Skip to main content
. 2021 Jun 22;135:104588. doi: 10.1016/j.compbiomed.2021.104588
1 ‘input' Image Input 227x227x3 images with ‘zerocenter’ normalization Input layer
2 ‘conv1′ Convolution 96 11x11x3 convolutions with stride [44] and padding [0 0 0 0] The 1st layer
3 ‘relu1′ ReLU ReLU
4 ‘norm1′ Cross Channel Normalization cross channel normalization with 5 channels per element
5 ‘pool1′ Max Pooling 3x3 max pooling with stride [22] and padding [0 0 0 0]
6 ‘conv' Convolution 256 5x5x48 convolutions with stride [11] and padding [2 2 2 2] The 2nd layer
7 ‘relu2′ ReLU ReLU
8 ‘norm2′ Cross Channel Normalization cross channel normalization with 5 channels per element
9 ‘pool2′ Max Pooling 3x3 max pooling with stride [22] and padding [0 0 0 0]
10 ‘conv3′ Convolution 384 3x3x256 convolutions with stride [11] and padding [1 1 1 1] The 3rd layer
11 ‘relu3′ ReLU ReLU
12 ‘conv4′ Convolution 384 3x3x192 convolutions with stride [11] and padding [1 1 1 1] The 4th layer
13 ‘relu4′ ReLU ReLU
14 ‘conv5′ Convolution 256 3x3x192 convolutions with stride [11] and padding [1 1 1 1] The 5th layer
15 ‘relu5′ ReLU ReLU
16 ‘pool5′ Max Pooling 3x3 max pooling with stride [22] and padding [0 0 0 0]
17 ‘conv6′ Convolution 512 3x3 convolutions with stride [11] and padding [1 1 1 1] The 6th layer
18 ‘relu6′ ReLU ReLU
19 ‘conv7′ Convolution 512 3x3 convolutions with stride [11] and padding [1 1 1 1] The 7th layer
20 ‘relu7′ ReLU ReLU