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Abstract

The conformational-driven allosteric protein diatom Phaeodactylum tricornutum aureochrome 1a 

(PtAu1a) differs from other light-oxygen-voltage (LOV) proteins for its uncommon structural 

topology. The mechanism of signaling transduction in PtAu1a LOV domain (AuLOV) including 

flanking helices remains unclear because of this dissimilarity, which hinders the study of PtAu1a 

as an optogenetic tool. To clarify this mechanism, we employed a combination of tree-based 

machine learning models, Markov state models, machine learning based community analysis, and 

transition path theory to quantitatively analyze the allosteric process. Our results are in good 

agreement with the reported experimental findings and reveal a previously overlooked Cα helix 

and protein linkers as important in promoting the protein conformational changes. This integrated 

approach can be considered as a general workflow and applied on other allosteric proteins to 

provide detailed information about their allosteric mechanisms.

Graphical Abstract

Introduction

Light, oxygen or voltage (LOV) domains are a subdivision of the Per-Arnt-Sim (PAS) 

superfamily that are sensitive to blue light and undergo conformational as well as dynamical 

changes upon light activation.1,2 This activation begins with the formation of a covalent 

bond between a cofactor and a conserved cysteine residue. Possible cofactors include flavin 
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adenine dinucleotide (FAD), flavin mononucleotide (FMN) or riboflavin.3 This covalent 

bond further promotes the overall structural changes, resulting in the alteration of the 

protein-protein interactions and thus signal transduction.4

Phaeodactylum tricornutum aureochrome 1a (PtAu1a) is a recently discovered LOV protein 

that consists of an unstructured N-terminal region, and a basic region leucine zipper (bZIP) 

DNA-binding domain connected to a C-terminal LOV core.5 The LOV domain, together 

with two flanking helices (A’α and Jα) is usually referred to as AuLOV.6 The protein is 

dynamically stable in the dark state due to the interaction between the LOV core and bZIP.7 

This interaction prohibits the protein binding with DNA.8 A photo-induced covalent bond is 

formed between the C4a position of the cofactor FMN and a nearby sulfur in Cys287. This 

covalent bond triggers a series of conformational changes, including the undocking and 

unfolding of Jα helix from the LOV core surface, the release of A’α helix from the 

hydrophobic site on LOV domain surface, and dimerization of the LOV domains.7

These events lead to the increase of PtAu1a affinity for DNA binding and are proposed to be 

allosteric.9 Recent research has revealed that a combination of structural changes in the LOV 

core and the undocking of Jα helix is essential for the release of A’α helix and LOV domain 

dimerization.7 The allosteric mechanism in PtAu1a is considered to be different from other 

LOV proteins since the location of the LOV domain is in the C-terminus in PtAu1a, while in 

the N-terminus in others.10,11 This structural difference raises the question on allosteric 

transmission in PtAu1a.

Various computational methods have been applied to explore protein allosteric mechanisms 

at atomic level.12–14 Molecular dynamics (MD) simulations are capable of providing 

atomic-scale information, as well as structure-function relationships15,16, and are widely 

used in sampling protein motions and structure landscapes.17 The significant computational 

power provided by graphical processing units (GPUs) has promoted the timescale of MD 

simulations from nanoseconds to milliseconds.18,19 To obtain more biologically meaningful 

information from trajectories, Markov state models (MSMs) are often used to extract 

asymptotic kinetic information based on limited simulations.20,21 Kinetically separate 

macrostates can be obtained from MSMs in the reduced dimension. Differences among these 

subspaces can then be quantified to gain insight into protein structure and function relations.

The success of MSMs depends on appropriate dimensionality reduction methods that can 

preserve global distances while retaining the most structural information.22 New 

dimensionality reduction methods have been developed to project the high-dimensional 

trajectories to lower dimensions for thorough study. However, many methods, such as 

principal component analysis (PCA)23, time-structure based independent component 

analysis (t-ICA)24 and t-distributed stochastic neighbor embedding (t-SNE) method25, suffer 

from problems including maintaining the similarity between high dimensional space and low 

dimensional space, and are not resistant to system noise.26 In the current study, MD 

simulations were projected onto a 2D space via the ivis framework27, which is a nonlinear 

method based on Siamese neural networks (SNNs) and has been shown powerful in 

interpreting biological systems.28
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Machine learning has recently achieved great accomplishments in chemistry and biology. 

Raccuglia et al. applied machine learning algorithms trained on failed experimental data to 

predict reaction results with high accuracy.29 Faber et al. employed machine learning 

techniques for feature vector representations of crystal structures.30 Botu et al. integrated 

machine learning framework to accelerate ab initio molecular dynamics simulation.31 The 

broad applications of machine learning stem from the ability to process large datasets and, 

more importantly, provide explanatory details.32,33 These favorable metrics offer a new 

prospective direction for the research on protein allostery. In this study, two tree-based 

machine learning models, random forest (RF) and one-vs-one random forest (OvO RF), 

were used to study the structural differences between macrostates and determine the 

contribution of residues to the allosteric process. In combination with machine learning and 

dynamic community analysis, Zhou et al. developed a new approach, known as machine 

learning based community analysis34, to identify important structural features in 

dynamically-driven protein allostery. Here we applied this method on AuLOV and 

demonstrated the feasibility of this method in analyzing conformational-driven protein 

allostery.

