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A B S T R A C T   

In this paper, we establish daily confirmed infected cases prediction models for the time series data of America by 
applying both the long short-term memory (LSTM) and extreme gradient boosting (XGBoost) algorithms, and 
employ four performance parameters as MAE, MSE, RMSE, and MAPE to evaluate the effect of model fitting. 
LSTM is applied to reliably estimate accuracy due to the long-term attribute and diversity of COVID-19 epidemic 
data. Using XGBoost model, we conduct a sensitivity analysis to determine the robustness of predictive model to 
parameter features. Our results reveal that achieving a reduction in the contact rate between susceptible and 
infected individuals by isolated the uninfected individuals, can effectively reduce the number of daily confirmed 
cases. By combining the restrictive social distancing and contact tracing, the elimination of ongoing COVID-19 
pandemic is possible. Our predictions are based on real time series data with reasonable assumptions, whereas 
the accurate course of epidemic heavily depends on how and when quarantine, isolation and precautionary 
measures are enforced.   

Introduction 

The ongoing outbreak respiratory disease COVID-19 is caused by the 
novel coronavirus SARS-CoV-2 which happened at the end of 2019 till 
nowadays, has spread out all over the world and puts tremendous 
pressure on the economy and society. It was declared as global pandemic 
by World Health Organization (WHO) on March 11th 2020. Various 
emergency measures, such as regional lockdown, mass testing, issuing 
masks, have been taken by many countries to reduce the transmission 
and control the epidemic. The crucial problems are whether investments 
in medical services and prevention steps taken are effective in managing 
the spread of disease, and how the number of confirmed cases will grow 
in the future. 

As the number of cases increases and more data becomes available, 
various researches [1–7] develop a range of mathematical models or 
employ machine learning algorithms to forecast the transmission of 
SARS-CoV-2. Previous studies have also employed LSTM [8–12] or 
XGBoost [13–19] models to forecast the spread of COVID-19 and iden-
tify the most influential COVID-19 indicators. Chimmua et al. [8] 
adopted LSTM algorithm to forecast confirmed cases in Canada within 
next two weeks and emphasized the significant role of social distance 
regular. Tomar and Gupta [9] utilized LSTM and curve fitting to forecast 

the number of COVID-19 cases in India for the next 30 days, as well as 
the influence of preventative measures such as social isolation and 
lockdown on the spread of COVID-19. Wang et al. [10] focused on 
predicting the long-term pandemic pattern of COVID-19 employing 
LSTM networks and a rolling update mechanism. In [11], the imple-
mentation of LSTM layers following the proposed convolutional neural 
network (CNN) block improves the 4-score disease severity prediction 
performance. Gautam [12] applied transfer learning to LSTM network 
models to anticipate additional COVID cases and fatalities. Models 
developed on data from early COVID infected nations such as Italy and 
the United States are used to predict the development of the disease in 
other nations. The machine learning algorithm XGBoost was employed 
to build the models to predict the criticality [13], mortality [14,15] and 
survival [16] in COVID-19 patients. Li et al. [17] constructed an 
XGBoost-based classification algorithm to distinguish between influenza 
and COVID-19 patients. To quantify the impact of the COVID-19 
pandemic on driving behavior, the authors [18] utilized explanatory 
XGBoost feature importance to evaluate the influence of COVID-19 and 
used seasonal ARIMA models to model. Kukar et al. [19] used random 
forest, deep neural networks, and XGBoost algorithms to build models 
that predicted COVID-19 diagnosis based on regular blood test results, 
age, and gender. To the best of our knowledge, few studies have used the 
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combined LSTM networks and XGBoost models to predict infectious 
diseases in time series analysis. 

