these
positions are active in BhowðuÞ. Formally, we can define

Bactive
det ðuÞ¢

BdetðparentðuÞÞ if u has a parent
n if u is the root

(
(2)

Bactive
how ðuÞ¢BdetðuÞ \ Bactive

det ðuÞ (3)

Bits that are inactive are wasteful, since they take space to store
but are never queried. We remove these bits, forming (usually
shorter) bitvectors comprised of only the active bits. Formally, let

Bsqz
det ðuÞ be BdetðuÞ with all the inactive bits removed, and we let

Bsqz
howðuÞ be BhowðuÞ with all the inactive bits removed. Bsqz

det and Bsqz
how

722 R.S.Harris and P.Medvedev

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz662#supplementary-data

are further compressed with the general purpose RRR compression
algorithm (Raman et al., 2007), and these compressed bitvectors are
what, in the end, constitute our index. We note that since the re-
moval of inactive bits changes the indices into the bitvectors, the
query algorithm has to be modified accordingly by using rank and
select. Since this is done in essentially the same way as in Solomon
and Kingsford (2017), we omit the details here.

4 Analysis of savings compared to previous work

In this section, we show the connection of our representation to pre-
vious approaches and analyze the theoretical improvements. The
structuring of our bitvectors can be viewed as an extension of the
approach in Solomon and Kingsford (2017), which is called SSBT.
The SSBT representation approach subsumes the representation of
Sun et al. (2018), so we focus our comparison on SSBT. Briefly,
SSBT uses the same approach of having a tree where the bitvectors
at a node u represent, for each bit position x, whether x is 1 in all,
none, or some of the leaves(u). It also marks a bit position as in-
active if it can never be reached during a query. The SSBT bitvectors
are called usim and urem. The topology of the SSBT is computed dif-
ferently from HOWDE-SBT, and, as was shown in Sun et al. (2018),
it results in a poorly clustered tree. However, since we want to focus
on the improvements solely due to bitvector representation, we will

assume that the SSBT is constructed using the same topology as
HOWDE-SBT. In this case, the relationship of SSBT to HOWDE-SBT
can be summarized as a one-to-one relationship between all possible
bitvector states, shown in Figure 2.

The intuition which guided our design of HOWDE-SBT, relative
to SSBT, was (i) minimizing the number of active positions and
1 bits (to improve space), and (ii) minimizing the number of bit look-
ups performed during a query (to improve speed). To try to theoret-
ically quantify this improvement, we derive a savings rate per bit
position x, in terms of (i) nx, the number of nodes where x is active
in Bdet, and (ii) sx, the percentage of nodes where x is active in Bhow

that have a 1.
Let T be the tree topology. We are not able to directly derive the

savings rate for T after RRR compression, but we instead rely on
Shannon’s information compression bound. For a bitvector a that is
generated by a 0th order Markov model and that has a fraction p of
1 s, the best that a lossless compression algorithm can achieve is
jajHðpÞ bits. While in practice this bound might be beaten because
our bitvectors are not generated by a 0th order Markov chain, it is
still a useful proxy for the compressibility [and in any case the
RRR compression that we use does not compress beyond the 0th
order bound (Raman et al., 2007)]. Let Ihowde

x (respectively, Issbt
x)

denote Shannon’s information bound for storing all the bit values at
x in T using HOWDE-SBT’s representation (respectively, SSBT’s
representation).

Fig. 1. Example HOWDE-SBT on D ¼ f1110 0011 1000 0000; 1110 1111 0000 0000; 1111 1100 0000 0000; 1001 0001 1100 1000; 1001 0000 1111 0000; 1001 0000 0000 1111g.
Each box represents a node of the tree, with leaves shown in blue and internal nodes in gray. For conciseness, the boxes show Bdet, Bhow, B[and B\, but do not explicitly show Bsqz

det

and Bsqz
how. The yellow boxes demonstrate the processing of an example nine k-mer query with h ¼ 0:5. The initial query is shown at the top, with the bits corresponding to the query

k-mers shown with a U. The query flows down the tree, i.e. it is processed in a preorder traversal. The query state presented to a node is Qin and the result from the node is Qout.