The AuLOV is investigated in this study through the MD simulations, tree-based machine 

learning models, machine learning based community analysis and transition path theory. Our 

results identified key residues that are consistent with experimental discoveries and 

suggested the importance of Cα helix, overlooked thus far. Moreover, we quantified the 

important role of N- and C-terminal linkers in modulating AuLOV allostery. The integrated 

methods determined the importance of each residue in the allosteric process, and therefore 

provided new insights into the allosteric mechanisms, which may promote future research on 

PtAu1a as an optogenetic tool.

Methods

Molecular Dynamics (MD) simulations

The initial structures of native dark state monomer and native light state of AuLOV dimer 

were taken from the Protein DataBank (PDB)35 with the PDB ID being 5dkk for the native 

dark state and 5dkl for the native light state. To keep the same number of residues in all 

structures, the longest common residue sequences (from Ser240 to Glu367) were modeled. 

Both the native dark and light structures contain FMN as a cofactor. The force field for the 

cofactor FMN was used from a previous study36. In order to fully explore the protein 

dynamics with regard to the formation of the covalent bond between cysteine 287 and FMN, 

two new transient states, referred to as transient dark state and transient light state, were 

generated. Specifically, the transient dark state was generated by forming the Cysteinyl-

Flavin C4a adduct bond in the native dark state structure. The transient light state was 

generated by removing the Cysteinyl-Flavin C4a adduct bond and constructing the dark state 

configuration in the native light state structure. These transient structures facilitate analysis 

of allosteric interconversion between the light- and dark-state structures.

The crystal structures were added with hydrogen atoms and were further solvated in a water 

box with the TIP3P water molecules37. Sodium cations and chloride anions were added for 

charge neutralization. For each structure, energy minimization was done with the steep 
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descent method and the adopted basis Newton-Raphson minimization. System temperature 

was raised to 300K through a 20 picoseconds (ps) MD simulations. Another 20ps 
simulations were done for equilibrium. 10 nanoseconds (ns) of isothermal-isobaric ensemble 

(NPT) followed by 1.1 microseconds (μs) of canonical ensemble (NVT) Langevin MD 

simulations were carried out at 300K. The first 0.1μs NVT simulations was considered as an 

equilibration stage and was discarded. Three NVT MD simulations were conducted 

independently for each protein structure. Therefore, a total of 12μs simulations were 

generated for analysis. SHAKE method was used to constrain all bonds associated with 

hydrogen atoms. 2 femtoseconds (fs) step size was used for all MD simulations. Trajectories 

were saved for every 100ps. Periodic boundary condition (PBC) was applied in simulations. 

Particle mesh Ewald (PME) algorithm38 was used to calculate the electrostatic interactions. 

MD simulations were conducted using GPU accelerated OpenMM39 and CHARMM27 

force field.40

Analysis of Simulation Trajectories

Root-Mean-Square Deviation (RMSD) and Root-Mean-Square Fluctuation 
(RMSF)—The dynamics stability of a MD simulation trajectory is measured by the root-

mean-square deviation, which is calculated as:

RMSD =
∑i = 1

N (ri0 − Uri)
2

N
(1)

where ri0 represents the coordinate of an atom i in Cartesian coordinate system and U is the 

most appropriate alignment transformation matrix between two structures. For each 

trajectory, the first frame was treated as the reference structure.

The root-mean-square fluctuation is used to measure the fluctuation of atoms in each frame 

with regard to the first frame in a MD simulation trajectory. Specifically, Cα atoms were 

considered important in representing the protein motions and the corresponding RMSFs of 

each Cα were calculated as:

RMSFi = 1
T ∑

j = 1

T
ri(t) − ri

2
(2)

where T is the number of frames and ri is the averaged Cartesian coordinate of the ith Cα in 

the given trajectory.

Feature Processing—The 3N degrees of freedom in the Cartesian coordinate system 

hinders a thorough analysis of MD simulations in biological systems. Pairwise Cα distances 

are usually extracted to represent the structural characteristics of protein configurations.41 In 

the current study, a feature vector of each structure was constructed by calculating the 

distance pairs between one α carbon atom and another α carbon atoms in amino acids 

following the order of residue sequence. This feature vector was further encoded by a 

previously proposed transformation method42 with a cutoff of 10Å.
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ivis Dimensionality Reduction Method—ivis is a machine learning based 

dimensionality reduction method that is originally developed for single cell technology.27 

The ivis framework applies the Siamese neural networks architectures that is composed of 

three identical base neural networks. For each base neural network, there are three dense 

layers consisting of 500, 500, and 2000 neurons with a final embedding layer of 2 neurons. 

A novel triplet loss function is implemented in the training process:

Ltri (θ) = ∑
a, p, n

Da, p − min Da, n, Dp, n + m
+

(3)

The symbol a represents the point of interest, often referred to as anchor point. The symbol p 
represents a positive point that is selected based on the k-nearest neighbors (KNNs) 

algorithm. The symbol n represents a negative point that is randomly selected from the rest 

of data samples. The similarity between two points is calculated as the Euclidean distance 

(D). The margin (m) is defined as the minimum distance between any pair of points and was 

set to default value of one. The advantage of ivis method lies in the triplet loss function, 

which aims to minimize the distance between the anchor points and the positive points while 

maximizing the distance between the anchor points and the negative points.