Multiple studies have demonstrated the human-to-human trans-
mission of COVID-19 through droplets and direct contact after analyzing 
the clinical characteristics of COVID-19 [20–22]. Experience with the 
monitoring of epidemics in various countries shows that there is a need 
for wide-ranging social distancing regulations [23,24]. Based on the 
confirmed cases before January 1, 2020 in China, Li et al. [25] estimated 
the mean incubation period of COVID-19 is 5.2 days, with the 95th 
percentile of the distribution at 12.5 days, and the basic reproduction 
number is estimated to be 2.2. Guan et al. [26] obtained the median 
incubation period is 4 days (interquartile range, 2 to 7) according to the 
confirmed cases reported to the National Health Commission of China 
between December 11, 2019 and January 29, 2020. Lauer et al. [27] got 
the median incubation period is 5.1 days, and 97.5% infection cases 
develop symptoms within 11.5 days based the confirmed cases reported 
between January 4, 2020 and February 24, 2020 from 50 provinces, 
regions, and countries. In [28], the authors indicated that control 
measures taken in China had an effect on COVID-19 transmissibility 
roughly 2 weeks after they were implemented. Hence, the majority of 
individuals will be diagnosed with symptoms within 14 days after being 
infected. 

Depending on the characteristics of COVID-19 disease transmission, 
we built a mathematical model based on the following assumptions: 

(A1) The number of confirmed cases is determined by the trans-
mission force of infectious disease, such as the basic reproduction 
number, the probability of contact between the susceptible and 
infected individuals, and the investment in prevention and control 
resources, such as quarantine, isolation and precautionary measures 
are enforced. 
(A2) The time series data of daily new confirmed cases provide in-
formation on the force of infection and investment in the prevention 
resources of epidemics. This information will not dramatically 
change in the short term and will have an effect on the number of 
new infections in the future. Using these time series data, it is 
possible to forecast the number of daily new confirmed cases in the 
near future. In other words, the number of daily new confirmed cases 
relates to historical data. 
(A3) The majority of infectious individuals will be diagnosed within 
14 days due to symptoms or large-scale monitoring. Confirmed 

individuals who are diagnosed will be isolated and treated, then they 
will lose the ability to infect. 
(A4) Workplace transmission is a critical route of COVID-19 disease 
transmission. The number of new confirmed cases is correlated with 
the day of the week. 

It can be assumed from assumption (A3) that infected individual who 
has not been diagnosed with a large-scale test can infect susceptible 
individuals during the incubation period. The duration of the infection 
of COVID-19 infected individuals would be shortened by increasing the 
scale of testing measures. Many infectious individuals have the potential 
to transmit COVID-19 disease within 14 days of infection, and the 
duration of infection in COVID-19 infected individuals is no more than 
14 days. New confirmed individuals are affected by person who had 
been diagnosed within the previous 14 days. The daily number of new 
confirmed COVID-19 cases is linked to the number of new confirmed 
individuals in the previous 14 days (see Figs. 1 and 2). 

According to assumptions (A1)-(A4), we find the important features 
to establish a prediction model, which is shown in Fig. 3. In the figure, 
mean represents the average number of new confirmed COVID-19 cases 
in the previous two weeks, which is used to describe the average level of 
disease transmission force and investment in epidemic control resources 
in the near future; Std measures the standard deviation of new confirmed 
cases in the previous two weeks, and is used to reflect recent variations 
in disease transmission force and investment in epidemic control re-
sources; week is used to decide if the day is a working day. Taking the 
number of new infected COVID-19 cases in America as an example, a 
predictive model based on time series dataset is proposed that combines 
the LSTM and XGBoost machine learning algorithms, which can deal 
with time series data and extract features from previous data. 

According to the discussion above, in this paper, we mainly focus on 
forecasting the growth of COVID-19 based on past transmission data and 
through hypothesis analysis. The paper is organized as follows. In Sec-
tion “Methods”, we illustrate the mechanism of LSTM and XGBoost al-
gorithms for the prediction of COVID-19 disease. A description of 
dataset collection and preparation is presented in Section “Materials”. 
The experimental results and comparative performance of the proposed 
machine learning model are provided in Section “Experimental results 
analysis”. Section “Conclusion and discussion” gives a brief conclusion 
and remarks. 

Fig. 1. Schematic of the disease transmission. It indicates that the duration of infection in infected individuals with COVID-19 does not exceed 14 days.  
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Methods 

LSTM 

LSTM is an artificial Recurrent Neural Network (RNN) architecture 
used in the field of deep learning. It is an efficient algorithm to construct 
a sequential time series model. 