Some bits are resolved as either present (P) or absent (A) across the subtree. Such bits are counted in the corresponding totals and removed from further processing (hyphen) in

descendants. Processing along a branch halts if either total reaches the threshold needed to determine the outcome. In this example, the search along any branch can be terminated if

either the present counter or the absent counter exceeds 5. In this example, Q matches the first two experiments. (Color version of this figure is available at Bioinformatics online.)

HowDe-SBT 723

THEOREM 1. Let 0 � x < b be a bit position. Then,

Ihowde
x ¼ 3nx þ 1

2
H
ðnx þ 1Þð1þ sxÞ

3nx þ 1

� �

Issbt
x ¼ nxð4� sxÞ � sx

2
H

nxð1þ sxÞ þ sx � 1

nxð4� sxÞ � sx

� �

PROOF. Let Tx be the subtree of T containing all nodes where x is ac-
tive in Bdet. Observe that Tx is indeed a subtree and it contains exact-
ly the nodes where x is determined and their ancestors. The total
number of nodes in Tx is nx. Let ‘x be the number of leaves of Tx.
Note that since every internal node of T has two children,
‘x ¼ ðnx þ 1Þ=2, for all x. Note that the nodes at which the Bhow

bits are active are exactly the leaves of Tx, and sx is the percentage
of these that are 1.

Now, the nodes for which x is active in Bdet are exactly the nodes
of Tx, and thus x contributes nx active Bdet bits. The only time Bhow

is active at x is when Bdet is set to 1, which is exactly at the leaves of
Tx. Hence, the total number of active bits is nx þ ‘x ¼ ð3nx þ 1Þ=2.
Next, we count the number of active bits that are set to 1. The Bdet

bits set to one are exactly at the leaves of Tx. There are ‘x active
Bhow bits, of which a fraction sx are set to one. Hence, the number
of active bits set to one is ‘xð1þ sxÞ ¼ ðnx þ 1Þð1þ sxÞ=2.

To prove the statement about Issbt
x , we use the equivalences in

Figure 2 as a guide. The number of active positions in the usim vec-
tors is nx and in the urem vectors is nx � sx‘x. In sum, the number of
active positions is 2nx � sx‘x ¼ nxð4�sxÞ�sx

2 . The number of active bits
in usim that are set to 1 is ‘xsx and the number of active bits in urem

that are set to 1 is nx � ‘x. Hence the number of 1 bits in S is
nx � ‘xð1� sxÞ ¼ nxð1þsxÞþsx�1

2 . h

THEOREM 2. Suppose both the SSBT and HOWDE-SBT are built from the

same tree topology T. Then the number of bit lookups necessary to

resolve a bit position x is ð3nx þ 1Þ=2 in HOWDE-SBT, and ðnxð4� sxÞ �
sxÞ=2 in SSBT.

PROOF. Consider HOWDE-SBT. For every internal node of Tx, we only
make one lookup to Bdet, resulting in nx � ‘x lookups. At the leaves of
Tx, we must also look at Bhow, resulting in 2‘x lookups. The total num-
ber of lookups is then nx þ ‘x ¼ ð3nx þ 1Þ=2. For SSBT, we must al-
ways check both usim and urem at every node, with one exception: at a
leaf of Tx, we do not need to check urem if usim is 1. Hence, the number
of lookups is 2nx � ‘xsx ¼ ðnxð4� sxÞ � sxÞ=2. h

We can measure the percent improvement in the space bound as

DIx ¼ ðIssbt
x � Ihowde

x Þ=Issbt
x , shown in Figure 3a. In the limit, DIx

approaches between 9% and 14% for sx � 0:75. Similarly, we can
measure the percentage improvement in the number of lookups as

1� 3nxþ1
ð4�sxÞnx�sx

, which in the limit goes to 1�sx

4�sx
. The improvement in

lookups is thus between 0 (for sx ¼ 1) and 25% (for sx ¼ 0); for
sx ¼ 0:5, it is 14%.