Adam optimizer with a learning rate of 0.001 was applied to train the neural network. To 

prevent overfitting, early stopping of 5 was used to terminate the training iteration if the 

triplet loss function does not decrease with 5 consecutive epochs.

Machine Learning Methods

Random Forest (RF) and One-vs-one (OvO) Random Forest Models—Random 

forest as a tree-based machine learning technique43,44 was applied to learn the structural 

differences among macrostates in this study. Each random forest model is composed of 50 

decision trees. Decision trees were trained individually and the final result of a random 

forest model is formed by a voting algorithm. Scikit-learn45 version 0.20.1 was used to 

implement the random forest model.

The random forest model overcomes the problem of overfitting by employing several 

decision trees. However, in multi-task classification jobs, one-vs-one random forest model is 

more common and superior than the random forest model by constructing one classifier for 

each pair of classes.46 The overall output is the weighted sum of all base classifiers. In the 

current study, 10 macrostates were trained with 45 random forest models. One-vs-one 

random forest model provides weighted sum of overall feature importance with specific 

feature importance regarding two given classes.

Feature Importance—The feature importance in a random forest model is calculated 

using the Gini impurity, which is calculated as:

 Gini impurity  = ∑
i = 1

C
− fi 1 − fi (4)
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where fi and C are the frequency of one label at a node that are chosen to divide the data set 

and the number of labels, respectively. A random forest model consists of multiple decision 

tree models. The importance of feature i in each decision tree is calculated as:

fi =
∑i

snj
∑k ∈ all nodesnk

(5)

where s is the frequency of node j split on feature i. The importance of feature i in a random 

forest model is calculated by averaging its importances among decision tree models:

Fi = ∑j ∈ all decision treesnormfi
N (6)

where norm fi and N are the normalized feature importance of one decision tree and the 

number of decision trees, respectively.47

Pairwise Cα distances were extracted as the input features and the corresponding feature 

importances were calculated. For each Cα distance, the importance was added to the related 

two residues. The accumulated feature importance of residues implies their contributions in 

the allosteric process.

Markov State Model

The long timescale protein dynamics is tracked by the Markov state model.48 Each 

simulation frame is assigned to different microstates through MiniBatch k-means clustering 

method. Compared with microstates, macrostates are more biologically meaningful as they 

are considered as kinetically-separate equilibrium states. 10 macrostates were generated by 

Perron-cluster cluster analysis (PCCA).49 Lag time is needed to build a MSM and was 

determined as 40ns based on the implied relaxation timescale. Transition matrix and 

corresponding transition probabilities were estimated based on this MSM. MSMBuilder50 

package (version 3.8.0) was used to build MSMs.

Machine Learning based Community Analysis

Machine learning based community analysis34 is a newly proposed method by Zhou et al., 

which groups residues into communities. The main idea of this analysis is maximizing the 

overall feature importances across different communities while minimizing the total feature 

importances within each community. For an undirected graph characterizing the protein, 

nodes can be used to represent residues, and edges can be used to represent weighted Cα 
distances. For node i in community Cm, the inner edges of i are defined as the summation of 

edge values between node i and any other node in Cm, whereas the external edges of i are 

defined as the summation of edge values between node i and any other node in other 

communities. For each iteration of ML communities partition, node i can be moved to 

another community or swapped with another node in different communities. The benefit of 

these two explorative moves can be calculated as the external edges subtracted by the inner 

edges. The algorithm of this community analysis method is listed below.

1. ML communities are randomly partitioned;

Tian et al. Page 6

J Phys Chem B. Author manuscript; available in PMC 2021 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. The benefits of moving one node into another community and swapping one 

node with another between different communities are estimated to search for the 

maximum moving and swapping strategy, respectively;

3. One moving or swapping strategy with the highest benefit is chosen;

4. Repeat steps 2 and 3 with new ML community configuration until the highest 

benefit of all moving and swapping strategy is less than 0;

5. ML communities construction is completed if any strategy will increase the 

number of inner edges for each ML community.

The Kernighan-Lin algorithm51 has been implemented52 to search for local minimum values 

in graph theory. In the current research, the feature importances of Cα distances from the 

one-vs-one random forest model based on AuLOV dimer simulations were used. In order to 

apply ML based community analysis on monomer, the averaged importance for each Cα 
distance in monomer was calculated based on the dimer feature importance results.

Transition Path Theory

Transition path theory (TPT)53,54 is used to identify the most probable routes from one 

macrostate to another. Dark state and light state were chosen based on the transition 

probability estimated in MSMs as initial and final states, respectively. All other states are 

considered as intermediate states. Possible transition paths from the dark state to the light 

state were simulated. The definition of the committor probability qi
+ is the probability from 

one state to a target state. Based on this definition, qi
+ is equal to zero for all microstates in 

initial state and qi
+ is equal to one for all microstates in final state. The committor probability 

of other microstates is calculated as:

−qi
+ + ∑

k ∈ I
T ikqk

+ = − ∑
k ∈ target state 

T ik (7)

where T is the transition probability matrix and Tik represents the transition probability from 

state i to state k.

fij = πiqi−T ijqj
+ (8)

where π is the stationary probability of T and πiTij is the absolute probability of finding the 

system at the transition from i to j. qi− is the backward committor probability calculated as 

qi− = 1 − qi
+. The backward flux fji were also considered and subtracted in calculating the net 

flux fij
+ = max 0, fij − fji .