It’s well known that RNN is a class of artificial neural networks 
where connections between nodes form a directed graph along a tem-
poral sequence. This allows RNN to exhibit temporal dynamic behavior. 
RNNs can use their internal state (memory) to process variable length 
sequences of inputs. A RNN can be thought of as multiple copies of the 
same network, each passing a message to a successor (see Fig. 4). They 
might be able to connect previous information to the present task. 
However, as that gap grows, RNNs become unable to learn to connect 
the information. The short-term memory problem of RNN is that short- 
term memory has a greater impact, but long-term memory has a small 
impact. 

In 1997, Hochreiter and Schmidhuber [29] invented LSTM networks 
to deal with the long-term dependency problem. LSTM networks are 
well-suited to classifying, processing and making predictions based on 
time series data, since there can be lags of unknown duration between 
important events in a time series. LSTMs have the form of a chain of 
repeating modules, but the repeating module has a different structure. 
Instead of having a single neural network layer, there are four, inter-
acting in a very special way (see Fig. 5). A common LSTM unit is 

composed of a memory cell, a forget gate, an input gate and an output 
gate, where the forget gate’s purpose is to selectively forget the infor-
mation in the cell state, the input gate decides what new information is 
stored in the cell state, and the output gate decides what value we desire 
to output. The cell remembers values over arbitrary time intervals and 
the three gates regulate the flow of information into and out of the cell. 
The structure of LSTM is drawn in Fig. 6. In the diagram, each line 
carries an entire vector, from the output of one node to the input of 
others. The circles represent pointwise operations, and the yellow boxes 
are learned neural network layers. 

Gates in LSTM assist in information processing by using an activation 
sigmoid function, and the output is either 0 or 1. “0” means the gates are 
blocking everything, and “1” means gates are allowing everything to 

Fig. 2. Schematic of the relation between new confirmed individuals and the number of confirmed cases in the previous 14 days.  

Fig. 3. Schematic of the model features.  

Fig. 4. An unrolled RNN contains a single layer.  

Fig. 5. LSTM architecture contains four interacting layers.  
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pass through it. The equations for the gates in LSTM are 

ft = σ(wf ⋅[ht− 1, xt] + bf ),

it = σ(wi⋅[ht− 1, xt] + bi),

ot = σ(wo⋅[ht− 1, xt] + bo),

(1)  

where ft , it , ot represent forget gate, input gate and output gate, 
respectively. σ represents the sigmoid function, wx is relevant weight in 
respective gate x associated with each LSTM block, ht− 1 is the previous 
output at timestamp t − 1, xt denotes the current input vector at time-
stamp t, and bx is bias neurons at gate x. The equations for the cell state, 
candidate cell state and the final output are 

C̃t = tanh(wC⋅[ht− 1, xt] + bC),

Ct = ft ∗ Ct− 1 + it ∗ C̃t,

ht = ot ∗ tanh(Ct),

(2)  

where Ct and Ct− 1 represent the new and previous cell states (memory) 
at timestamps t and t − 1, respectively. C̃t refers to a tanh output and 
represents candidate for cell state at timestamp t, and ∗ represents the 
element wise multiplication of the vectors. 

XGBoost 

A scalable machine learning system for tree boosting is called as 
extreme gradient boosting algorithm (XGBoost), which is an optimized 
distributed gradient boosting library and can efficiently examine the 
importance of all input features. It has demonstrated to be a reliable and 
efficient machine learning problem solver [30,31]. Compared with other 
gradient boosting algorithms, XGBoost can gather a strong classifier 
from a set of weak classifiers and display the following advantages: (1) 
effectively handle missing values; (2) be able to prevent overfitting; (3) 
parallel and distributed calculation reduce running time. The purpose of 
XGBoost is to employ a gradient descent optimization methodology and 
arbitrary differentiable loss functions to minimize the loss function by 
adding weak learners, i.e., to define and optimize the objective function. 
XGBoost attempts to minimize the regularized objective as follows: 

obj(θ) =
∑

i
L(ŷi, yi)+

∑

k
Ω(fk), fk ∈ F , (3)  

where L is the training loss function that measures the deviation be-
tween the value ŷi predicted by our model and the actual value yi. Ωis 
the regularization function that measures the complexity of the model, 
which tends to prevent overfitting. f is a function in the functional space 
F , and F is the set of all possible regression trees. In order to minimize 

the objective function, XGBoost uses parameters to find an optimal tree 
structure employing a greedy search algorithm. 

