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Summary:

The microbiome plays a critical role in human health and disease, and there is a strong scientific 

interest in linking specific features of the microbiome to clinical outcomes. There are key aspects 

of microbiome data, however, that limit the applicability of standard variable selection methods. In 

particular, the observed data are compositional, as the counts within each sample have a fixed-sum 

constraint. In addition, microbiome features, typically quantified as operational taxonomic units 

(OTUs), often reflect microorganisms that are similar in function, and may therefore have a 

similar influence on the response variable. To address the challenges posed by these aspects of 

the data structure, we propose a variable selection technique with the following novel features: a 

generalized transformation and z-prior to handle the compositional constraint, and an Ising prior 

that encourages the joint selection of microbiome features that are closely related in terms of 

their genetic sequence similarity. We demonstrate that our proposed method outperforms existing 

penalized approaches for microbiome variable selection in both simulation and the analysis of real 

data exploring the relationship of the gut microbiome to body mass index (BMI).
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1. Introduction

The human microbiome consists of the trillions of microbial cells harbored by each person, 

primarily as bacteria in the gut (Turnbaugh et al., 2007). It has been estimated that there are 

more than 10 times as many microbial cells in the human body as our own somatic or germ 

cells, and that the gut microbiome may contain more than 100 times as many genes as the 

human genome (Bäckhed et al., 2005). Due to the emergence of next-generation sequencing 
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techniques, which enable comprehensive profiling of the microbiome, there is growing 

recognition of its critical role in health and disease. In particular, there is increasing evidence 

showing that the composition of the gut microbiota may be associated with inflammation 

and metabolic disorders, which are common features of obesity and cancer (Cani and 

Jordan, 2018). The gut microbiome has also been linked to diabetes (Qin et al., 2012), 

cardiovascular disease (Jie et al., 2017), and response to immunotherapy (Gopalakrishnan et 

al., 2018).

The development of next-generation technologies has made it possible to directly quantify 

the composition of the microbiome using DNA sequencing. Although whole genome 

shotgun sequencing is increasing in popularity, due to its relative expense, most microbiome 

studies to date rely on sequencing of the 16S ribosomal RNA (rRNA) gene, a highly 

conserved region of the bacterial genome, which is the most commonly used molecular 

marker in microbial ecology (Case et al., 2007). Standard pipelines for analyzing 16S rRNA 

sequencing data include initial processing steps, such as demultiplexing and quality filtering 

(Nguyen et al., 2016). The processed sequences are then clustered based on sequence 

similarity into operational taxonomic units, or OTUs, which represent a group of closely 

related microorganisms (Ursell et al., 2012).

Analysis of microbiome data is challenging for several reasons. The number of sequencing 

reads observed in a single sample is an arbitrary total that may vary widely, and the 

observed counts assigned to a given OTU can only be interpreted relative to this fixed 

sum. The data are therefore compositional, and require specialized methods for analysis 

to avoid misleading results (Gloor et al., 2017). In particular, standard analytic methods 

such as regular linear regression are not applicable to microbiome data (Li, 2015). An 

additional challenge in the analysis of microbiome data is its high dimensionality. Sparse 

modeling approaches are therefore important to reduce noise in estimation and enable the 

identification of key features. The features identified can guide the future development of 

microbiome interventions. For example, understanding which bacteria increase cancer risk 

or drive response to therapy could inform recommendations on diet, probiotic use, or choice 

of antibiotics, as these factors play an important role in shaping the state of the microbiome.

Although the raw number of features for analysis may be large, many OTUs represent 

organisms that are phenotypically similar and have related function. This relatedness is 

captured by the phylogenetic tree structure, which reflects evolutionary relationships among 

the organisms surveyed based on their DNA sequence similarity. OTUs may also be mapped 

to existing taxonomic tree structures using bacterial 16S rRNA databases. Taxonomy 

refers to the grouping of microorganisms into the traditional Kingdom-Phylum-Class-Order­

Genus-Species hierarchy, while phylogeny aims to capture the series of branching events 

during evolutionary history which separated the various bacterial species observed in the 

sample. Taxonomic classification is coarser than phylogenetic organization, but easier to 

compare across studies due to the standardized naming system. Although the relatedness 

among OTUs is a source of dependence, knowledge of the tree structure can be used to 

reduce dimension or improve power (Washburne et al., 2018). For example, microbiome 

data may be analyzed after aggregating the OTUs into a higher taxonomic level such as 

species, genus, or family.
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In the current work, we propose a Bayesian sparse regression model for microbiome 

data which addresses the challenges outlined above, including the compositional nature 

of the data, the high dimension, and the relatedness among the features. To address the 

fixed-sum constraint, we propose a generalized transformation, which enables us to impose 

sparsity directly on the p regression coefficients. To take advantage of the phylogenetic 

tree information, we formulate a structured prior to link the selection of closely related 

organisms, which are likely to have a similar effect on the outcome.

The paper is organized as follows. Section 2 provides a brief review of existing methods for 

compositional data analysis and microbiome regression. In Section 3, we include a detailed 

description of the proposed modeling approach, including the generalized transformation 

and the prior formulation. We compare the performance of the proposed method with that 

of penalization-based approaches on simulated data in Section 4, and apply these methods 

to real data examining the association of the gut microbiome to body mass index (BMI) in 

Section 5. We conclude with a discussion in Section 6.

2. Background

We denote the compositional data by an n × p matrix of variables U = (uij), where each 

row of U is constrained to sum to 1 across the p variables. In the context of microbiome 

data, these values correspond to the relative abundances of the OTUs. Due to the unitsum 

constraint, the p components of each observation cannot be interpreted independently, as 

they are restricted to lie in a (p − 1)-dimensional simplex. In groundbreaking work on 

this issue, Aitchison (1982) proposed the additive log-ratio transformation. Since some of 

the observed counts may be 0s, a typical first step in these approaches is to add a small 

pseudo-count (typically 0.5), and then divide by the sum of the counts within each sample 

to obtain relative abundances that sum to 1. To link the compositional data with an n × 

1 vector of continuous response values y, Aitchison and Bacon-Shone (1984) included the 

same transformation idea into linear regression and proposed the linear log-contrast model 

y = Xη\p + ε, where X = {log(uij/uip)} is an n × (p − 1) matrix of the additive log-ratio 

transformed predictor values, taking the p-th predictor as the reference component, η\p = 

(η1, … , ηp−1)T is the regression coefficient vector, and the noise vector ε has entries 

independently distributed as N(0, σ2). An intercept term is not included in the model, since it 

can be eliminated by centering the response and predictor variables.

Several recently proposed methods have extended this framework to propose sparse 

regression models for microbiome data. In particular, Lin et al. (2014) reformulated the 

log-contrast model into a symmetric form with a linear constraint by letting ηp = − ∑j = 1
p − 1ηj,

y = Zη + ε, ∑
j = 1

p
ηj = 0, (1)

where Z = (loguij) is an n × p matrix of log transformed predictor values, and η = (η1, 

… , ηp)T is the vector of regression coefficients. Lin et al. (2014) proposed applying an 

l1 penalty to the coefficient vector to perform feature selection. Shi et al. (2016) extended 
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this work by allowing the selection of subcompositions at a fixed taxonomic level. Finally, 

Lu et al. (2019) considered generalized linear regression analysis with linear constraints for 

microbiome compositional data.

The approaches developed by Aitchison (Aitchison, 1982; Aitchison and Bacon-Shone, 

1984) rely on a transformation of the compositional variables. In the framework of Bayesian 

variable selection, we would like to instead focus on achieving sparsity of the regression 

coefficients. We therefore start from the symmetric form of a linear regression with 

constraints imposed on the parameters. In the remainder of this section, we create a general 

framework in which we shift the transformation from the compositional covariates to the 

linear coefficients, using the unified matrix operation T. This framework can accommodate 

the contrast transformation approach, as well as a generalized transformation that will be 

discussed in the next section.

Let T represent the contrast transformation matrix. By definition, T must be a p × (p − 

1) matrix where each column sums to 0. Based on linear algebra, the p-vector η can be 

decomposed as η = Tθ + θ0, where θ is a (p − 1)-vector with no constraints, and θ0 is a 

solution to the linear equation 1θ0 = 0, with the simplest choice being θ0 = [0, 0, ⋯ , 0]T. As 

above, we let U = (uij) represent the observed relative abundances, and Z = (log uij) represent 

their log-transformed values. Then the linear model in equation (1) can be expressed as

y = ZT θ + ε = Xθ + ε, (2)

where X = ZT and θ = (θ1, … , θp−1). In other words, the parameter space degenerates 

to p−1 dimensions after the contrast transformation T is performed on Z. The additive 

log-ratio (ALR) and centered log-ratio (CLR) transformations are widely used in 

microbiome analysis. Both belong to the category of contrast transformations, as they 

satisfy the constraint that each column sum to zero. We give their explicit matrix form 

in Supplementary Material Section S1. In the next section, we describe our proposed 

Bayesian modeling approach which allows the integration of either of these or a generalized 

transformation within a Bayesian variable selection framework.

3. Proposed model

We now describe our proposed sparse regression model, which has two key aspects designed 

to address the unique challenges of microbiome data: (1) a novel generalized transformation, 

which allows us to handle the compositionality of the data while still imposing sparsity 

directly on the p regression coefficients; and (2) a structured prior that encourages the joint 

selection of microbiome features based on their genetic sequence similarity. We provide a 

schematic illustration of our proposed model, which we discuss in detail in the remainder of 

this section, in Figure 1.

3.1 Generalized transformation

One obvious drawback of the additive log-ratio and centered log-ratio transformations is 

that the transformed design matrix X depends on the choice of transformation and requires 

that one of the original variables be dropped. To address this limitation, we propose an 
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generalized transformation, which allows us to avoid dropping variables and satisfy the 

permutation and selection invariance properties described in Lin et al. (2014). Our proposed 

approach allows us to maintain a parameter space of dimension p, corresponding to the 

number of observed variables. We write the linear model of equation (1) in the standard 

form

y = Xβ + ε, (3)

where X = Z and β = η. Instead of conducting the contrast transformation on the linear 

coefficients in the regression model (2), we can perform a generalized transformation on the 

parameters and build the linear combination ∑j = 1
p βj into the Bayesian prior. We define the 

generalized transformation T as

T =
Ip

c × 1p′ (p + 1) × p
, (4)

where c is a constant and 1p′  is a p dimensional row vector of 1s. Recalling the generalized 

lasso (Tibshirani et al., 2011), we can see that T plays a similar role as the penalty matrix 

in the generalized lasso formulation, which can be used to express structural or geometric 

constraints. We will provide details on the prior formulation in the next subsection. In 

addition to imposing shrinkage on the regression coefficients, we propose shrinkage of the 

linear sum term. This is controlled by the parameter c, where larger values of c induce more 

shrinkage on ∑j = 1
p βj.

We now summarize the main differences between the contrast transformations (2) and the 

proposed generalized transformation (3) in terms of estimation of the regression coefficients. 

When using a contrast transformation, the linear regression has a parameter space of 

dimension p − 1. Within the Bayesian modeling framework, we can apply the ALR or CLR 

transform, and then estimate the parameter vector θ in the p−1 space. However, to obtain the 

estimated effect sizes for the originally measured variables, we then have to transform these 

estimates to the original p space via η = T θ. When using the generalized transformation, we 

obtain estimates in the original p-dimensional space, which can be directly interpreted as the 

estimated coefficients.

3.2 Prior formulation

In our Bayesian variable selection approach, we rely on a latent indicator γi ∈ {0, 1} to 

represent the inclusion of the ith covariate in the model. We can therefore index the model 

space by the vector γ. Under model ℳγ, we assume that the n-dimensional response vector y 

follows a multivariate normal distribution

y ∣ ℳγ, βγ, σ2 ∼ N(Xγβγ, σ2In) , (5)

where Xγ denotes a modified version of the X matrix including only those columns 

corresponding to nonzero entries in γ, and βγ represents the corresponding linear 

coefficients for the selected covariates. The coefficient vector βγ has length pγ = ∑iγi.
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From the frequentist perspective, the regression coefficients are fixed, but unknown, 

quantities. In this framework, linear algebra can be used to transform the 

constrained parameters to unconstrained parameters in a lower-dimensional space. 

These transformations need to satisfy the “contrast” property that each column of the 

transformation matrix sums to 0. From a Bayesian perspective, the regression coefficients 

are random. In this framework, we can assume a multivariate prior on the parameters, so 

that their random draws sum to zero. A natural idea inspired by the g-prior (Zellner, 1986) 

is the introduction of a specific structure into the Gaussian distribution. Suppose that the 

prior follows the form βγ ∣ ℳγ, σ2, τ2 ∼ N(0, τ2σ2Rγ). If the sum of all the elements of Rγ 

equals zero (which we refer to as the zero-constrained property), then the sum of the normal 

random variables Σγβγ will be zero because the variance of the sum becomes 0. We name 

the multivariate Gaussian prior that satisfies the zero-constrained property the z-prior. To 

give an explicit form for the z-prior, we use the generalized transformation Tγ to build the 

linear combination ∑j = 1
p βj into a multivariate Gaussian prior. We define the z-prior of βγ 

conditional on ℳγ as

βγ ∣ ℳγ, σ2, τ2 ∼ N(0, σ2τ2(Tγ′Tγ)−1) , (6)

where Tγ consists of the columns of the generalized transformation T defined in equation (4) 

corresponding to the selected variables, i.e., the non-zero entries of γ.

The term (Tγ′Tγ)−1, which appears in the prior variance of equation (6) above, has the 

explicit form Ipγ − c2
1 + c2pγ

1pγ′ 1pγ. Thus, the sum of the linear coefficients ∑i ∈ γ βi follows 

a normal distribution with mean 0 and variance 
pγ

1 + c2pγ
σ2τ2. When c becomes large, the 

variance approaches 0, which implies that more shrinkage is imposed on ∑i ∈ γ βi. We can 

even let c be + ∞; then the term (Tγ′Tγ)−1 converges to Ipγ − 1
pγ

1pγ′ 1pγ and var(∑i ∈ γ βi) = 0. 

For more details, please see Section S3 of the Supplementary Material. This zero constraint 

on the sum of the coefficients is needed to handle compositionality, but is flexible enough 

to accommodate modifications, such as shrinkage on any individual βi. Finally, the z-prior is 

analytically tractable, because the variance 
pγ

1 + c2pγ
σ2τ2 is less than 1

c2σ2τ2, which does not 

depend on pγ. For example, if we set c to be 100, then the variance will be sufficiently small. 

Thus, we successfully reframe the linear constraint on the coefficients in equation (3) to a 

joint Gaussian prior in the Bayesian framework.

We now discuss the link between our z-prior and the g-prior, which has a similar form. As 

described below, the z-prior addresses both the high dimensionality and compositionality 

of the data, and is therefore better suited to our applications than the g-prior. The g-prior 

(Zellner, 1986) has been widely adopted because of its simple form, which requires the 

specification of only a single parameter g, and because it has convenient analytical and 

computational properties. The g-prior and extensions are still quite popular in Bayesian 

inference (Liang et al., 2008; Bayarri et al., 2012). The variance of the g-prior is 
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proportional to the inverse of the Fisher information matrix σ2(Xγ
TXγ)−1. However, in 

the context of high-dimensional data where p ⪢ n, such as microbiome data, ((Xγ
TXγ)

is typically not invertible. Even if this matrix were invertible, a traditional g-prior is 

designed for Euclidean space rather than compositional space. In particular, the sum of 

all the elements in the matrix (Xγ
TXγ)−1 is not equal to zero, so the traditional g-prior 

does not satisfy zero-constrained property. For more details, please see Section S2 of the 

Supplementary Material.

We introduce the Bayesian model and prior for the contrast transformation as follows. For 

the linear model of equation (2), which relies on a contrast transformation, the Bayesian 

likelihood is y ∣ ℳγ, θγ, σ2 ∼ N(Xγθγ, σ2In), where θγ = {θi∣i ∈ γ}. The coefficient θγ has 

pγ − 1 degrees of freedom. We can impose a normal shrinkage prior on ηγ = Tγθγ to 

achieve sparsity in the original parameter space. So we define the normal shrinkage prior 

of θγ as θγ ∣ ℳγ, σ2, τ2 ∼ N(0, σ2τ2(Tγ′Tγ)−1), where Tγ includes the columns of contrast 

transformation corresponding to the variables selected under γ.

We assume that σ2 follows a conjugate inverse-gamma prior

σ2 ∣ ν, ω ∼ InvGamma( ν
2 , νω

2 ) . (7)

For the prior on γ, the simplest choice is an independent Bernoulli prior P(γi = 1) = p. In 

the next section, we describe a more sophisticated alternative: a structured hyperprior which 

enables us to link the selection of closely related taxa.

3.3 Ising prior

To address the challenge of the relatedness among the observed taxa, a number of recent 

publications have attempted to incorporate information from the phylogenetic tree into 

statistical modeling. Wang et al. (2017) proposed a tree-guided regularization method to 

select subcompositions corresponding to sets of features grouped based on their position 

in the tree. This approach, however, has limited computational scalability. Xiao et al. 