In large scale applications, our theoretical analysis can be simpli-
fied by assuming that nx goes to the limit. However, HOWDE-SBT

can be applied in different settings, and some of these settings (like a
private patient cohort) may in fact not be very large. Our detailed
analysis can be used to determine at which point a dataset is large
enough for the asymptotic effects to kick in; e.g. Figure 3a indicates
that the space savings reaches a stable point roughly at nx ¼ 50.

We caution, however, that our analysis does not automatically
translate to total improvements when all the positions are consid-
ered jointly. The total data structure size depends a lot on the struc-
ture of the input. That is reflected by the distribution of nx and sx in
the real data, whether or not they are correlated, the entropy of all
the bits together, rather than separated by position and the higher-
order entropy of the bitvectors. These effects can be analyzed using
real data, which we do in Section 6.

5 Construction algorithm

In this section, we describe an algorithm to compute Bsqz
det and Bsqz

how
for a given topology and prove its correctness. Our algorithm makes
a pass through the tree using a post-order traversal. At each node u,

it (i) computes Bdet and Bhow of u, and (ii) computes Bsqz
det and Bsqz

how

of each of its children using their Bdet and Bhow. As the final step,

Bsqz
det and Bsqz

how are computed for the root node.

The base case of the algorithm is, for each leaf u, to set
BdetðuÞ n and BhowðuÞ B[ðuÞ. For an internal node u, we first
construct B\ðuÞ and B[ðuÞ using the operations:

B\ðuÞ
\

c2childrenðuÞ
Bhow ðcÞ

B[ðuÞ
[

c2childrenðuÞ

�
BdetðcÞ [BhowðcÞ

�

Then, BdetðuÞ and BhowðuÞ are constructed by directly applying
their definitions (Equation 1). Once BdetðuÞ and BhowðuÞ have been
computed, we compute the active bits in BdetðcÞ and BhowðcÞ, for
each child c of u:

Bactive
det ðcÞ BdetðuÞ Bactive

how ðcÞ BdetðcÞ \ BdetðuÞ

Next, we make a linear scan through BdetðcÞ and BhowðcÞ and

copy over only the bits that are set in Bactive
det ðcÞ and Bactive

how ðcÞ, re-

spectively, thus generating Bsqz
det ðcÞ and Bsqz

howðcÞ.
These are finally RRR compressed and written to disk.
After the post-order traversal completes, we make the final step

to compute the Bsqz
det and Bsqz

how for the root u. It is essentially the
same process as for the internal nodes, but the active bits are set as:

Bactive
det ðuÞ n Bactive

how ðuÞ BdetðuÞ

Bsqz
det and Bsqz

how are then computed as before, removing the inactive
bits during a linear scan followed by RRR compression.

We note that the B[, B\, Bdet, Bhow, Bactive
det and Bactive

how bitvectors
are not stored after construction is complete. To save memory, these
can be discarded right after their use; however, it is necessary to save

Fig. 2. The left tables show the correspondence between the possible states of SSBT and HOWDE-SBT bitvectors. A dash represents an inactive bit. The tree is an example of a

bit position x and its values in both representations. The nodes of Tx have a double border. In this example, nx ¼ 5 and ‘x ¼ 3 because Tx has 5 nodes and 3 leaves. Further,

sx ¼ 1=3 because the how bit is active in exactly three nodes (corresponding to the leaves of Tx) and set to 1 in exactly one of them

724 R.S.Harris and P.Medvedev

some of the Bdet and Bhow vectors. Specifically, we must save BdetðuÞ
and BhowðuÞ between the visit to u and the visit to u’s parent. During
this interval they can be saved in memory or, in order to save memory,
they can be written to disk and reloaded to memory as needed (the de-
fault behavior). When u’s parent is visited, Bsqz

det ðuÞ and Bsqz
howðuÞ are

computed and BdetðuÞ and BhowðuÞ are no longer needed.
The following theorem shows that our algorithm is correct and

that its runtime is linear in the total size of the input bitvectors.