Evaluation parameters 

We evaluate the predictive effect of our model using four popular 
forecasting parameters such as: Mean Absolute Error (MAE), Mean 
Square Error (MSE), Root Mean Square Error (RMSE), and Mean Abso-
lute Percentage Error (MAPE), as follows: 

MAE =
1
n
∑n

i=1
|ŷi − yi|, (4)  

MSE =
1
n
∑n

i=1
(ŷi − yi)

2
, (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

, (6)  

MAPE =
100%

n
∑n

i=1

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒, (7)  

where n is the number of observations, and ŷi − yi is the error between 
the forecasted value and actual value. MAE is an arithmetic average of 
the absolute errors between the prediction and true value, which gives 
the mean of the absolute forecasting error. MSE is a loss function to 
measure the error between predict value and true value. RMSE is a 
frequently used measure of the differences between values predicted by 
a model or an estimator and the values observed. It is the square root of 
the average squared error. MAPE quantifies accuracy as a percentage 
which can be calculated as a cumulative absolute percent error for each 
time frame, as the actual values minus the predicted values divided over 
the actual values. That is, it depicts the mean error in percentage terms. 

Materials 

Time series prediction is a method to forecast upcoming trends of the 
given historical dataset with temporal features. If input data has tem-
poral components, the prediction of COVID-19 transmission will be 
effective. Statistical properties such as mean, variance and standard 
deviation also change with respect to time. 

The number of daily new confirmed COVID-19 cases in time series is 
collected from the World Health Organization website, see https:// 
covid19.who. int. The data set is available in time series format with 
date, month, and year to ensure that the time component is not over-
looked. In order to anticipate future diseases, our proposed models 
actively learn real-time data from current COVID-19 observations. 

Fig. 7 illustrates the real trends from January 3, 2020 to September 
30, 2020 in America. From the figure we can observe that, since mid- 
March, the number of confirmed cases has started to increase in the J- 
shaped trend. At that time, America has not yet implemented large-scale 
testing or isolation measures. The duration of infection persists for a long 
time, and there is a worse risk that infected individuals may be 
vulnerable to contact. From early April to the end of May, the number of 
daily new confirmed cases fluctuated within a certain range and did not 
begin to rise. Due to the implementation of large-scale testing measures 
and isolation of confirmed cases, the period of transmission has reduced 
in infected individuals. Owing to the adoption of stay-at-home orders 
and social distancing regulations, the chances of infected individuals 
encountering susceptible individuals have been limited, and the number 
of newly reported cases is no longer growing. However, from June to 
July, due to social events and other factors, the probability of human- 
to–human contact increased and the number of daily new confirmed 
cases resumed a sharp rise. 

In time series analysis, we use historical data to create models and 

Fig. 6. LSTM cell architecture.  
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apply these models to predict the new outcome. From January to March 
2020, America has not yet initiated large-scale research, isolation and 
treatment measures. Due to the fact that this part of time series data does 
not contain stable information, we intercept the data for new confirmed 
cases from April 1 to September 30 as modeling objects. Predicting the 
dynamics of transmission based on limited dataset is a challenging task. 
In order to find recent trends in infectious diseases, we separate the pre- 
processed data set into a training and test set and use the training data to 
train the LSTM and XGBoost models. Then, COVID-19 dataset is 
randomly split into 90% training set on which our models are trained 
and 10% testing set to test the performance of the model. Based on the 
investigation in Fig. 8, we conduct a correlation test between daily new 
confirmed, mean and standard deviation of confirmed cases with human 
work week with an offset of − 2 (2 weeks before). It can be concluded 
that new diagnosed cases on that day has strongly positive correlation 

with the daily confirmed cases and mean of confirmed COVID-19 cases 
for the previous 14 days. The shorter the time interval, the stronger the 
association with the number of new confirmed individuals per day, 
meaning that the risk of new confirmed individuals being compromised 
by previously confirmed individuals is stronger. 