The flux from the initial state to the final state can be decomposed to individual pathways pi, 

which can be calculated as:

pi = fi
∑jfj

(9)
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Results

MD simulations analysis

The native dark and light structures of AuLOV are illustrated in Figure 1. In the native light 

state, a covalent bond is formed between the C4a atom in FMN and the sulfur atom in 

residue Cys287 upon light excitation (Figure 1C). This covalent bond triggers a global 

conformational change and protein dimerization. To explore this effect and the protein 

response, the covalent bond between FMN and Cys287 is constructed in the dark state 

structure to construct a transient dark state. On the other hand, the covalent bond between 

FMN and Cys287 is removed in the light state structure to construct the transient light state. 

Both transient dark and transient light states are subjected to the simulation and analysis to 

aid in mapping allosteric trajectories in response to blue-light activation and thermal 

reversion to the dark state.

The time evolution of the RMSD in four trajectories is plotted in Figure 2. All RMSD values 

were calculated with reference to the first frame of each trajectory. The average RMSDs in 

native dark, native light, transient dark and transient light states are 1.75Å, 2.04Å, 2.39Å and 

2.08Å, respectively. The plots show that each simulation is stable with low RMSD 

fluctuation values. The transient dark state is more dynamically active than the native dark 

state, indicating that the formation of covalent bond increases the flexibility of the protein. 

The RMSD results also imply the stability of the native dark state compared with the native 

light state.

As the allosteric process of AuLOV is characterized by conformational changes in the 

secondary structures, the backbone Cα is selected to measure the influence of light 

absorption on the protein structure. The RMSFs of the Cα atoms in AuLOV simulations are 

calculated and plotted in Figure 3. Both A’α and Jα helices were found to be dynamically 

active in all four states with increased dynamics in the two transient states. Differences 

between the two chains can be further quantified by comparing the RMSF values. In the 

native dark state, chains A and B showed no difference. In the native light state, the A’α in 

chain A is more flexible than that in chain B. Through the formation of the covalent bond in 

the transient dark state, both A’α and Jα helices in chain A showed enhanced flexibility.

Markov state model partitions kinetically separate macrostates

To represent the protein structure and movements, pairwise Cα distances were calculated as 

the representation of protein configurations. A total of 32131 Cα distances were extracted 

from the AuLOV dimer, composed of 254 residues. For each Cα distance, the value was 

further encoded through the feature preprocessing method outlined in the methods. For 

feature transformation, 10.0Åwas chosen as the threshold. The ivis dimensionality reduction 

method was applied to extract the collective variables and project the embedding layer onto 

a 2D surface. The distribution of four states in the ivis result is plotted in Figure 4A. The 

plot revealed that the transient dark state partially overlaps with the native dark state and the 

transient light state. The large region of transient dark state distribution is mainly because of 

the enhanced dynamics caused by the formation of the covalent bond. The distribution of the 

native light state is divided into two separate regions. The distribution of the transient light 
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state covers a large area, and overlaps with the both regions of the native light state 

distribution.

Markov state model is based on the clustering results on the reduced dimension projected by 

ivis framework. To construct MSMs, MiniBatch k-means clustering method was applied to 

partition the distribution of protein simulations in the 2D region into 300 microstates. The 

top 20 relaxation timescales calculated by different MSMs with different lag times are 

plotted in Figure 4B. The implied timescale converges after 40ns, which was chosen as the 

lag time for MSM. The number of macrostates depends on the gap between the timescales, 

and a total of 10 macrostates were chosen to divide the reduced protein distribution into 

kinetically separated macrospaces. For each microstate, the corresponding labels of 

macrostates were determined by the PCCA method, which is based on the eigenfunction of 

the transition probability matrix in MSM. The resulting macrostates with their associated 

transition probabilities are illustrated in Figure 5. Two dark states and two light states are 

divided into 4 and 6 macrostates, respectively. Macrostates (states 1, 2, 3 and 10) are in the 

area of the native dark state and the transient dark state. Based on the similarity to the crystal 

dark state structure, macrostate 2 was considered as the native dark state. State 9 was 

recognized as the native light state using the same method. Other macrostates were 

considered as intermediate states. The low transition possibilities starting from macrostate 2 

and 9 to adjacent macrostates indicate the stability of both the dark and light states. On the 

contrary, it is more likely for protein to shift between intermediate states. Two representative 

structures in the transient dark and transient light states are illustrated in Figure 6. Both A’α 
and Jα helices in the representative conformation of macrostate 3 (transient dark state, 

Figure 6A) move further from the LOV domain comparing to the native dark state 

(transparent grey structure in Figure 6A). These differences agree with the experimental 

finding that Jα helix interacts with the LOV core through hydrogen bonding between 

Gln365 and Cys316 as well as Tyr357 and Gln330 in the native dark state.8 In the light state, 

the hydrogen bond between Gln365 and Cys316 is broken after the formation of photo-

induced covalent bond between FMN and Cys287, leading to the release of Jα helix from 

the LOV core. The A’α helix also interacts with the LOV core via a hinge region (Ala248, 

Glu249, Glu250 and Gln251) and covers a hydrophobic patch (as the back of A’α helix) in 

the native dark state. Due to the change of A’α helix orientation, the back of this helical 

structure as the hydrophobic patch is exposed in the light state. The protein structure of 

macrostate 5 (transient light state, Figure 6B) is similar to the structure of native light state 

due to the stabilizing interaction within the dimer structure.