THEOREM 3. Given a database of n BFs, each of size b and a tree top-

ology, our method constructs Bsqz
det and Bsqz

how for all nodes in OðnbÞ time.

PROOF. We first prove the runtime. Our bitvector construction algo-
rithm operates on each node twice—once when the node is visited,
and a second time to finish the node when its parent is visited. (The
root is a special case—its finishing stage occurs at the end of the al-
gorithm.) At each stage, it performs a constant number of bitwise
operations which each takes OðbÞ time. Similarly, the linear scan to
remove inactive bits can be done in OðbÞ time by simply copying the
active bits to a new vector.

Next, we prove correctness. We will need the following technical
lemma:

LEMMA 1. The following properties are true:

B\ðuÞ ¼ B[ðuÞ if u is a leaf (4)

B[ðuÞ ¼ Bdet ðuÞ [Bhow ðuÞ (5)

PROOF. Equation (4) trivially follows from the definition of B\. For

Equation (5), first observe that B\ðuÞ and B[ðuÞ are disjoint (since

B\ðuÞ � B[ðuÞ). Combine this with the definition of BdetðuÞ, and we get

B[ðuÞ ¼ BdetðuÞ n B\ðuÞ ¼ BdetðuÞ \ B\ðuÞ. Negating both sides, we get

B[ðuÞ ¼ BdetðuÞ [B\ðuÞ ¼ BdetðuÞ [BhowðuÞ h

We first show the correctness of computing Bdet and Bhow when
we visit u. For a leaf u,

Bdet ðuÞ ¼ B\ ðuÞ [B[ðuÞ ðby definitionÞ
¼ B[ðuÞ [B[ðuÞ ½from Equation ð4Þ�
¼ n

Bhow ðuÞ ¼ B\ðuÞ ðby definitionÞ
¼ B[ðuÞ ½from Equation ð4Þ�

If u is an internal node, then it is enough to show that B\ and B[
are computed correctly.

B\ ðuÞ ¼
\

c2childrenðuÞ
B\ ðcÞ ðby definitionÞ

¼
\

c2childrenðuÞ
Bhow ðcÞ ðfrom def: of BhowÞ

B[ðuÞ ¼
[

c2childrenðuÞ
B[ðcÞ ðby definitionÞ

¼
[

c2childrenðuÞ

�
Bdet ðcÞ [Bhow ðcÞ

�
½from Equation ð5Þ�

To show the correctness of computing Bactive
det ðcÞ and Bactive

how ðcÞ,
recall their definitions from Section 3. It is straightforward to see
that our algorithm computes Bactive

det and Bactive
how exactly according to

these definitions, both for the case of children and for the case of the
root. Finally, the algorithm correctly computes Bsqz

det and Bsqz
how be-

cause it simply applies their definitions. h

We note that the complexity of constructing the tree topology
was not studied in Sun et al. (2018), but the obvious implementation
would take Xðn2Þ time. Though it takes negligible time on currently
tested datasets, it may become the bottleneck in the future if n
increases by several orders of magnitude.

6 Results

6.1 Experimental setup
To evaluate HOWDE-SBT, we compared it against its two predeces-
sors, ALLSOME-SBT (Sun et al., 2018) and SSBT (Solomon and
Kingsford, 2017). All experiments were run on an Intel Xeon CPU
with 512 GB of RAM and 64 cores (at 2.10 GHz). Our tool is open
source and available for free through https://github.com/medve
devgroup/HowDeSBT. All details about how the tools were run,
including parameters, together with datasets needed to reproduce
our results, are available on https://github.com/medvedevgroup/
HowDeSBT/tree/master/reproduce.