Experimental results analysis 

The proposed model is developed with both LSTM and XGBoost that 
are conducted with open source libraries such as Numpy, Pandas and 
Keras. 

Training 

We use two-layers LSTM neural network structure to establish a 

Fig. 7. The number of daily new COVID-19 confirmed cases from January 3, 2020 to September 30, 2020 in America.  

Fig. 8. The correlation heat map illustrates the relationship between daily new confirmed, mean, standard deviation of confirmed cases and human work week with 
an offset of − 2.. 
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model, which is shown in Fig. 9. 
LSTM model differs from statistical models in several respects, for 

example, the proposed LSTM network matches real-time data and 
without any assumptions when choosing hyperparameters. In our LSTM 
model, we train and test the network on the currently available America 
dataset. Fig. 10 represents the simulation of LSTM model with reason-
able parameter features which provides a good match to the data on 
infected COVID-19 cases in America from April 1, 2020 to September 30, 
2020. 

Fitting with the training sample, the XGBoost model is used to esti-
mate the number of new confirmed cases in the test set. The prediction 
result is shown in Fig. 11, the blue curve shows the actual time series 
data and the red curve represents the prediction using XGBoost. From 
Figs. 10 and 11, it can be concluded that LSTM prediction produce better 
result than XGBoost. 

In order to determine the contribution of features of the XGBoost 
model, a graph is drawn after determining the significance score of each 
feature of the model (see Fig. 12). From Fig. 12, the most important 
feature is the mean, followed by the number of daily new confirmed 
cases over the previous 7 days. In other words, there is a high correlation 
between the number of new cases of the day and the number of new 
infections per day over the previous few days. In addition, the day of the 
week has a high contribution rate to the model. This indicates that the 
number of new confirmed cases of the day is closely related to whether it 
is a working day. Therefore, communication in the workplace is a crit-
ical way to spread the disease of COVID-19. In areas with serious epi-
demics, steps are required to avoid working to obstruct the route of 
disease transmission. 

We summarize the four values of MAE, MSE, RMSE and MAPE in 
Table 1. Comparing the four evaluation parameters of LSTM and 
XGBoost models, it can be observed that LSTM performs better in terms 
of accuracy among two machine learning models. LSTM has the smaller 
MAE = 771, MSE = 962577,RMSE = 981 and MAPE = 2.32%. 
XGBoost shows how much each feature contributed to the final forecast, 
and the interpretability of the model is greater than that of the LSTM. 

Prediction 

Based on assumptions (A1)-(A3), the number of new confirmed cases 
is determined by the disease transmission force and the investment in 
disease prevention resources. The time series data provide existing in-
formation on the disease spread and the management of investment 
resources, and these informations can assess the recent daily new 
confirmed cases. According to the assumptions, applying the feature set 
by the current time series data, we employ LSTM and XGBoost models to 
fit COVID-19 cases from April 1, 2020 to September 30, 2020, and report 
a 30-day forecast of the COVID-19 pandemic. Figs. 13 and 14 represent 
time series actual and forecasted data of America using LSTM and 
XGBoost models, respectively. Actual (solid red line) and forecasted 
(solid green line) data can be visualize graphically in Figs. 13 and 14. 

Fig. 13 indicates that the number of daily new confirmed cases 
fluctuates between 30,000 and 70,000 for the next 30 days, and the 
data will fluctuate over a certain period. It can be shown that the number 
of daily new confirmed cases maintains high level. From Fig. 14, 
XGBoost forecasts that the number of daily new confirmed cases will 
fluctuate frequently and not vanish in the next month. Daily new 
confirmed cases can be estimated to remain over 30, 000 and a down-
ward trend is not occurring, with current disease prevention measures, 
the social environment and investment in medical services unchanged. 

Fig. 9. Double layers LSTM network structure.  

Fig. 10. Prediction of the LSTM model on test set (red line). The blue line 
represents the actual values of test set. 