One-vs-one random forest model extracts key residues

In order to extract the key residues that play a vital role in AuLOV allostery, supervised 

machine learning models were applied to explore the structural differences among 

macrostates. Here, pairwise Cα distances were chosen as the translation and rotation 

invariant collective variables for the description of protein structures in the simulations. For 

each simulation, frames were saved for every 100 picoseconds (ps), resulting in 10000 

frames for every 1 μs MD trajectory. Accordingly, 120000 samples with 32131 features were 

extracted from the simulated trajectories. Each frame was labeled based on the macrostate 

results. Random forest and one-vs-one random forest models were applied to distinguish the 
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intrinsic conformational differences among macrostates. Training scores and testing scores 

were plotted in Figure 7. The testing accuracy was 93.5% in the random forest model at 

depth 9 and 94.5% in the OvO random forest model at depth 8. The high classification 

accuracy indicated that the two tree-based models were able to capture the characteristics of 

protein configuration of each macrostate using pairwise Cα distances.

The advantage of the tree-based models comes from the ability to quantitatively evaluate the 

contribution of each feature in classification model through the value of feature importance. 

Superior than random forest model, one-vs-one random forest model was applied to 

compute the feature importance for any two different macrostate pairs by conducting a 

random forest classification between these two specific macrostates. Therefore, for any two 

different macrostates, one distinct random forest estimator was built. A combination of 10 * 
9/2 = 45 basic random forest classifiers were constructed for the pairwise macrostates 

classifications. Accumulated feature importance of one-vs-one random forest at depth 8 was 

plotted in Figure 7C. Overall, this method is an effective model, in which the top 550 

features out of 32131 features account for 90.2% of the overall feature importance.

Those Cα distances related to two residues located on different chains are named as cross-

monomer features. These cross-monomer features accounts for 59.77% of the overall 

importance. Therefore, the Cα distances within the same chain accounts for 40.23% of the 

overall importance. This shows that the OvO random forest can capture the structural 

changes within each monomer, as well as the relative motions between monomers.

In order to identify key residues based on the results of the OvO random forest model, the 

feature importance value of each Cα distance was added and accumulated to the two related 

individual residues. The top 20 residues are listed in Table 1. Among the identified residues, 

several have been experimentally confirmed to be important to AuLOV allostery and are 

shown in bold font. Residues Met313, Phe331, and Cys351 are found to undergo changes in 

orientation. Ala248, Gln249, Gln250, and Asn251 are residues linking the A’α helix to the 

Aβ strand that are important for signal transduction.8 Gln350 was also identified as essential 

for signal transduction in LOV domains, where it either undergoes a Gln-flip process in 

response to N5 protonation55 or undergoes rotation between exposed and buried 

conformations56 to relay the signal from the flavin active site to N- or C-terminal 

components. We also identify Phe252 as important for allostery. Notably, Phe252 was found 

by HDX-MS to be important in the destabilization of the A’α helix that is coupled to 

conformational changes in Bβ strand and Cα helix.8 Therefore, the OvO random forest can 

successfully identify important residues reported in experimental results. The residue 

importance can be accumulated to the protein’s secondary structures and the results were 

shown in Table 2. A’α and Jα helices account for 15.17% and 8.04% of the overall 

importance, respectively. The importance of Cα helix and linkers in AuLOV are also 

significant at 9.12% and 21.36%, respectively.

Machine learning based community analysis splits protein structure into four communities

To explore the significance of different protein secondary structures, machine learning based 

community analysis was applied to split the protein structure into communities. This 

analysis was developed to divide residues into several communities (referred to as ML 
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communities) so that the feature importance for pairwise Cα distances across different 

communities is maximum, while the feature importance within each community is 

minimum.

The relationship between the feature importance for pairwise Cα distances within ML 

communities and the number of ML communities are plotted in Figure 8A. Applying an 

elbow criterion, four ML communities were selected with the total feature importance within 

each ML community accounting for 0.50% and the total feature importance among ML 

communities accounting for 99.50%. Therefore, the changes among ML communities 

account for the dominant majority of the overall feature importance and are able to explain 

the changes between different communities. The changes within each ML community are 

ignored due to the negligible importance. By applying ML based community analysis, 

dynamics in each protein structure can be attributed to the changes among partitioned ML 

communities.

The distribution of different communities, with a complete partition result corresponding to 

protein secondary structure, is shown in Figure 8B. Commu. A (blue) includes most of A’α 
helix and Aβ strand, Commu. B (orange) includes Jα helix with part of Gβ and Hβ strands 

on the LOV core, Commu. C (red) includes Cα helix, part of Fα helix and linkers. Commu. 