We used the same data for evaluation as Solomon and Kingsford
(2016), except that we removed experiments that did not have reads
longer than k. There were 66 experiments removed in this way. A
67th experiment was removed because the corresponding BF in
Solomon and Kingsford (2016) was empty. Together, the removed
experiments had a total of 675 million reads. The resulting dataset
contained 2585 human RNA-seq runs from blood, brain and breast
tissues, compromising all relevant human RNA-seq datasets in the
SRA at the time of Solomon and Kingsford (2016). For each file, we
filtered out any k-mers that occurred less than a file-dependent
threshold. We used the thresholds from Pandey et al. (2018), for

(a) (b)

Fig. 3. (a) DIx as a function of nx, for various values of sx. (b) The distributions of and dependencies between sx and nx on the real data. We use a random subsample of 1 mil

bit positions for the plot, but omit those positions that are determined at the root (i.e. nx ¼ 1). These make up 15% of all values, and they all have sx ¼ 0. Each of the remaining

positions are shown as a gray dot in the background. The sx values are binned and the distribution of nx within each bin is shown as a box plot. On the top (respectively, right)

of the plot is the histogram of sx (respectively, nx)

HowDe-SBT 725

https://github.com/medvedevgroup/HowDeSBT
https://github.com/medvedevgroup/HowDeSBT
https://github.com/medvedevgroup/HowDeSBT/tree/master/reproduce
https://github.com/medvedevgroup/HowDeSBT/tree/master/reproduce

consistency purposes. We used k¼20 and a BF size of b ¼ 2 � 109

(as in previous work) and k-mer counting was done using Jellyfish
(Marçais and Kingsford, 2011).

To study query performance, we created four types of queries: a
single transcript, a batch of 10 transcripts, a batch of 100 and a batch
of 1000. Transcripts were picked arbitrarily from Gencode (ver. 25)
transcripts that are at least k nt long. We created 100, 10, 3 and 3 rep-
licates for each type of query, respectively. We include batches of mul-
tiple transcripts in our tests because SBT performance is known to
depend on batch size (Solomon and Kingsford, 2016). The idea of
combining multiple queries in a batch and then processing them at
each node simultaneously was first described by Solomon and
Kingsford (2016) and is implemented in all SBT methods, including
HOWDE-SBT. We use a value of h ¼ 0:9 for all experiments. Note
that because the output of HOWDE-SBT is identical to SSBT and
ALLSOME-SBT, we do not need to compare their accuracy; moreover,
a comparison of SBT accuracy relative to exact methods like MANTIS

was also already explored in Solomon and Kingsford (2016).

6.2 Performance comparison
Table 1 shows the time and space taken to construct the index. The
index could be created in less than 36% of the time and with 39%
less space for HOWDE-SBT than for all other approaches. The faster
construction time of HOWDE-SBT over ALLSOME-SBT was due to a
combination of having to handle much smaller bitvectors during
construction (as reflected by the smaller index size) and software en-
gineering improvements. Otherwise, the construction algorithms of
the two methods differ only by the specific bitvector operations
applied during the tree traversal.

It is important to note that the construction times in Table 1 do
not include the pre-processing time of converting the SRA read files
to the initial experiment BFs. This is a time-consuming process,
which took us several days using multiple threads. We did not ob-
tain reliable timing results since we did the conversion on the fly
while streaming the data from the SRA over a network connection.

To measure the query time, we first note that there are different
use cases that effect how to best measure time performance. SBT
approaches are designed to scale to a very large number of experi-
ments or to machines with limited memory (e.g. a desktop com-
puter) because the memory required for a query is not dependent on
the number of experiments; only one node of the tree needs to be
loaded into memory at any given time. Therefore, we focused our
analysis on a setting where the index is loaded into memory with
each new query.

Table 2 shows the query speed for all tools. HOWDE-SBT was
faster than other SBT approaches, with over a 5x speedup on single-

transcript batches. Peak RAM usage was < 1.3 GiB for all batches
for all tools Table 3.