Fig. 11. Prediction of the XGBoost model on test set (red line). The blue line 
represents the actual values of test set. 
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The spread of the disease will not be fully prevented by current 

prevention, control measures and medical services. 
The 30-day forecast of the new confirmed cases as a function of time 

(i.e., number of days) is shown in Fig. 15. The reported cases were 
represented by red line, the LSTM and XGBoost model’s forecasts were 
represented by green color lines. The 30-day ahead forecast follows a 
periodic growth (as per LSTM model, see Fig. 15(a)) and an upward 
trend (as per XGBoost model, see Fig. 15(b)) in the number of daily new 
confirmed cases in America. The expected number of daily new 
confirmed cases was predicted to be between 30,000 to 70,000 on 
October 2020 which was not very close to the actual value, but LSTM 
prediction (see Fig. 15) is higher than the XGBoost prediction (see 
Fig. 15(b)). Because the actual data grows rapidly in a short period of 
time, other factors (e.g., social events, state elections) must be consid-
ered along with daily cases in order to appropriately estimate the real 
scenario. 

Conclusion and discussion 

COVID-19 is spreading at an astonishing speed, threatening both 
human life and the economy. Because of the rising magnitude of COVID- 
19 cases, the function of machine learning is critical in the current 
context. The approach of employing machine learning for time-series 
prediction, particularly in COVID-19, was effective in modeling and 
predicting the virus spreading end status. 

In this study, we introduce a machine learning based on the LSTM 
and XGBoost models to investigate the future trend of COVID-19 in 
America and evaluate the important features based on the reported 
COVID-19 cases. To train and test the models used for our study, we use 
data up to September 30, 2020. The models utilized in this work are also 

Fig. 12. Features importance base on XGBoost.  

Table 1 
Parameters evaluation for the LSTM and XGBoost model.  

Models MAE MSE RMSE MAPE(%) 

LSTM 771 962577 981 2.32 
XGBoost 2658 11964681 3459 7.21  

Fig. 13. The prediction results of LSTM model. The error bound is calculated based on MAPE.  

Fig. 14. The prediction results of XGBoost model. The error bound is calculated based on MAPE.  
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based on data-driven approaches, and we examine our models pre-
dictions using MAE, MSE, RMSE and MAPE. We wished to analyze and 
compare the capability of LSTM and XGBoost models to interpret the 
complex trend in time series, and verify our four assumptions that pre-
sented at that time period by measuring our results, and finally, fore-
casting new cases of the next 30 days. Our approaches and forecast 
outcomes will assist in limiting COVID-19 pandemic infections. 

We put out four assumptions (A1)-(A4) based on the analysis of the 
medical community’s research on the transmitting properties of COVID- 
19 disease. By using LSTM and XGBoost machine learning algorithms to 
model the time series data of daily new confirmed COVID-19 cases in 
America, these methods play a vital role in the analysis and prediction of 
disease trend scenarios. The results of test set show that MAPE of the 
LSTM and XGBoost algorithms reach 2.32% and 7.21%, respectively. It 
is also evident from Figs. 10 and 11 that our LSTM model has the lower 
metrics value. In addition, the models project that the country has a 
tentative range between 30,000 to 70,000 new cases by October illus-
trated in Figs. 13 and 14. Based on the aforementioned evidences and 
problems, we obtain that: (1) the period of infection with COVID-19 
disease in an infected person lasts less than 14 days; (2) workplace is 
an essential way of spreading the COVID-19 disease, and suspension of 
work in serious outbreak areas is a critical control measure; (3) the 
number of new confirmed cases in America will fluctuate in range of 
30,000 to 70,000 and remain at a high level. 

In the absence of a broadly available COVID-19 vaccination, the ef-
fect of preventing strategies such as maintaining social distancing, 
wearing masks and lockdown suggests that the transmission of infec-
tious disease can be greatly decreased by certain preventive measures. 
Prediction of future COVID-19 cases will be useful for government 

authorities, researchers and planners to administer facilities and coor-
dinate medical resources in the near future. It is therefore possible for 
other nations to adopt the suggested frameworks and prevention 
measures. 

There are several limitations to our proposed models. For one thing, 
the sample dimension is relatively small and should be expanded if the 
model is to be generalized. For another thing, different smoothing 
models can be utilized to achieve a better fitting curve and consequently 
a better forecast. And thirdly, the impact of the change of the degree of 
public cooperation, government policies and the stochastic factors are 
not taken into account in our model. 
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