D (gray) includes part of Fα helix, Gβ, Hβ and Iβ strands.

The machine learning based community analysis offered additional information based on the 

selected four ML communities and the corresponding different regions in the protein 

structure during simulation. The accumulated overall feature importance among each ML 

community pair is listed in Table 3. Correlations between Commu. A, Commu. B and the 

rest of the protein accounted for 82.99% of the total feature importance. This is not 

surprising since the A’α helix in Commu. A and Jα helix in Commu. B are the most 

distinguishing structures, which undergo significant conformational changes from the native 

dark state to the native light state. Through the accumulated feature importance of ML 

communities, A’α and Jα helices are confirmed to convey significant allostery 

characteristics. Unexpectedly, the correlation between Commu. C and Commu. D accounts 

for 16.57% of the total feature importance. Several transitions between adjacent macrostate 

pairs have significant contribution from Commu. C (Table 4). However, for transitions 

between nonadjacent macrostates, Commu. C accounts for less importance which explains 

the difference between macrostate pairs.

For those transitions between macrostates where Commu. C accounts for a large component, 

two promising routes from the dark state to the light state can be identified as: 1) State 2 → 
3 → 5 → 7 → 6 → 9 and 2) State 2 → 3 → 5 → 6 → 9. These two proposed pathways 

lead to a hypothesis that Commu. C is important in propagating allosteric perturbations.

To estimate the probability of the two identified channels which include significant Comm. 

C contribution, the transition path theory was employed to generate an ensemble of 

pathways to estimate the probability of every pathway from State 2 (native dark state) to 

State 9 (native light state). A total of 3151 pathways were generated and divided as 212 

distinct channels connecting these two states. The probability of each channel was calculated 
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based on the net flux from the initial state to the target state. Overall, the probability of top 

10 channels is listed in the Table 5. The population of these 10 channels account for 80.0% 

of the total pathway population.

Among all 212 channels, the two identified channels 2-3-5-7-6-9 and 2-3-5-6-9 are the top 2 

populated channels with 28.8% and 25.6% of overall probability, respectively. The sum of 

contributions from these top two channels accounts for 54.4% contributions, which is 

significant compared to all other pathways, suggesting the importance of Commu. C 

movement during the allosteric process. The first channel is more probable than the second 

one. This agrees with the observation that the transition probability from 5 to 7 (9.5%) as 

one step in the first channel is greater than that from 5 to 6 (1.6%) as one step in the second 

channel. Interestingly, the ML based community analysis reveals higher contribution from 

the Commu. C to the transition between states 5 and 7 than that between states 5 and 6.

Different communities account for different importance in each macrostate transition. To 

better show the trend of components in Commu. A, Commu. B and Commu. C with regard 

to Commu. D, the change of importance along the two proposed paths is plotted in Figure 9. 

Two paths share similar characteristics: 1) Commu. A accounts for little importance at the 

beginning of allostery process while the contribution goes up in later transitions; 2) Commu. 

B starts with high importance and decreases drastically after the first transition; 3) Commu. 

C is more important at the end of allostery process.

Discussion

PtAu1a is an allosteric protein that undergoes a series of conformational changes upon light 

activation beginning with the formation of covalent bond between Cys287 and FMN.57 This 

computational study of AuLOV is integrated with MD simulations and other computational 

methods to provide quantitative analysis of the dynamics and importance of residues with 

regard to the overall allosteric process. While there is extensive research on the regulatory 

role of Jα helix and dimerization controlling A’α helix, a detailed mechanism of allostery 

with signal transmission route still needs scrutinization.

Signal transduction in LOV domain containing proteins typically involves coupling of 

adduct formation to conformational changes in the N- and C-termini via propagation across 

a central β-sheet.58–61 Central to this signal transduction are key residues within the Iβ 
strand that enables its coupling with the Jα helix and interaction with A’α helix in the dark 

state, specifically the residue equivalent to Gln350 that is essential for LOV signal 

transduction.55,56 In AuLOV, several additional light-induced rotamers (Met313, Leu317, 

Leu331, Leu333, and Cys351) were observed on the β-sheet surface8. Here, through the 

accumulated residue importance in the one-vs-one random forest model, we successfully 

identified Met313, Leu331, and Leu351 as being important in differentiating allosteric 

changes in AuLOV. In our models, these residues contribute to conformational changes 

linking the β-sheet surface to A’α helix through Gln350. We note that our computational 

methods mirror those identified experimentally where A’α helix contributes to the dynamic 

stability of the dark state by the interaction with LOV core through a hinge region. The 

hinge region consists of four conserved residues (Ala248, Gln249, Gln250, and Asn251), 
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which were also found to be important via our approach (Table 1). Overall, the strong 

correlations between previous experimental results, and our Markov state model and OvO 

random forest analysis, confirm our methodology as being able to discern allosteric 

pathways in AuLOV.

Most proteins undergo allosteric process within a long timescale from milliseconds to 

seconds, including AuLOV, making it difficult to collect sufficiently long trajectories. 