(2018) developed a mixed modeling approach which incorporates the correlation among 

OTUs based on their evolutionary distance, but does not allow for feature selection. In 

the Bayesian framework, Li and Zhang (2010) proposed the use of an Ising prior, which 

captures known information about the structure among the covariates, for high-dimensional 

variable selection; this method is not designed for compositional data, however. Finally, 

Wadsworth et al. (2017) take the microbiome data as the response variable, and perform 

selection to identify environmental or clinical factors that affect the taxa abundances.

Since we are interested instead in treating the microbiome variables as predictors, we must 

incorporate the relatedness of with compositional covariates within the Bayesian variable 

selection framework. In our regression model, we would like to favor the inclusion of taxa 

which have similar genetic sequences to other taxa identified as relevant, as they are likely to 

play a similar functional role and have similar impact on clinical outcomes. To achieve this 
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goal, we integrate prior information on the similarity of the taxa into an Ising prior on the 

variable inclusion indicators. Specifically, as shown in Figure 1, we rely on the phylogenetic 

tree P to capture the similarity between OTUs (U). We re-express this tree as a matrix Q, 

where large entries reflect close dependence, small entries reflect more distant relations, and 

0s represent that no dependence is assumed. Let a = (a1, … , ap)T be a vector and Q = 

(qij)p×p be a symmetric matrix of real numbers, where qij = 0 for all features i and j whose 

selection is not linked under the prior. Then the Ising prior distribution for γ is defined as

P(γ) = eaTγ + γTQγ − ψ(a, Q), (8)

where ψ(a, Q) represents the normalizing constant. The shrinkage parameters a, which take 

negative values, control the sparsity of γ. The smaller ai is, the more likely it is a priori that 

the ith covariate will not be included. The entries in the structural parameter Q control the 

strength of association between the selection of OTUs i and j. The larger qij is, the more 

likely it is that the ith and jth covariates will be jointly selected. Therefore, the Ising prior 

given in equation (8) acts to favor inclusion of OTUs that are close in genomic distance. 

When qij = 0 for all pairs (i, j), the Ising prior reduces to an independent Bernoulli prior.

3.4 Posterior inference

We now describe the Markov chain Monte Carlo (MCMC) method for generating samples 

from the posterior. We formulate an efficient Gibbs sampling approach by integrating out the 

parameters β and σ2, so that we only need to update the inclusion indicators γ. Estimates 

of β and σ2 can then be obtained post-MCMC conditional on the selected model. In the 

following, we assume that ν = ω = 0 in the inverse-gamma prior of equation (7). Given this 

choice of hyperparameters, the inverse-gamma reduces to a non-informative prior.

Marginal likelihood.—After integrating out β and σ2, the marginal likelihood of y given 

model ℳγ and the fixed hyperparameter τ2 is

p(y ∣ ℳγ, τ2) = (π)−n ∕ 2Γ(n
2)(τ2)−pγ ∕ 2 ∣ Aγ ∣−1 ∕ 2 ∣ (Tγ′Tγ) ∣1 ∕ 2 [yTy

− yTXγAγ
−1Xγ

Ty]− n
2 ,

(9)

where Aγ = Xγ
TXγ + 1

τ2 (Tγ′Tγ). More details on the derivations are given in Supplementary 

Material Section S4.

MCMC algorithm.—We now outline the construction of the Gibbs sampler on γ, which 

searches over the space of models {0, 1}p. Let γ(−i) = {γj : j ≠ i}, and I(−i) be {γj = 1 : j 
≠ i}, the set of indices for the selected variables other than i. τ is fixed at 1. The posterior 

distribution of γ given the data can be decomposed by Bayes formula as

P(γi = 1 ∣ γ( − i), y) = P(γi = 1 ∣ γ( − i))
P(γi = 1 ∣ γ( − i)) + F(γ′ ∣ γ)−1 × P(γi = 0 ∣ γ( − i))

, (10)

where F(γ′∣γ) is the Bayes factor for the indicator vectors γ′ and γ, and is defined as
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F(γ′ ∣ γ) =
∣ Aγ ∣1 ∕ 2 ∣ (Tγ′′ Tγ′) ∣1 ∕ 2

∣ Aγ′ ∣1 ∕ 2 ∣ (Tγ′Tγ) ∣1 ∕ 2
yTy − yTXγAγ

−1Xγ
Ty

yTy − yTXγ′Aγ′
−1Xγ′

T y

n
2

. (11)

From equation (8), the conditional distribution of γi under the prior is given by

P(γi ∣ γ( − i)) = eγiai + ∑j ∈ I( − i)qijγiγj

1 + eai + ∑j ∈ I( − i)qijγj
.

In each iteration, we select an index i at random, and then sample a Bernoulli random 

variable with probability P(γi = 1∣γ(−i), y) following equation (10). Since we update only 

one index at a time, pγ′ − pγ will be 1 or −1, and γ′ and γ differ only in the ith position. 

If the proposed value equals the current γi, the model is unchanged; otherwise, we update 

γ accordingly. To accelerate the computationally intensive step of evaluating F(i∣γ(−i)), we 

adopt the same procedure to calculate the matrix inverse and determinant as in Li and Zhang 

(2010).

Bayesian model selection approaches often use the scheme of calculating the posterior 

probability of a given model. However, this strategy is infeasible in high dimensions because 

any specific model is highly likely to be sampled only a small number of times in a workable 

length of MCMC. For our setting, it is therefore more appropriate to calculate the posterior 

marginal of each indicator p(γi = 1∣y), adopting an approach used by Ibrahim et al. (2002). 

We obtain posterior marginals by dividing the number of iterations where γi = 1 by the 

total number of iterations excluding the burn-in. To perform selection, we then threshold 

the posterior marginal probabilities following the median model approach of Barbieri et 

al. (2004), where covariates i with p(γi∣y) ⩾ 0.5 are positives, while those with posterior 

probabilities < 0.5 are negatives.

Conditional on the selected model ℳγ, the posterior density of the non-zero coefficients βγ 

follows a multivariate t-distribution, with mean βγ = Aγ
−1Xγ

Ty and covariance 1
n − 2CγAγ

−1, 

where Cγ = yTy − yTXγAγ
−1Xγ

Ty. The posterior density of σ2 follows an inverse-gamma 

distribution with the shape parameter n
2  and the scale parameter 1

2Cγ. The mean is given by 

Cγ
n . For justification of the prior on σ2, please refer to Supplementary Material Section S5.

4. Simulations

In this section, we compare our proposed Bayesian variable selection method using either 

the additive log ratio transformation (Bayesian ALR), centered log ratio transformation 

(Bayesian CLR), or the generalized transformation (Bayesian generalized) with the 

following existing approaches:
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lasso ref: the lasso applied after dropping a reference variable, where the estimated 

coefficient of the reference variable is taken as −1 × the sum of the remaining coefficients

lasso std: a naïve application of the standard lasso, simply ignoring the sum constraint

lasso comp: the penalized approach proposed in Lin et al. (2014) which addresses the 

compositionality of the data

group lasso: the group lasso of Yuan and Lin (2006), which addresses structured 

dependence

Importantly, none of the first three lasso approaches take into account the phylogenetic 

relationship among the bacterial taxa, while the group lasso, which enables selection 

based on a pre-specified group structure, does not handle the compositional constraint. To 

compare the variable selection performance in settings with both independent and dependent 

compositional predictors, we design two simulation scenarios: one with independent 

covariates, and one with structured dependence among the covariates. We assume the 

following data-generating model,

yi = ∑
j = 1

p
Xijβj + εi, ∑

j = 1

p
βj = 0, i = 1, …, n, (12)

where εi is independent and identically distributed as N(0, σ2).

4.1 Independent covariates

This simulation setup resembles the one included in Lin et al. (2014). We first generate an 

n × p data matrix O = (oij) from a multivariate normal distribution Np(θ, Σ), and then obtain 

the OTU relative abundance matrix U = (uij) by the transformation uij = e2oij ∕ ∑k = 1
p e2oik. 

The variables generated using this approach follow a logistic normal distribution (Aitchison 

and Shen, 1980). Since the abundances of features in microbiome data often differ by orders 

of magnitude, we let θj = log(0.5p) for j = 1, … , 5 and θj = 0 otherwise. To assume that all 

the covariates are independent, we let Σ = Ip, where Ip is the identity matrix. We generate the 

responses yi based on model (12) with β* = (1, −0.8, 0.6, 0, 0, −1.5, −0.5, 1.2, 0, …, 0)T. We 

define the signal to noise ratio (SNR) as SNR = mean∣β(γ=1))∣/σ. To generate settings with 

SNRs of 1, 5 and 10, we set σ as 0.933, 0.187 and 0.093. We set (n, p) = (100, 1000), and 

generated 100 simulated data sets for each setting.

For the lasso methods, penalty parameter selection was performed using cross validation. 

For the group lasso, the specified structure included two groups: one for the true variables, 

and one for the noise variables. We now describe the parameter choices used in applying 

the proposed Bayesian methods. For this simulation, which is focused on comparing the 

methods in a setting with independent predictors, we set the prior parameter Q to be a 

matrix consisting of 0s. The shrinkage parameter a is chosen to achieve a reasonable model 

size based on sensitivity analysis (shown in Supplementary Material Section S6). We set 
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a = − 12 × 1p′  to select approximately 6 covariates. The shrinkage constant c in equation (4) 

is set to be 10000, and the scaling parameter τ2 in equation (6) is set to be 1.

We rely on four performance metrics for our comparison of methods. We compute 

the prediction error, defined as PE = 1
ntest

(ytest − Xtestβtrain)T (ytest − Xtestβtrain), using an 

independent test sample of size ntest = n. The accuracy of the coefficient estimates is 

assessed by the l2 loss β − β∗
2. To assess the accuracy of variable selection, we report the 

number of false positives and the number of false negatives, where positives and negatives 

refer to nonzero and zero coefficients, respectively. The means and standard errors of these 

performance measures across the 100 simulated data sets for the seven methods under 

consideration are reported in Table 1. For each simulated data set, we divide the data into 

ten folds, to enable model fitting on 90 samples, and evaluation on the held-out set of 10 

samples; we repeat this procedure 100 times for each simulated data set. For simulation 

results with different values of n = 50 and p = 30, and with n =100 and p = 200, please refer 

to Supplementary Material Section S7.

The proposed methods perform much better than existing penalization-based methods in 

terms of prediction and estimation with low to moderate dimensionality. Although all of 

the methods achieve similar TPR, TNR, FPR and FNR (Figure 2a), the proposed methods 

have fewer false positive selections (Figure 2c). As only 5 out of 1000 variables have truly 

non-zero effects, it is not surprising to observe that TPRs and TNRs of all the methods 

are approximately 1. This indicates that all methods perform well in this simple scenario. 

As shown in Table 1, the proposed methods achieve smaller estimation losses and similar 

numbers of false negatives. Among the penalized approaches, the group lasso identifies 

fewer false positives than the other lasso variants in settings with higher signal, but its false 

positive rate increases sharply in the low signal setting: since the group lasso jointly selects 

entire sets of variables, the false selection of a group results in a large number of false 

positive covariates. In addition, the standard and group lasso estimators violate the zero-sum 

constraint on the coefficients, which the proposed methods do not. The variable selection 

performance of the Bayesian generalized estimator is comparable to that of Bayesian ALR 

and CLR, but it does not require choosing a reference or dropping any of the observed 

variables. Moreover, our proposed methods perform better than the lasso methods when the 

compositional covariates are independent, demonstrating that our modeling approach has 

advantages even without the incorporation of the Ising prior.

4.2 Dependent covariates

This simulation is designed to mimic real microbiome data, where the features have a 

complex dependence structure. Our simulation setup resembles that of Li and Zhang (2010). 

We first note that the expression {b0 + b1l}l = 1
L  is used to represent the equally spaced 

sequence from (b0 + b1) to (b0 + b1 L) with spacing b1. We let the sample size be n = 100 

and number of variables be p = 1000. The true variables are those with γj set to be 1, where 

j = {160 + 20l}l = 1
12 ∪ {560 + 20l}l = 1

12 . This corresponds to 24 nonzero coefficients, which 

are set to βj
∗ = [0.88, − 1.41, − 1.39, − 1.15, 1.04, 0.51, 1.21, − 1.95, − 1.86, 1.93, − 1.34, − 0.85]
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for j = {160 + 20l}l = 1
12 , and 

βj
∗ = [1.76, − 1.66, − 0.99, 1.48, 0.69, 1.87, − 0.54, 0.72, 1.35, 0.67, − 0.81, − 0.16] for 

j = {560 + 20l}l = 1
12 . We let θj = log(0.5p), when j = {160 + 20l}l = 1

12 ∪ {560 + 20l}l = 1
12 . 

Among the true predictors, the covariance is assumed to be Σij = 0.75 − 0.0015∣i − j∣, 
that is, the correlation between two covariates is negatively proportional to their distance 

(with a maximum of 0.75). To make the scenario more realistic and challenging, we let θj 

= log(0.25p) among the predictors j = {444 + l}l = 1
16 ∪ {944 + l}l = 1

16 , which are not relevant to 

the response. The covariance between those predictors is assumed to be Σij = 0.4−0.02∣i − j∣. 
The coefficients are set to be 0 for all the other covariates and the diagonals of Σ are set to be 

1.

We now describe the parameter settings used in applying the Bayesian methods. In real 

microbiome data sets, the abundances of closely related OTUs are typically correlated, 

while more distantly related OTUs can be considered to be independent. To capture this 

structure, the prior parameter matrix Q should be sparse with blockwise nonzero elements, 

corresponding to compact neighborhoods in the phylogenetic tree P. We construct Q so that 

it has nonzero entries for the true variables and, to avoid giving advantage to the Bayesian 

methods, also for the false variables j = {44 + l}l = 1
16 , {444 + l}l = 1

16 , and {944 + l}l = 1
16 . The 

shrinkage parameter a is chosen to achieve a reasonable model size based on sensitivity 

analysis (shown in Supplementary Material Section S6) with a range from −30 to 0. We 

set a = − 11 × 1p′  to select approximately 24 covariates. All the other parameters are fixed 

as before. In applying the group lasso, we mimicked the blocks within the Q matrix 

by specifying six groups, including two groups of correlated covariates with non-zero 

coefficients corresponding to the true signal, and four groups of noise covariates unrelated to 

the response.

The means and standard errors of these performance measures across the 100 simulated 

data sets for the seven methods under consideration are reported in Table 2. The proposed 

Bayesian methods generally outperform existing methods in terms of prediction and 

estimation. As shown in Figure 2b, the methods that account for the structure among the 

covariates, including the proposed methods and the group lasso, achieve smaller FNRs 

and bigger TPRs. As shown in Figure 2d, these methods also have fewer false negatives. 

As shown in Table 2, the proposed methods give much smaller estimation losses and 

prediction errors, and have a comparable number of false positives. As in the simulation 

with independent predictors, the group lasso has a high false positive rate in the low signal 

setting. The proposed Ising prior allows a more flexible approach to incorporate structural 

information, as it encourages, but does not force, joint selection of “nearby” covariates. 

Therefore, our proposed methods perform better than the lasso methods for data with a 

dependent covariate structure. Bayesian ALR and CLR have comparable performance to 

the Bayesian generalized method. The difference between the Bayesian ALR, CLR, and 

generalized methods is most obvious when the dimensionality is low to moderate and the 

signal is weak.
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In addition, we compare the performance of the proposed Bayesian generalized method 

with the compositional lasso (Lin et al., 2014) in scenarios with different combinations 

of SNR and covariate dependence structure. To assess the accuracy of variable selection 

across a range of model sizes, we provide receiver operating in Figure 3 along with the 

area under the curve (AUC), which were obtained by varying the penalty term (for the 

compositional lasso method) or by changing the posterior threshold of inclusion (for the 

Bayesian approach). Our results demonstrate that the two methods both achieve almost 

perfect accuracy (AUC close to 1) for the setting with independent covariates and SNR 1, 

but that the Bayesian method enables improved selection for the more difficult scenarios 

with dependent covariates and lower SNR.

The computational speed of the proposed method is quite fast, especially when the true 

model space is sparse. For all of the above simulations, each MCMC run has 20,000 

iterations with the first 15,000 as burn-in. On average for data with the dependent covariate 

structure, it takes 80 seconds to run 20,000 iterations with an average posterior model size of 

24 on an Intel Core(TM) i5-6500 with 3.2GHz CPU.

5. Application to gut microbiome data

The gut microbiome plays an important role in energy extraction and obesity. We illustrate 

the effectiveness of our proposed method by applying it to data from a study aimed at 

linking long-term diet with the composition of the gut microbiome (Wu et al., 2011, 

“COMBO” data), which was also analyzed by Lin et al. (2014). As a part of this study, 16S 

rRNA data was obtained via 454/Roche pyrosequencing from stool samples of 98 healthy 

subjects.

The OTU table, phylogenetic tree, and representative sequences were provided to us by 

the authors of Wu et al. (2011). We transformed the counts into relative abundances after 

adding a small constant of 0.5 to replace exact zero counts (Aitchison, 2003). We then used 

“mothur” (Schloss et al., 2009) to obtain taxonomic information on the 1763 OTUs based on 

the reference Silva Release 128, and obtained 112 genera.

5.1 Construction of prior parameter matrix Q

In order to apply our proposed Bayesian variable selection method, we need to determine the 

prior parameter Q which characterizes the similarity of OTUs based on their evolutionary 

history. Specifically, we define Q as the inverse of the phylogeny-induced correlation matrix, 

using either Euclidean correlation or an exponential correlation. Assume that we have p 
OTUs which belong to a phylogenetic tree P. We define the branch length from the leaf 

node k to the root node as lkk, k = 1, … , p, and lij as the shared branch length between 

leaf nodes i and j. As shown in Figure 4a, the shared distance between a and e is lae, 

and the distances to the root node for a and e are laa and lee, respectively. A phylogenetic 

variance-covariance matrix V computes the shared distance between all pairs of leaf nodes 

within a phylogenetic tree, and is defined as V = (lij)p×p. Following de Vienne et al. (2011), 

the Euclidean correlation matrix can be constructed as cij =
lij

lii ljj
. This matrix can be 

calculated using published R packages (Paradis, 2011).
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The patristic distance between OTUs (i.e., the length of the shortest path linking OTU i and 

j in the tree) is denoted as dij. It can be computed as dij = lii + ljj − 2lij. As seen from Figure 

4a, the patristic distance between a and e can be calculated as dae = laa + lee − 2lae. Then 

the exponential correlation between OTUs i and j can be described using the evolutionary 

model Cij(ρ) = e−2pdij, i, j = 1, … , p (Martins and Hansen, 1997; Xiao et al., 2018). The 

Euclidean correlation can be considered as a special case of the exponential correlation (see 

Supplementary Material Section S7), because larger values of ρ (smaller cij) group OTUs 

into clusters at a lower phylogenetic depth (where a cluster is defined as a group of highly 

correlated OTUs). In this case study, we use the Euclidean correlation structure for analysis. 

We include other options in our code.

We plot the phylogenetic tree of the 1763 OTUs from the COMBO 98 data in Figure 

4b. Most OTUs belong to two phyla: Firmicutes and Bacteroidetes. At the genus level, 

Bacteroides contains the largest number of OTUs. We plot the heatmap of the correlation 

and inverse correlation matrix between the OTUs in Figure 4c and 4d. Compared with the 

correlation matrix, its inverse (i.e., the structural prior parameter Q) is sparser and more 

focused on the highly correlated regions. The phylogenetic tree structure is consistent with 

the correlation, as the OTUs belonging to either Firmicutes or Bacteroidetes are clustered 

together. The shrinkage parameter a is set up as (−9, −9, … , −9) based on sensitivity 

analysis (Supplementary Material Section S6). All the other parameters are set the same as 

in the simulation studies.

5.2 Selection results

Since our simulations have demonstrated that the Bayesian contrast approaches perform 

similarly to the Bayesian generalized method, in the case study, we focus on a comparison 

of the Bayesian generalized method to the compositional lasso of Lin et al. (2014). We 

randomly divide the 98 samples into a training set of 74 samples and a test set of 24 

samples, and use the fitted model chosen based on the training data to evaluate the prediction 

error on the test set. We repeat this procedure 100 times. For the compositional lasso 

method, the average prediction error is 45.86 with a standard error of 1.21. For the Bayesian 

generalized method, the average prediction error is 21.23 with a standard error of 2.67. 

As shown in the fitted versus observed plot (Figure 5), the predictions from the proposed 

Bayesian method are more tightly distributed around the diagonal line representing perfect 

accuracy. These results show that the proposed method can achieve improved predictive 

performance over the compositional lasso approach.

To gain insight into aspects of the microbiome associated with BMI, we examined the 

features selected by the two approaches on the training data: 27 OTUs were identified using 

the compositional lasso, and 55 OTUs were identified using the Bayesian generalized model. 

At the phylum level, both methods select Bacteroidetes and Firmicutes as being associated 

with BMI. Thus, our method is consistent with the previous findings by Lin et al. (2014). 

Furthermore, our selection results at the genus level indicate that obesity may be associated 

with the genera Alistipes, Allisonella, Bacteroides, Roseburia and Lachnoclostridium. These 

genera were identified by previous studies in this area (Van Hul and Cani, 2019; Andoh et 

al., 2016; Verdam et al., 2013).
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6. Discussion

The proposed methodology makes two important advances to regression modeling of 

microbiome data: firstly, a novel approach to address the compositional constraint in 

estimation of the regression coefficients; and secondly, a structured prior that allows the 

phylogenetic relationships among the bacterial taxa to be taken into account. Our proposed 

method obviates the need to choose a specific reference variable and satisfies the selection 

invariance property. We have demonstrated that our proposed method outperforms existing 

penalized methods in both simulation and an application to human gut microbiome data. 

Finally, our highly efficient implementation allows model fitting within minutes in the p = 

1000 setting, and therefore offers appropriate scaling for real data applications.

To analyze compositional data, the isometric log-ratio (ILR) transformation has been 

proposed as an alternative to the ALR and CLR transformations (Egozcue et al., 2003). 

Since the ILR has multiple references, analysis of ILR-transformed data is challenging, as 

the dependence among the transformed covariates will deviate from the original dependence 

structure. For this reason, in the current work, we only consider the ALR and CLR 

transformations, as we can use the original tree structure to define the prior associations.

In future work, we would like to further explore approaches for quantifying similarity 

among the predictors to further improve selection and accommodate such alternative 

transformations. We are also interested in extending the current model, which assumes a 

continuous response, to handle binary or survival outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic illustration of the proposed model. Squares indicate fixed parameters; circles 

indicate random variables. Filled-in squares indicate known values. Filled-in circles 

indicate observed data. T denotes the transformation matrix. η denotes constrained linear 

coefficients, while β denotes the unconstrained linear coefficients after transformation. X 
denotes the transformed covariates. The prior variance of each β is denoted by σ2, which is 

assumed to follow an Inverse Gamma distribution with hyperparameters ν and ω. τ denotes 

the variance scale of β. Nc denotes the number of covariates. Nf denotes the number of 

unconstrained parameters. In the Ising prior, a denotes shrinkage parameter, and Q denotes 

the dependence structure.
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Figure 2: 
Bar plots of true positive rates (TPR), false positive rates (FPR), true negative rates (TNR), 

false negative rates (FNR), number of false positives and number of false negatives for 

predictions under different scenarios. The sample size n is 100, and the number of covariates 

p is 1000. The SNR is 1.
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Figure 3: 
Receiver operating characteristic (ROC) curves of variable selection results for the 

compositional lasso (left) and the Bayesian generalized method (right), along with the area 

under the curve (AUC), for progressively more difficult simulation settings: independent 

covariates (top), dependent covariates with SNR 1 (middle), and dependent covariates with 

SNR 0.1 (bottom).
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Figure 4: 
Quantification procedures from phylogenetic tree to graphical structure to correlation/

precision matrix.

Zhang et al. Page 21

Biometrics. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Fitted versus observed values of BMI.
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Table 1:

Performance comparison on simulated data with sample size n = 100 and p = 1000 independent covariates

SNR Method PE L2 loss FP FN

10 lasso ref 0.003 (0.0001) 0.005 (0.0003) 4.39 (0.26) 0 (0)

lasso std 0.002 (0.0001) 0.004 (0.0002) 2.85 (0.28) 0 (0)

lasso comp 0.002 (0.0001) 0.004 (0.0002) 2.28 (0.21) 0 (0)

group lasso 0.021 (0.001) 0.05 (0.002) 0.29 (0.07) 0 (0)

Bayesian ALR 0.02 (0.001) 0.04 (0) 0.01 (0.01) 0 (0)

Bayesian CLR 0.01 (0.0003) 0.003 (0) 0 (0) 0 (0)

Bayesian general 0.01 (0.0004) 0.003 (0) 0.01 (0.01) 0 (0)

5 lasso ref 0.01 (0.0006) 0.02 (0.001) 4.55 (0.28) 0 (0)

lasso std 0.01 (0.0004) 0.01 (0.0007) 3.18 (0.28) 0 (0)

lasso comp 0.01 (0.0005) 0.01 (0.0008) 2.37 (0.23) 0 (0)

group lasso 0.024 (0.001) 0.05 (0.002) 0.70 (0.12) 0 (0)

Bayesian ALR 0.04 (0.002) 0.04 (0) 0.02 (0.01) 0 (0)

Bayesian CLR 0.03 (0.001) 0.005 (0) 0 (0) 0 (0)

Bayesian general 0.04 (0.004) 0.005 (0) 0 (0) 0 (0)

1 lasso ref 0.27 (0.02) 0.49 (0.06) 4.34 (0.23) 0.10 (0.07)

lasso std 0.23 (0.02) 0.40 (0.06) 2.92 (0.25) 0.08 (0.06)

lasso comp 0.23 (0.02) 0.38 (0.06) 2.21 (0.18) 0.07 (0.06)

group lasso 0.16 (0.008) 0.17 (0.007) 24.69 (0.87) 0 (0)

Bayesian ALR 0.87 (0.04) 0.09 (0.005) 0.05 (0.02) 0.01 (0.01)

Bayesian CLR 0.89 (0.03) 0.05 (0.001) 0.02 (0.01) 0 (0)

Bayesian general 0.82 (0.31) 0.04 (0.001) 0.01 (0.01) 0 (0)
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Table 2:

Performance comparison on simulated data with structured dependence, sample size n = 100, and p = 1000 

covariates

SNR Method PE L2 loss FP FN

10 lasso ref 5.18 (0.38) 27.89 (0.42) 1.29 (0.09) 16.39 (0.29)

lasso std 4.52 (0.32) 26.57 (0.36) 0.20 (0.05) 15.50 (0.28)

lasso comp 4.89 (0.34) 27.17 (0.40) 0.42 (0.08) 15.95 (0.30)

group lasso 0.07 (0.003) 0.27 (0.008) 0 (0) 0 (0)

Bayesian ALR 0.04 (0.005) 0.11 (0.0008) 1.49 (0.46) 0 (0)

Bayesian CLR 0.03 (0.003) 0.11 (0.0002) 0.51 (0.27) 0 (0)

Bayesian general 0.05 (0.008) 0.11 (0.002) 1.15 (0.47) 0.01 (0.01)

5 lasso ref 5.15 (0.36) 28.09 (0.42) 1.24 (0.09) 16.42 (0.29)

lasso std 4.45 (0.31) 26.44 (0.34) 0.19 (0.05) 15.43 (0.27)

lasso comp 5.02 (0.36) 27.29 (0.42) 0.40 (0.08) 16.04 (0.31)

group lasso 0.08 (0.004) 0.28 (0.009) 0 (0) 0 (0)

Bayesian ALR 0.50 (0.18) 0.27 (0.03) 0.70 (0.31) 0.10 (0.06)

Bayesian CLR 0.33 (0.22) 0.18 (0.05) 0.67 (0.32) 0.15 (0.14)

Bayesian general 0.30 (0.13) 0.16 (0.02) 0.68 (0.39) 0.05 (0.03)

1 lasso ref 5.47 (0.39) 28.49 (0.47) 1.29 (0.11) 16.70 (0.34)

lasso std 4.81 (0.33) 27.00 (0.36) 0.13 (0.04) 15.80 (0.27)

lasso comp 5.20 (0.37) 27.68 (0.43) 0.45 (0.10) 16.30 (0.32)

group lasso 0.249 (0.013) 0.59 (0.023) 134.56 (31.57) 0 (0)

Bayesian ALR 2.85 (0.17) 0.60 (0.02) 1.11(0.45) 0.03 (0.02)

Bayesian CLR 2.71 (0.32) 0.58 (0.05) 1.14 (0.41) 0.19 (0.17)

Bayesian general 2.08 (0.14) 0.49 (0.01) 1.03 (0.38) 0.01 (0.01)
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