We also tested the effect of warming the cache prior to querying,
where we ran each query two consecutive times and then reported
the run-time for the second run (Supplementary Table S1). Warming
the cache prior to querying led to improved query times for all tools,
but their relative performance remained mostly similar.

6.3 Bitvector properties
First, we investigate how many positions are active and how satu-
rated the active bits are. The fraction of active Bdet positions
decreases going down the tree (by definition), with a median of
0.006 at internal nodes and 0.002 at leaves. The saturation of Bsqz

det
(i.e. the percentage of the active bits that are determined) is 100% at
the leaves (by definition) and has a median of 41% at the internal
nodes. The saturation of Bsqz

how (i.e. the percentage of the active Bhow

bits that are 1) has a median of 51% at the leaves and 12% at the in-
ternal nodes. It decreases with the height of a node (i.e. maximum
distance to a leaf), meaning that at higher levels of the tree, the vast
majority of positions that are determined are found to be absent ra-
ther than present. Figure 4 shows the saturation distributions. In
terms of final space on disk, after RRR compression, the leaves ac-
count for only 18% of the total index size.

In Section 4, we derived the reduction in space and query time
for a bit position x in terms of the number of nodes where it is active
in Bdet (denoted by nx) and the fraction of nodes where it is set to
one in Bhow (denoted by sx). Figure 3b shows the distribution of
these values on our tree. The median value for sx is 0.14 and for nx

is 31, which corresponds to DIxu14% in Figure 3a. However, we
also see a correlation between nx and sx (Spearman coefficient of
r¼0.67). Any future extension of our theoretical analysis per bit
position to one of all bit positions jointly should take this complex-
ity into account. We note that the total reduction in index size of
HOWDE-SBT over SSBT on our data (38%) is due not only to the
improved bit representation but also due to the better tree topology
that HOWDE-SBT constructs; thus, a direct comparison to our theor-
etical predictions is challenging.

7 Conclusion

In this paper, we presented a novel approach for the representation
of SBTs and studied its performance from both a theoretical and an
experimental perspective. The main intuition behind our representa-
tion is that it reduces the number and entropy of the active bits.
Compared to previous SBT approaches, HOWDE-SBT is an improve-
ment on all fronts: it constructs the index in less than 36% of the
time and with 39% less the space, and can answer small-batch
queries five times faster. Compared specifically against ALLSOME-
SBT, the biggest advantage is that the size of the index is an order of
magnitude smaller. In comparison against SSBT, the biggest advan-
tage is in the construction time and query times, across all batch
sizes.

With the improvements in this paper, the SBT can already be
deployed for small and mid-size databases, such as a private patient
cohort or all the sequencing data in flybase.org. Such a deploy-
ment will need to provide an automated way to update the database;
while our method naturally supports insertions in Oðheight � bÞ time
[we have omitted the details, but Sun et al. (2018) give the basic

Table 1. File sizes (in GiB) and build times

HOWDE-SBT ALLSOME-SBT SSBT

Construction time (h) 9 25 57

Intermediate space 602 602 602

Index size 14 142 23

Notes: The intermediate space refers to the initial experiment BFs. The con-

struction time is the time to build the index from the BFs and does not include

k-mer counting. All times shown are on one processor.

Table 2. Query times (s)

HOWDE-SBT ALLSOME-SBT SSBT

Single 5.4 36.7 29.4

Ten 44.5 353.7 159.6

Hundred 171.3 817.8 400.8

Thousand 719.7 1168.6 3509.4

Notes: Values shown are the median over all the replicates. The cache was

cleared prior to each run.

Table 3. Peak resident RAM (in GiB) observed during queries

HOWDE-SBT ALLSOME-SBT SSBT

Single 0.8 0.3 1.3

Ten 0.8 0.3 1.1

Hundred 0.8 0.3 1.1

Thousand 0.8 0.6 1.1

Note: Values shown are the maximum over all the replicates.

726 R.S.Harris and P.Medvedev

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz662#supplementary-data

overview of how insertions can be handled], a quality assurance step
will be necessary prior to automating database updates. It will also
be necessary to provide a front-end interface [e.g. Galaxy or similar
to Bradley et al. (2017)]) for easy access. Such front-ends should

also provide wrappers for more biologically-oriented queries (i.e. to
convert ‘which sample has a SNP’ into a k-mer query).

Acknowledgements

The authors are thankful to Ayaan Hossain and Natasha Stopa for helping

prototype some aspects of this project. This work has been supported in part

by NSF awards DBI-1356529, CCF-551439057, and IIS-1453527 to PM and

partially supported by PSU’s College of Engineering Multidisciplinary Seed

Grant Program. Research reported in this publication was supported by the

National Institute Of General Medical Sciences of the National Institutes of

Health under Award Number R01GM130691. The content is solely the re-

sponsibility of the authors and does not necessarily represent the official views

of the National Institutes of Health.

Conflict of Interest: none declared.

References

Almodaresi,F. et al. (2017) Rainbowfish: a succinct colored de Bruijn graph

representation. In: LIPIcs-Leibniz International Proceedings in Informatics.

Vol. 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Boston.

Almodaresi,F. et al. (2018) An efficient, scalable and exact representation of

high-dimensional color information enabled via de Bruijn graph search.

bioRxiv, 464222.

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13, 422–426.

Bradley,P. et al. (2017) Real-time search of all bacterial and viral genomic

data. bioRxiv, 234955.

Camacho,C. et al. (2009) BLASTþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Crainiceanu,A. and Lemire,D. (2015) Bloofi: multidimensional Bloom filters.

Inform. Syst., 54, 311–324.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology. Cambridge University Press,

Cambridge, MA.

Holley,G. and Melsted,P. (2019) Bifrost––highly parallel construction and

indexing of colored and compacted de Bruijn graphs. bioRxiv.

Holley,G. et al. (2015) Bloom filter trie–a data structure for pan-genome stor-

age. In: International Workshop on Algorithms in Bioinformatics. Springer,

Atlanta, pp. 217–230.

Mäkinen,V. et al. (2015) Genome-Scale Algorithm Design. Cambridge

University Press, Cambridge, UK.

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Muggli,M.D. et al. (2017) Succinct colored de Bruijn graphs. Bioinformatics,

33, 3181–3187.

Mustafa,H. et al. (2018) Dynamic compression schemes for graph coloring.

Bioinformatics, 35, 407–414.

Pandey,P. et al. (2018) Mantis: a fast, small, and exact large-scale sequence--

search index. Cell Syst., 7, 201.

Raman,R. et al. (2007) Succinct indexable dictionaries with applications to

encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms

(TALG), 3, 43.

Solomon,B. and Kingsford,C. (2016) Fast search of thousands of short-read

sequencing experiments. Nat. Biotechnol., 34, 300–302.

Solomon,B. and Kingsford,C. (2017) Improved search of large transcriptomic

sequencing databases using split sequence Bloom trees. In: International

Conference on Research in Computational Molecular Biology. Springer,

Hong Kong, pp. 257–271.

Sun,C. et al. (2018) AllSome sequence bloom trees. J. Comput. Biol., 25,

467–479.

Yu,Y. et al. (2018) SeqOthello: querying RNA-seq experiments at scale.

Genome Biol., 19, 167.

Fig. 4. The distribution of nodes’ bitvector saturations, as a function of a node’s

height (i.e. maximum distance to a leaf). The top panel shows barplots for the per-

centages of positions in the Bdet vector that are active, the middle panel shows bar-

plots for the percentages of those positions that are set to 1 (i.e. determined) and the

bottom panel shows barplots for the percentages of active Bhow positions that are

set to 1. Above each plot is the histogram of height values, and to the right of each

plot is the density plot of the percentages being measured in that plot

HowDe-SBT 727

	btz662-TF1
	btz662-TF2
	btz662-TF3