Markov state model addresses this difficulty by extracting the slowest motion and long 

timescale information from limited simulations. However, while the slowest dynamical 

processes are often involved in protein allostery and are assumed to be the process of 

interest,62 fast-moving flanking helices or side chain rotations could play significant role in 

protein allostery. Due to their short timescales, these motions may not be represented well in 

the MSM. Although there are some studies focusing on fast protein motions and their 

relations with slow motions,63,64 the functions of fast motions in protein allostery remains 

elusive and requires more studies. Regarding the allostery of AuLOV, the kinetics between 

dark- and light-states are beyond scale of minutes.8 Therefore, sub-ns protein local motions 

are unlikely to be determinant factors in AuLOV allosteric mechanism and are not the focus 

of the present study.

Although chain A and chain B in AuLOV are dynamically identical in the dark state, the 

A’α helices of the two chains differ in conformations upon dimerization.8 Our simulation 

results confirmed the differences between these two chains through a comparison of RMSF 

values. The RMSF results reflect that A’α helix in chain A is more dynamically active than 

that in chain B. The asymmetrical property in A’α helix could originate from either the 

interaction between A’α and Jα helices on different chains or the asymmetrical 

conformational change8, thus requiring further detailed study.

ML based community analysis used in this study provided an approach to partition protein 

conformation into communities based on the feature importance of pairwise Cα distances. 

Through this analysis, three important communities were identified. Commu. A containing 

A’α helix and Commu. B containing Jα helix were expected to account for great 

contribution, since these two helices undergo notably conformational changes upon light 

activation (Table 2). The Cα and Fα helices stand out as Commu. C, and surprisingly 

provided additional information for allosteric process. Commu. C accounts for great 

importance in adjacent transitions between macrostates and accounts for less importance in 

nonadjacent transitions compared with Commu. A and B.

Transition path simulations further validated the important allosteric function of Commu. C. 

For all possible transition pathways found by TPT, the top 2 channels are those with large 

Commu. C components and together constitute over 50% of the overall possibility. Although 

Commu. C consists of two helices as Cα and Fα, these two helices are not equally 

important. The allosteric role of Fα helix should be evaluated with caution since its 

accumulated feature importance is relatively low (Table 2), and the importance in Commu. 

D, which also includes part of Fα helix, is the least important community. Because Cα helix 

is important in both OvO random forest result and ML based community analysis, it is 

reasonable to conclude that Cα helix may play an important role in controlling AuLOV 
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allostery. Moreover, Commu. C also includes several linking residues that account for a large 

portion of the overall importance, indicating the indispensable role of linkers in the allosteric 

process as reported in previous studies.24,65

Examination of the two most probable channels linking conformational changes through the 

identified communities can allow construction of allosteric paths (Figure 9). In this study we 

identify that the Jα helix is fundamental in the early stage of AuLOV allostery, followed by 

changes in the A’α helix in later stages. In the first transition step from macrostate 2 → 
macrostate 3, Commu. B accounts for a large component compared with Commu. A, 

indicating the importance of Jα helix in the initial stage of allostery. As the allosteric 

perturbation propagates, the importance of Commu. B decreases and Commu. A becomes 

the more significant region. This important shift implied and confirmed the experimental 

finding that, after initial Cys287-FMN covalent bond formation, the first response of the 

protein structure is the undocking of the Jα helix, which is essential to the release of A’α 
helix.56,66,67 The rising importance of Commu. C, together with the transition path theory 

results, suggests that Commu. C, especially Cα helix and linkers, is vital in the allosteric 

process and should be investigated further.

Conclusion

The LOV protein PtAu1a is a member of Aureochrome family that binds DNA upon blue 

light activation.5 Studies of the LOV domain with N- and C-teriminal helices indicate that in 

the absence of light it exists as monomeric units; upon blue light absorption, cysteinyl-flavin 

bond formation triggers a global conformational change which ultimately results in the 

dimerization of the LOV domains. In the present study, the protein dynamics of AuLOV 

with N- and C-terminal helices were simulated using MD simulations and analyzed using a 

series of computational methods. We quantified the differences of A’α and Jα helices 

dynamics in four functional states and the importance of each residue in the two chains with 

regard to the protein allosteric process. Key residues in overall structural changes identified 

by one-vs-one random forest agree with the results reported in other experimental work. 

Markov state model, combined with transition path theory, studied the importance of protein 

structures by a machine learning based community analysis. The functional role of key 

Community C, which includes the Cα helix and linkers, is revealed through in-depth 

analysis as propagating the allosteric perturbation. Overall, this study quantitatively 

analyzed the allostery process of AuLOV and linked the macroscopic conformational change 

to residue level importance. Our results provided new opportunities for a detailed 

mechanism explanation and offered further opportunities for the research of PtAu1a as an 

optogenetic tool. Future studies can facilitate our understanding of global protein 

conformational changes in the context of full-length PtAu1a.
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Figure 1: The native dark and light structures of AuLOV monomer.
(A) Native dark structure; (B) Native light structure; (C) A covalent bond is formed between 

C4a position of FMN and sulfur atom in Cys 287 upon light excitation.
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Figure 2: The RMSDs of AuLOV MD simulation trajectories.
(A) Native dark and transient dark states; (B) Native light and transient light states.
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Figure 3: The RMSFs of AuLOV Cα atoms in simulations.
(A) Native dark and transient dark states; (B) Native light and transient light states. Grey 

dashed lines separate two chains.
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Figure 4: ivis dimensionality reduction result and the implied timescales with regard to different 
lag times.
(A) The distribution of four protein states onto the 2-dimensional space; (B) Estimated 

relaxation timescale with different lag times calculated by MSMs.
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Figure 5: Macrostates in MSM with transition probability.
Based on the transition probabilities, states 2 and 9 were considered as the native dark and 

native light states among macrostates, respectively. Other macrostates were treated as 

intermediate states.
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Figure 6: Representative conformations in the transient dark and light states.
Monomer structures in (A) macrostate 3 from the transient dark state, and (B) macrostate 5 

from the transient light state. Corresponding structures in native dark and native light states 

are shown in transparent grey color.
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Figure 7: Tree-based models for macrostate classification.
(A) Prediction accuracy of the random forest model with different tree depths; (B) 

Prediction accuracy of the one-vs-one random forest model with different tree depths; (C) 

Accumulated explained importance of the OvO random forest model in 8 tree depth with 

regard to the number of features. The top 550 features account for 90.2% of the overall 

importance.
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Figure 8: ML based Community analysis results of AuLOV.
(A) Total feature importance among ML communities with regard to different number of 

communities; (B) Four ML communities named as Commu. A, Commu. B, Commu. C and 

Commu. D are illustrated in blue, orange, red and grey colors, respectively.
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Figure 9: Change of community importance along transitions.
Community importance change along two identified paths from the native dark state to the 

native light state. (A) 2 (native dark) - 3 – 5 - 7 – 6 - 9 (native light); (B) 2 (native dark) - 3 – 

5 - 6 – 9 (native light).
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Table 1:

Top 20 residues identified by OvO random forest.

Residue ID Residue Type Residue ID Residue Type

250
a GLN 349 VAL

245 LEU 247 THR

252 PHE 248 ALA

351 CYS 249 GLN

244 ALA 331 PHE

312 ASP 314 SER

246 GLN 334 ALA

268 SER 313 MET

350 GLN 336 LEU

335 ALA 251 ASN

a
Experimentally confirmed important residues are shown in bold font.
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Table 2:

Accumulated feature importance of secondary structures in AuLOV.

Secondary structure Importance percentage

A’α 15.17%

Aβ 7.12%

Bβ 2.28%

Cα 9.12%

Dα 0.70%

Eα 0.05%

Fα 2.14%

Gβ 6.43%

Hβ 14.13%

Iβ 13.46%

Jα 8.04%

Linkers 21.36%
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Table 3:

Accumulated feature importance between each ML community pair.

Features Commu. A Commu. B Commu. C Commu. D

Commu. A 0.12% 13.58% 25.87% 13.87%

Commu. B 0.03% 13.17% 16.44%

Commu. C 0.15% 16.57%

Commu. D 0.20%
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Table 4:

The changes of Commu. A, Commu. B and Commu. C during transitions between macrostates.

Adjacent macrostates Commu. A Commu. B Commu. C

State 2 (Dark) → State 3
a 7.26% 26.69% 4.01%

State 2 → State 10 6.05% 18.51% 3.03%

State 3 → State 5 16.91% 12.74% 7.68%

State 5 → State 7 7.44% 2.04% 18.41%

State 5 → State 4 9.55% 6.40% 3.64%

State 5 → State 6 10.96% 6.98% 16.27%

State 7 → State 6 11.22% 3.97% 8.86%

State 6 → State 9 (Light) 12.35% 10.56% 19.13%

Non-Adjacent macrostates

State 10 → State 9 21.39% 23.63% 0.23%

State 10 → State 6 26.97% 15.11% 2.26%

a
State-transitions with large Commu. C component are shown in bold font.
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Table 5:

The probability of top 10 channels simulated using transition path theory.

Channels Probability

2, 3, 5, 7, 6, 9 28.8%

2, 3, 5, 6, 9 25.6%

2, 10, 5, 7, 6, 9 5.4%

2, 3, 7, 6, 9 4.7%

2, 3, 5, 8, 5, 7, 6, 9 3.9%

2, 3, 4, 8, 5, 7, 6, 9 3.0%

2, 3, 8, 5, 7, 6, 9 2.9%

2, 10, 5, 6, 9 2.3%

2, 1, 3, 5, 7, 6, 9 2.1%

2, 10, 5, 8, 5, 7, 6, 9 1.3%

Top 10 channels 80.0%

J Phys Chem B. Author manuscript; available in PMC 2021 June 21.


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Molecular Dynamics (MD) simulations
	Analysis of Simulation Trajectories
	Root-Mean-Square Deviation (RMSD) and Root-Mean-Square Fluctuation (RMSF)
	Feature Processing
	ivis Dimensionality Reduction Method

	Machine Learning Methods
	Random Forest (RF) and One-vs-one (OvO) Random Forest Models
	Feature Importance

	Markov State Model
	Machine Learning based Community Analysis
	Transition Path Theory

	Results
	MD simulations analysis
	Markov state model partitions kinetically separate macrostates
	One-vs-one random forest model extracts key residues
	Machine learning based community analysis splits protein structure into four communities

	Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:

