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Abstract

Background: The past decade has seen a multitude of new in vivo functional imaging 

methodologies. However, the lack of ground-truth comparisons or evaluation metrics makes the 

large-scale, systematic validation vital to the continued development and use of optical microscopy 

impossible.
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New-method: We provide a new framework for evaluating two-photon microscopy methods via 

in silico Neural Anatomy and Optical Microscopy (NAOMi) simulation. Our computationally 

efficient model generates large anatomical volumes of mouse cortex, simulates neural activity, and 

incorporates optical propagation and scanning to create realistic calcium imaging datasets.

Results: We verify NAOMi simulations against in vivo two-photon recordings from mouse 

cortex. We leverage this in silico ground truth to directly compare different segmentation 

algorithms and optical designs. We find modern segmentation algorithms extract strong neural 

time-courses comparable to estimation using oracle spatial information, but with an increase in the 

false positive rate. Comparison between optical setups demonstrate improved resilience to motion 

artifacts in sparsely labeled samples using Bessel beams, increased signal-to-noise ratio and cell-

count using low numerical aperture Gaussian beams and nuclear GCaMP, and more uniform 

spatial sampling with temporal focusing versus multi-plane imaging.

Comparison with existing methods: NAOMi is a first-of-its kind framework for assessing 

optical imaging modalities. Existing methods are either anatomical simulations or do not address 

functional imaging. Thus there is no competing method for simulating realistic functional optical 

microscopy data.

Conclusions: By leveraging the rich accumulated knowledge of neural anatomy and optical 

physics, we provide a powerful new tool to assess and develop important methods in neural 

imaging.
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1. Introduction

The endeavor to understand neural systems has spurred rapid development of technology 

that can record brain activity at ever larger scales [1, 2, 3] and higher precision [4, 5, 6]. One 

such class of technology, functional optical microscopy, has empowered researchers to 

explore neural dynamics from synapse [7, 8] to large brain regions [9, 10]. Specifically, two-

photon microscopy (TPM) combined with in vivo calcium imaging [11, 12, 13, 14, 15, 16] 

has enabled the simultaneous recording of unprecedented numbers of neurons (over 9000) at 

cellular resolution [17, 18].

Although TPM has found widespread use [19, 20, 21], many available experimental 

techniques and data processing algorithms lack appropriate, systematic assessment [22, 23]. 

This deficit can result in inaccurate interpretation of neural data [24]. A systematic 

comparison of techniques would allow researchers to make better informed decisions about 

equipment and data-processing.

For instance, while imaging deeper into scattering tissue with TPM can benefit from 

decreasing the excitation numerical aperture (NA) [15], it is unknown how this benefit 

interacts with other optical or experimental design choices, such as adaptive optics [25, 26] 

or dendritic imaging [27, 28]. Additionally, while many algorithms have been designed to 

extract the neural activity traces and spatial profiles from TPM data [29, 30, 31, 32, 33, 34, 
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35, 36, 37, 38, 39, 40, 41, 42, 43], few options exist to assess the fidelity of the inferred 

segmentation beyond comparisons to manually annotated data [44, 45, 24].

In both cases assessment suffers from a lack of ground truth data, the gold standard of which 

requires simultaneous intracellular electrophysiological and TPM recordings [46, 47]. Such 

experiments are both difficult to perform and limited to only a few neurons and imaging 

conditions. The small number of neurons from such experiments limits the assessment scope 

by biasing towards cells that are in focus, fire often, and fluoresce brightly. This problem is 

further exacerbated as assessing multiple imaging parameters requires recordings under each 

imaging condition, greatly increasing the cost of collecting such data.

Alternatively, subjective ground truth can be obtained from TPM recordings via manual 

annotation [48]. Human labels, however, do not provide access to the underlying neural 

spiking, are limited by the same signal-to-noise ratio (SNR) that limit demixing algorithms, 

and may also bias analysis against dim or sparsely firing neurons. These same issues also 

affect comparisons using simultaneous conventional TPM recordings to test novel imaging 

conditions [49, 50].

In place of collecting ground truth data, simulations can provide rich, controlled testing data. 

Such approaches have benefited other imaging modalities, such as fMRI [51]. Simulation-

based approaches, however, often suffer from being either too simple or too complex. While 

simple simulations are computationally efficient, they often only create realizations of the 

model being tested rather than the actual underlying phenomenon [52, 53]. In contrast, 

complex simulations are instead limited in computation or have a different scope. Some 

existing simulations capture too much detail and are severely limited computationally, 

requiring high-performance computing to simulate more than small volumes with a handful 

of neurons [54, 55]. Others aim to answer different scientific questions, for example 

understanding neural connectivity [56, 57], and include some details that are not relevant to 

TPM, but not other important aspects that are relevant, such as vasculature. For these 

reasons, existing methods do not provide plausible and computationally efficient simulations 

useful for large-scale functional imaging.

To assess TPM methods with realistic and computationally efficient simulations, we present 

the Neural Anatomy and Optical Microscopy (NAOMi) simulator. Our framework leverages 

simple, but flexible, models of neural tissue to efficiently create large volumes with 

thousands of neurons on standard workstations (Fig. 1). Arbitrary patterns of spiking activity 

can be generated for this population, which our framework then transforms into realistic 

fluorescence traces separately for somas as well as processes. A light model approximates 

laser propagation and scattering throughout different locations of the simulated tissue. These 

components are combined in a simulated scanning procedure that incorporates important 

imaging effects, such as sample motion. We describe the simulation model, which has a 

publicly available software implementation1, and provide parameters for simulating two-

photon GCaMP [46] recordings in layer 2/3 of mouse visual cortex. We used these simulated 

datasets to evaluate several automated calcium imaging demixing algorithms. Finally, we 

1Code available at https://bitbucket.org/adamshch/naomi_sim/src/master/.
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generated several more datasets to compare the performance of standard and specialized 

TPM experimental setups under a variety of sample conditions.

2. Results

2.1. Simulation design

Generating realistic imaging data useful for honest assessment of a spectrum of techniques 

hinges on accurate, efficient simulations of anatomical volumes at the scale of optical 

imaging (Fig. 1A). Our anatomical simulation starts by constructing a scaffolding of 

vasculature with three parts: surface vessels, diving vessels, and capillaries [58] (Tab. 1, Sup. 

Fig. 1, 2, 3, See Methods). Next, neurons are placed throughout the volume. Somas are 

placed first, and then dendrites and axons [59] are grown from the cell bodies (Sup. Fig. 4, 5, 

6, 7, See Methods). Statistical models of neurons and process paths ensure variation in cell 

shapes and were tuned using morphological data from electron microscopy (EM) data [60] 

and optical microscopy [61, 62, 63] (Tab. 1, See Methods).

The next step in simulating TPM data is to augment each generated neuron with realistic 

fluorescence activity (Fig. 1B). Spiking activity for each neuron is either pre-defined or is 

generated using models that output correlated, bursting population activity based on models 

of neural connectivity [64, 65, 66, 67, 68] (Sup. Fig. 8, see Methods). Next, the known 

nonlinear calcium decay process simulates the dynamic concentration of calcium ions [69, 

70]. This two compartment model describes separate dynamics for the cell bodies and the 

neurites, both driven by the same spike trains. As in related work, a protein-specific double 

exponential model modulates the calcium concentrations to create bound calcium 

concentrations with appropriate onset and offset time-constants [70, 71]. Finally, the bound 

calcium concentrations are converted to fluorescence values using the Hill-equation fit to 

fluorescence measurements [72, 73] (Tab. 1, Sup. Fig. 9, 10 see Methods).

The next step in the simulation is to estimate the optical properties of the specified 

microscope configuration within the generated tissue (Fig. 1C). The scattering nature of 

brain tissue substantially affects light propagation through it, resulting in an abberated point-

spread function (PSF) and decreased optical performance. We approximate these complex 

effects by performing wavefront propagation of a specified beam shape (i.e. Gaussian or 

Bessel beams [74, 75]) through a generated volume of refractive index shifts (Sup. Fig. 11, 

12, See Methods), generating simulated PSFs across the volume (e.g., Sup. Fig. 13). 

Comparisons of axial spread in simulated and real vasculature imaging of mouse neocortex 

validate the PSF abberation spreads (Sup. Fig. 14, see Methods). We find the axial spread 

330 µm deep into tissue of simulated capillaries (9.98±3.8 µm) and real (11.19±2.31 µm) 

capillaries with 830 nm excitation light to be comparable and have similar distributions. 

These results are consistent with another estimate using capillary sources for estimating the 

axial spread of the PSF with 1280 nm excitation light [76].

The weight of the simulated PSF across different locations of the simulated volume forms an 

occlusion mask, representing inhomogeneity of optical performance across the sample. This 

occlusion mask is also modulated by an estimate of the absorption of emitted light through 

blood vessels and the neural volume as a function of position.
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The final scanning module combines the outputs of the anatomical, light, and activity 

modules to produce images on a frame-by-frame basis (Fig. 1D). The fluorescence activity 

and occlusion mask modulate the anatomical volume, which is convolved with the simulated 

PSF to produce raw, noiseless, illumination images. Sub-pixel line-by-line offsets, 

representing brain motion, are applied prior to spatially resampling to the desired image 

resolution and applying the measurement noise model, modulated by the power level (Sup. 

Fig. 15). Measurement noise is simulated by per-pixel Poisson sampling of photons counts 

at the photo-multiplier tube (PMT) and converting these counts into electrical measurements 

via PMT photon and electronics amplification distributions (Sup. Fig. 11, see Methods). 

This process includes bleed-through across pixels from the amplifier’s temporal response 

kernel (Sup. Fig. 16, see Methods). This procedure is performed independently for each 

frame, and captures the complex, non-Gaussian noise profile inherent in TPM data.

2.2. Comparison of simulated data to real data

To validate the simulator holistically, we evaluated the overall simulation output against 

recordings from mouse V1 (Fig. 2). We generated a 500 µm x 500 µm x 100 µm volume and 

scanned a single plane in the volume with a 0.6-NA Gaussian point-spread function over 

20,000 frames at 30 Hz sampling and 40 mW laser power, comparable to parameters in a 

recorded dataset obtained from mice expressing GCaMP6f being exposed to a set of visual 

stimuli (see Methods).

The simulated videos and recorded videos visually share many of the same features (Sup. 

Video 1), including bright, sparse transients of fluorescence across the whole image. The 

overall mean images (average of frames across time; Fig. 2A) both show distinct cell bodies 

along with muted processes that have their intensity modulated by scattering from blood 

vessels and other tissue elements. Histograms of video pixel values (Fig. 2A,B) feature 

heavy right tails corresponding to neural activity and contain peaks at zero corresponding to 

zero-photon pixels.

The neural activity distribution for individual pixels was explored by comparing the relative 

strength of firing activity across the field of view (FOV). The distribution of maximum 

activity (maximum ∆F/F over 20,000 frames) for all pixels (Fig. 2C) for each of the two 

videos peaks at 2 with a slight heavy right tail, which corresponds to neurons that fired large 

transients within the videos. Other statistics, such as the distribution of values in the mean 

image, the standard deviations over all pixels, and measures of activity such as the ratios of 

maximum to median fluorescence values also match well (Sup. Fig. 17, 18).

The global frequency content of the two videos was estimated with the 2D discrete Fourier 

transforms of the mean images (Fig. 2D). The Fourier transforms of both videos depict very 

similar features, such as increased frequency content along the fast- and slow-scanning axes 

resulting from the sequential pixel bleed-through and residual line-by-line motion artifacts. 

Additionally, the frequency fall-off (Fig. 2E) for both the real and simulated data display the 

same decay. Finally, a plot of the effective dimensionality of both videos via Principal 

Component Analysis (PCA; Fig. 2F) shows both qualitative similarities between the spatial 

principal components (PCs) and quantitative similarities between the distribution of variance 

explained for the leading PCs on small patches of videos.
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All analyses were repeated for a second dataset from a transgenic Thy1-GCaMP6f GP5.3 

mouse, which demonstrated similar fits across the same comparison metrics (Sup. Fig. 19). 

Another metric of interest is the spatial decay of temporal correlations to neural activity 

from individual fluorescing components [18]. Comparisons between visual cortical data and 

NAOMi simulations show similar decays and long-scale correlations (Sup. Fig. 20). We also 

tested the robustness of time-traces to dendritic spikes under these simulated conditions 

(Sup. Fig. 21). Finally, we analyzed the robustness of the simulation to the anatomical 

parameters. Specifically we perturbed two main anatomical parameters: the cell size and cell 

density. We found that in terms of mean image statistics and imaging pixel histograms, cell 

size had a more pronounced effect with cell density minimally affecting the overall 

simulation output (Sup. Fig. 22,23). The primary reason for the increased effect of cell size 

as compared to cell density is due to the higher average fluorescence levels in larger cells 

with realistic PSFs. This effect greatly increases the maximum levels of fluorescence in a 

way that two smaller cells does not achieve.

2.3. Evaluation of automated segmentation

We evaluated TPM techniques using NAOMi by analyzing the performance of automated 

demixing algorithms and leveraging the ground truth information available. We applied three 

common algorithms — PCA/ICA [29], constrained non-negative matrix factorization 

(CNMF) [38], and Suite2p [18] — to 20,000 frames simulated from a 500 µm x 500 µm x 

100 µm volume with 1 µm sampling at 30Hz scanning using a 0.6-NA Gaussian excitation 

numerical aperture (NA) at 40 mW average power. For both the CNMF and Suite2p 

algorithms there exist multiple versions. Here, we ran the 2017 releases of each code-base 

and all references to these algorithms indicate the 2017 versions. The ground truth consisted 

of the spatial profiles of each individual neuron and component within the volume and their 

individual fluorescence traces.

Each algorithm returned a set of demixed time traces and corresponding spatial profiles 

(Tab. 6–8, Sup. Fig. 24–27). Overall CNMF, Suite2p and PCA/ICA isolated 1091, 661, and 

265 components, respectively, out of a total of 8,117 possible fluorescing components. 

Comparisons to the ground truth traces, based on a combined Pearson’s correlation cut-off 

of 0.1 on the time-traces and a 50% pixel overlap, reveal which components represented 

actual cells in the volume (Tab. 6). A pairing is considered to be a “strong pairing” if the 

correlation exceeded 0.5 (Fig. 3A,B, Sup. Fig. 28, 29). These correlation values account for 

all aspects of how well the estimated traces match the true time-courses, including missed 

transients and false transients from other components (e.g., neuropil; Fig. 3C).

Of the paired profiles, some were doubled, i.e. multiple algorithmically discovered profiles 

matched to different portions of the same simulated cell (Sup. Fig. 30, Tab. 6). Accounting 

for doubling, CNMF, Suite2p, and PCA/ICA found 303, 292, and 137 unique cells at the ⩾ 
0.5 correlation level. Interestingly, while CNMF found the most distinct components (i.e., 

before accounting for cells found with multiplicity), it only found approximately the same 

number of unique cells as Suite2p, and both have a lower rate of found true cells than 

PCA/ICA (Fig. 3D). Furthermore, comparisons of individual cells found (Tab. 7, 8) show 
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that different methods found non-overlapping sets of cells (Sup. Fig. 31). For example, 

CNMF and Suite2p only agreed on 273 of the ≈ 300 cells (Fig. 3A, Tab. 7).

While these figures may seem small compared to the 8,117 total sources, not all 

fluorescence sources are visible above the noise level. The vast majority of sources within 

the simulation do not have somas that intersect the imaging plane, and the signal is primarily 

dendritic or axonal. To explore this effect with NAOMi, we computed auxiliary time-traces 

from the raw, noisy video using the “ideal” ground-truth spatial profiles to obtain the profile-

aware least-squares (PALS) time trace estimates (see Methods). Due to the video signal-to-

noise ratio (SNR), these estimates yielded only 415 time-courses accurately matched at the 

⩾ 0.5 correlation level (Fig. 3D, Tab. 8) indicating that the gap induced by simultaneous 

estimation of spatial profiles is not overly large. In fact, the inherent denoising in some 

algorithms allows some cells’ time courses to be estimated with even higher fidelity than the 

traces derived from the ideal spatial profiles (e.g. CNMF identified 8 cells at the r > 0.5 level 

that the ideal profiles produced lower correlation values for; Tab. 8). To further explore the 

abilities of algorithms to extract the stronger somatic traces, we restricted the above analysis 

to include only components with somas close to the imaging plane and found similar relative 

perfomances between the three algorithms (Sup. Tab. 12–17).

One challenge in interpreting the results of automated demixing is that, sans ground-truth, it 

is difficult to determine if a source is a true cell or an artifact. Instead, sorting components 

based on metrics such as overall fluorescence levels can be used. Varying one such criterion 

— a threshold on the maximum fluorescence — to classify true and artifact sources results 

in receiver-operator characteristic (ROC) curves that compare the number of strongly paired 

components kept (true positives), to the number of weakly paired or unpaired components 

kept (false positives). These curves show that while PCA/ICA obtained the fewest 

components overall, CNMF and Suite2p found bright artifacts at much higher rates (Fig. 3E, 

Sup. Fig. 32).

One benefit of the NAOMi simulator is that we can easily explore how optical parameters 

effect algorithmic performance. We replicated the above analysis with a 2x increase in laser 

power (80 mW), keeping the volume and neural activity constant. Ideally this power boost 

would illuminate additional cells, as weaker and more sparsely firing cells would be more 

distinguishable. We found that all algorithms returned more unique components at the r ⩾ 
0.5 level, with 424 for CNMF, 358 with Suite2p and 264 for PCA/ICA: a 39.93%, 22.6%, 

and 92.7% improvement (Sup. Tab. 9), respectively. Interestingly, despite the gain in 

absolute numbers of cells found, there was negligible improvement in rate of correctly found 

cells (true positive rate), and some ROC curves reduced in area, indicating that fluorescence 

magnitudes became less sufficient to differentiate true cells from artifacts (Sup. Fig. 32).

We note that in addition to laser power, other factors such as the sampling resolution, 

numerical aperture and neuropil strength also influence the ability to detect neural activity. 

NAOMi enables exploration of all these aspects. For example we find 1) a sharp cut-off in 

the ability to accurately detect components when sampling at intervals larger than 3 µm 

(Sup. Fig. 33) 2) an improvement in the ability to detect smaller burst sizes in the ∆F/F 

values with neuropil correction as in Suite2P [18] (Sup. Fig. 34), 3) a steady decay in signal 
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strength per component as a function of NA, reaching a critical reduction of signal at NA ≈ 
0.4 (Sup. Fig. 35), 4) a strongly limited ability to extracting activity traces at deep cortical 

layers (650 µm) with TPM with GCaMP (Sup. Fig. 36), and 5) evidence of increased 

contamination from dendrites and other cells at a lower imaging NA for a densely labeled 

sample (Sup. Fig. 37). While we focused on demixing alogrithms here, we note that NAOMi 

can be used to assess other algorithmic methods, such as baseline estimation (Sup. Fig. 38, 

See Methods).

2.4. Evaluation of TPM optical configurations

The ability to modify optical parameters and sample expression patterns allowed for direct 

assessment of the trade-offs between microscope configurations across sample conditions. 

We applied this new mode of assessment to perform three head-to-head comparisons: 1) 

imaging of sparsely labeled tissue using Bessel [8] vs. high-NA Gaussian beams (Fig. 4A–

C), 2) imaging of nuclear labeled tissue using high-NA vs. low-NA (axially extended) 

Gaussian beams (Fig. 4D–F), and 3) volumetric imaging of densely labeled tissue using 

multiplane Gaussian [90] vs. temporally-focused beams [91] (Fig. 4G–I). In all experiments 

power levels were tuned to equalize total signal integrated over a neuronal volume.

In our first comparison we simulated TPM recordings of a sparsely labeled (10% neurons 

expressing GCaMP6f) 500 µm x 500 µm FOV of mouse cortex using both conventional 

high-resolution TPM with a Gaussian PSF (0.6 NA) and extended depth-of-field TPM using 

a Bessel beam (0.4 NA, 60 µm long) [8]. As shown previously, Bessel beam imaging 

resulted in excitation throughout the whole volume, resulting in more uniform excitation of 

neurons (Fig. 4C) and more neurons recorded with high signal fidelity. Another consequence 

of the uniform excitation observed using Bessel beams is an increased robustness to axial 

motion. To verify that NAOMi captures this aspect, we clustered the extracted time-traces 

from Bessel and Gaussian imaging into three groups (Fig. 4B). The sorted correlation 

matrices show a strong motion-induced artifact only for Gaussian imaging, suggesting a 

reduced influence of motion artifacts on time-trace estimation using Bessel beams.

Our second comparison tested the performance of nuclear labeled TPM, which has been 

extensively used for larval zebrafish and C. elegans TPM [92, 93] but not in mouse brain 

imaging, in a 500 µm x 500 µm FOV of mouse cortex. We imaged this simulated tissue 

using Gaussian beams of two excitation NAs: 0.2 and 0.6 (Fig. 4D) and assumed equal 

brightness for nuclear indicators. Similar to the extended depth-of-field Bessel beam, the 0.2 

NA excitation resulted in sampling more neurons from the volume and improved overall 

imaging performance (Fig. 4E,F). As the imaging volume is mostly non-fluorescing with 

nuclear-labeling, distinguishing individual cells is straightforward even with an extended 

depth-of-field. Because nuclei are several times larger than the lateral resolution of the 0.2 

NA excitation beam, there are fewer advantages to switching to a Bessel beam setup and low 

NA imaging is more power efficient. A recently developed technique for soma-targeting of 

GCaMP [94] provides an alternative means to nuclear-labeling for improving labeling in an 

animal for somatic imaging. We generated a somatically labeled volume and simulated 

datasets at two excitation NAs similarly to the nuclear labeled case (Sup. Fig. 39) and found 

similar advantages to using a low excitation NA for TPM.
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In addition to comparing NA values across nuclearly labeled samples, we also compared 

signal levels across a variety imaging NA values for cytosolically labeled TPM in L2/3 

mouse cortex (Sup. Fig. 35). This analysis shows constant total overall integrated value (i.e., 

signal level) across a number of NA, which suggests little loss of power efficiency by 

reducing the excitation NA. While higher NA beams are more strongly affected by scattering 

in tissue, lower NA beams suffer from longer excitation tails, resulting in a decreased signal-

background ratio. Surprisingly, these two effects roughly cancel out for the scattering and 

sample brightness levels found in two-photon GCaMP6f imaging.

Last, we compared multiplane TPM [90] to scanned temporal focused (s-TeFo) TPM [91] in 

a 500µm x 500 µm x 200 µm volume of the mouse cortex layers 2–4 (Fig. 4G). Comparing 

these two fast axial scanning TPM techniques that image large volumes with very different 

spatial sampling conditions permits us to understand optimal sampling strategies for the 

expanding area of high-throughput volumetric TPM. For multiplane Gaussian TPM, we 

scanned four planes, separated by 50 µm at 1 µm lateral sampling, at 10 Hz and for s-TeFo 

TPM, we scanned 16 planes, separated by 10 µm at 4 µm lateral sampling, at 10 Hz. Given a 

similar amount of excitation within the volume, both techniques performed comparably in 

extracting fluorescence traces with high fidelity. The axial distribution of highly correlated 

(r⩾0.5) cells in the multiplane TPM is multimodal, set at the focal positions of the four 

planes, while the s-TeFo distribution is much more uniform (Fig. 4H), as is reflected in the 

profile weight histograms (Fig. 4I). These simulations suggest that while s-TeFo as a 

technique may not drastically increase the number of recorded neurons, the more consistent 

spatio-temporal sampling of neurons may decrease sampling bias and provide robustness to 

motion-induced artifacts and signal crosstalk.

3. Discussion

We presented here the NAOMi simulation framework that generates detailed TPM data. This 

framework captures a variety of existing imaging principles using only anatomical and 

optical simulation blocks. NAOMi thus has the potential to 1) yield new insights into TPM 

technology and enables the testing and 2) validate existing and novel TPM methods, 

allowing for assessment and methodological optimization not currently possible. Toward this 

end, we have developed the ability to generate realistic synthetic neural volumes, transient 

calcium activity, and two-photon calcium imaging videos. We further increase the simulation 

efficiency by simplifying statistical models of the processes involved, reducing the 

computational burden and making this tool more broadly applicable.

We have demonstrated two important use cases of NAOMi: assessment of calcium imaging 

demixing methods and comparing optical configurations across imaging conditions. In both 

cases, useful large-scale ground truth is difficult to obtain experimentally. NAOMi leverages 

the accumulated knowledge of neuroanatomy, optical physics, and neuroscience to bypass 

these difficulties through simulation. The simulation software, along with the data from this 

paper, is made freely available to promote the assessment and development of TPM 

methods. Moreover, we have created a suite of publicly available datasets simulating 

additional experimental conditions, including various power levels, indicators, imaging 
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depths, anatomical parameters, and optical configurations as an extended community 

resource.

Several groups have already begun to use NAOMi to test new algorithmic methodologies, 

including new denoising algorithms [95] and testing the effect of negative transients on 

algorithmic demising [96]. Other uses for algorithm development include testing motion 

correction algorithms, field-of-view alignment and registration, biophysical parameter 

learning, and filtering out artifactual profiles in the found components.

Beyond algorithms, NAOMi can also help optimize experimental designs, for example by 

testing which combination of indicators, NA, excitation power, and other microscope/

experimental techniques best combine with the ensuing analysis to accurately reflect the 

underlying activity, i.e., via accuracy metrics based on the traces used to generate the 

simulated video. Thus NAOMi can help adapt experimental designs towards the scientific 

questions of interest. For example, fast indicators might be critical when analyzing short-

time responses to environmental stimuli, however global activity manifolds guiding longer-

term behavior might be better fit using data collected with slower, brighter indicators. This 

choice of indicator then influences the choice of microscopy technique and imaging rate: a 

slower, brighter indicator may be better suited for volumetric imaging at low frame rates, a 

trade-off frequently acceptable for manifold inference. This represents a potential shift in 

experimental design that enables experimentalists to think globally about the apparatus, data 

processing and analysis in a testable way.

To assess demixing algorithms, we generated a calcium imaging dataset typical of TPM in 

mouse neocortex and analyzed the performance of sev eral popular methods: CNMF [52], 

Suite2p [34], and PCA/ICA [29]. The available input cell shapes and timecourses enabled 

direct comparisons of the algorithm decompositions to ground truth, which revealed that 

methods with the highest number of found neurons also had much higher instances of 

artifactual components. This indicates the potential for many false positives in automated 

demixing (Sup. Fig. 28, Tab. 6). Using NAOMi data as a testing ground, more advanced 

detection metrics can be developed, to find better ways to filter out true cells from the full 

set of returned components.

Using NAOMi, we explored particular combinations of optics and samples in silico and 

illustrated the advantages three specialized techniques under specific sample conditions. We 

rapidly assessed how appropriate a particular technique is for the sample and optimized 

imaging parameters to maximize the quantity and quality of the data. Of particular note is 

the ability to make side-by-side comparisons of different techniques on identical sample 

conditions, which is only possible in simulation. Additionally, we explored the interaction of 

different components of in vivo calcium imaging and their effects on performance. For 

instance, we quantified how axial brain motion can effect estimated cell activity correlations 

as a function of sample type and optical configuration. The ability to directly compare and 

test out techniques allows experimenters to evaluate in silico the utility of a given technique 

for their experimental conditions.
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Despite these results, there are several aspects of the simulation that were simplified for 

speed or simplicity. More realistic anatomically-constrained synaptic connectivity between 

simulated neurons [57] can be used to generate improved spatial distribution to neural 

activity. Additionally, while we provide a spike-train simulation to drive the fluorescence 

models, future iterations of NAOMi can leverage a number of other complex packages that 

specialize in realistic simulations of such activity for neural populations (e.g. [97]). In these 

cases, rather than replicate these methods, we encourage their use and integration into the 

NAOMi framework.

In the development of NAOMi we aimed to create a tool accessible to the community at 

large that is easily expandable in its scope and abilities. To this end, our software was 

designed to be modular so that as better anatomical models, optical descriptions of tissue, 

and TPM statistics become available, they can be easily incorporated into the existing 

framework. Additionally, single modules can be modified in order to simulate different 

setups. For example, changing the anatomical structure (e.g., blood-vessel size and cell body 

statistics) can allow for bench-marking imaging techniques in rats, rather than mice. These 

changes and extensions will allow NAOMi to be a useful tool for a wide variety of 

applications for experimentalists and methods developers.

The modular nature of the simulation also creates an opportunity to create new simulations 

for other brain areas. While in this work we focused on the well-studied visual cortex in 

mice, new EM data, for example in hippocampus [98] and medial entorhinal cortex [99] 

provide an opportunity to data mine the required anatomical parameters needed to adjust cell 

distribution functions, neural cell shape parameters, vasculature creation parameters, and 

dendritic and axonal properties. We expect that as EM data becomes cheaper to obtain and 

thus more widely available, such datasets will become available for many brain areas across 

species.

Work in other fields has shown the great utility of developing strong simulation-based 

models of experimental data (see [100] and references therein). NAOMi is a tool that fills 

part of this gap for neuroscience data. As neuroscience continues maturing, better models of 

data must be developed, especially for data that is as diverse and complex as two-photon 

calcium imaging. This and other work will allow researchers to not only more quantitatively 

judge the quality of their data, but also make better predictions on the data they will need for 

their experiments.

4. Materials and Methods

Our TPM simulator is designed to permit testing of many different aspects of the calcium 

imaging process. To achieve this flexibility, our simulator is divided into five distinct 

modules, each focused on a portion of either the tissue or scanning simulation (Fig. 1). The 

five modules are: 1) the neuron module responsible for generating single neurons, 2) the 

volume module responsible for assembling the neurons into a tissue volume that includes 

neuropil and vasculature, 3) the activity module that generates the temporal calcium traces 

for each neuron and the neuropil, 4) the optics module that simulates the point-spread 
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function and occlusion due to the optical mask, and 5) the imaging module that simulates the 

TPM noise model and object motion.

4.1. Neuron model

The first module creates simple, yet plausible models of neurons that can be placed 

throughout a volume and scanned in simulation. We model the neural shape via a probability 

distribution over smooth deformation of a sphere, followed by a nonlinearity. This model 

allows for fast sampling of unique neurons, meaning that each simulated volume will 

contain a completely new set of neurons. Additionally, we provide for each neuron a nucleus 

modeled as a shrunken and smoothed version of the soma shape. This model captures the 

relationship observed in detailed field emission scanning electron microscopes (FESEM) 

[101]. Finally, we simulate for each neuron a number of dendrites, one of which is created 

thicker and at a downward orientation, as to model the apical dendrites.

The model of the smoothly deformed cell body is an isotropic Gaussian process [102] 

defined over a sphere. To sample from this distribution and create the cell body, we sample 

uniformly over a sphere [103], sample i.i.d. a Gaussian random variable for each point, and 

smooth the points according to the process covariance. Denoting the sample points pi ∈ ℝ3, 

the height (distance from center of the sphere) can be sampled from

ri N 0, K , Ki, j = e−d pi, pj /l,

where l is the length-scale that controls the smoothness of the cell body, and d(·, ·) is the 

geodesic distance between any two points. For the unit sphere (radius one), this distance is 

the arc length along the great circle connecting the two points

d pi, pj = 2sin−1 pi − pj 2
2 .

When unconstrained, the radial height of this function can, at times, exceed the maximum 

and minimum realistic deformations rmax = maxi |ri| and rmin = mini |ri|. We thus rescale the 

radii values as

ri = rmax − rmin
ri − miniri

maxiri − miniri
+ rmin

The resulting points ripi form the points for a mesh that define the interior of the cell body. 

To account for the non-spherical shape found in pyramidal neurons, we can modify the radii 

values by making the base radius at each point dependent on a function of its location on the 

sphere. Specifically, we use the equation for a tear-drop that is defined parametrically by the 

azimuth and elevation angles ϕ, and θ as

cosϕsin θ sinm θ
2 , sin ϕ sinm θ

2 , cos θ . (1)
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The final step in creating the cell body is to create the nucleus, which is accomplished by 

shrinking and smoothing the cell wall shape as defined by ripi as

ri∗ = r50%
ri − miniri
r5% + ri

+ rmin − Δ r min

Dendrites are added to each neuron via a stochastic growing process [59]. The process 

generates start and end points for each dendrite, and iteratively grows the dendrite through 

the volume while avoiding any obstacles (i.e. other cell’s somas, dendrites, or blood vessels). 

Apical and basal dendrite endpoints are separately set within the volume and the grown 

dendrites are dilated to widths consistent with measured anatomy (Tab. 1, Sup. Fig. 7).

4.2. Volume generation

To create the tissue volume, we initialize an empty volume and begin by placing blood 

vessels throughout the volume. For computational feasibility, the volume is modeled as a 3-

D grid of points with sub-micron sampling (we typically use 0.5 µm distances). The blood 

vessels are grown in three parts: surface vasculature, diving arterioles, and capillaries. 

Surface vasculature is grown by connecting nodes randomly placed upon the surface of the 

volume. The connected paths are smoothly varied and dilated. Diving arterioles are set at 

endpoints of surface vasculature and connected to the bottom of the simulated volume. 

Capillaries are connected to the diving arterioles and pseudo-randomly placed within the 

volume in a space-filling fashion. Vessel diameters, concentration, branching frequency, and 

orientation were compared and fit to two-photon microscopy data of mouse vasculature 

(Schaffer-Nishimura lab, unpublished data).

Once initialized, the volume is then filled with the neuron somas. We sequentially place the 

neurons randomly throughout the empty space in the volume, with a minimum distance that 

allows cell bodies, but not nuclei, to overlap. The random placement can be modified to 

encourage neurons to be more spread out, or more cluttered. When an overlap occurs, the 

overlapping region is given to the latest cell to be placed. This allows our volume to contain 

touching cell bodies. Once all the cell somas are placed, dendrites are grown for each neuron 

sequentially, such as to avoid location conflicts with other cells. Apical dendrites are grown 

in the same fashion, only thicker, axially oriented, and having fewer transversal deviations. 

Separate apical dendrites corresponding to neurons in deeper cell layers are grown in a 

similar fashion from the bottom of the volume to the top.

As a final step, axons fill up the remaining empty space, up to the typical 0.7 fill fraction of 

layer 2/3 in mouse V1. The same dendrite growing algorithm [59] is used to create millions 

of short axon segments throughout the entire volume. To obtain the global correlated 

background components, axon segments are locally grouped together. The axon groups are 

assigned to individual cells by minimizing their centroid distance to cell bodies, and then all 

remaining axons groups are randomly assigned.

Song et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3. Time-trace generation

To simulate temporal activity, we provide a number of options to generate time-traces for 

each neuron. We provide both statistical models that generate stereotypical activity as well 

as more detailed [Ca2+] dynamics model. The statistical model provides a simple way to 

input basic behaviors of various fluorescent proteins (i.e. rise-time and decay). The [Ca2+] 

dynamics model simulates the molecular kinetics over time, and provides a way to test the 

time-trace assumptions made in calcium imaging analysis algorithms.

4.3.1. Spike-time generation—We provide two methods to generate spike trains to 

drive the fluorescence activity simulation. The first method creates independent activity for 

each neuron, including bursting behavior. The second model simulates a Hawkes process 

which accounts both for self-excitation, driving busting behavior, as well as inter-neuron 

spiking correlations [104].

To generate independent spike trains, we model each neuron as a bursting neuron, where 

bursts occur at independent, exponential intervals

P Δ tburst = λburste− Δtburst /λburst (2)

for ∆tburst > 0. The rate of bursting λburst is chosen differently for each neuron. The rates can 

be given to the simulator, or the simulator can automatically draw burst rates from a Gamma 

distribution with a provided mean rate and parameter α = 1. For each burst, the number of 

spikes are chosen as

Nburst = 1 + Poisson λN (3)

where the parameter λN controls the length of the bursting. The inter-spike times between 

spikes in a burst were modeled as uniformly random between 5 ms and 7 ms. Alternative 

distributions of spiking activities can easily be implemented by passing different λburst, α, or 

λN values to the simulator, or by direct modification to the code to implement different 

distributions that better reflect activity in other cortical areas.

For the Hawkes model simulation, we first generate a connectivity matrix that encodes how 

each neuron’s firing excites other neurons. We model this connectivity with a Watts-Strogatz 

small-world network model [64]. To correlate the processes to the network activity, we allow 

for all neurons to influence the background processes, while not allowing many return 

connections. To stabilize the point-process, we normalize the resulting connectivity matrix to 

have maximum eigenvalue magnitude of 0.98. We then run the Hawkes process using Lewis’ 

method [105], with an exponential distribution over the neuron’s base firing rates and a 

higher base firing rate for the background components. Finally, we bin the resulting 

continuous-time spike events into 1 ms bins to create the discretized spikes that are then fed 

into the calcium dynamics simulation.

4.3.2. AR-p dynamics—For each cell, we generate a baseline fluorescence, βi = 1 + z

where z N 0, σ2  is a Gaussian random variable. The variance σ2 controls the distribution of 

baselines, and we set a default value to σ2 = 0.04. The next step is to simulate the spike or 
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“event” times for each neuron. As most neurons are sparsely active, we draw the firing rate 

of each neuron as λi ~ Gamma (a, θ). The parameter θ gives the average inter-spike distance 

in time and should be set according to the temporal sampling rate set in the simulation. The 

parameter a is the shape parameter and modulates the distribution of the firing rates. We find 

that a =1 (where the Gamma distribution collapses to an exponential distribution) yields 

realistic distributions of neuron activity levels. The actual event times are then sampled for 

each neuron according to a Poisson process with rate λi. To model the different calcium 

levels at each event (e.g. due to multiple spikes or to adaptation [106]), we sample the 

overall concentration as coming from a unit log-normal distribution (i.e. an exponentiated 

Normal distribution N 0, 1 ).

Once the spike times are obtained, an auto-regressive model with p degrees of freedom (AR-

p) is used to simulate the calcium and fluorescence impulse response. As a difference 

equation, AR-p models can be written as

y n = ∑
i = 1

p
aiy n − i + bx n ,

where the ai’s are the AR coefficients and b is a scalar multiple of the input. The impulse 

response can be obtained by solving the inverse Laplace transform

y n = ℎ n ∗ x n , ℎ n = ℒ−1 bzp

zp − ∑i = 1
p aizp − i

.

Standard linear systems theory shows that h[n] will be composed of the exponentiated roots 

of the characteristic polynomial zp − ∑i = 1
p aizp − i and therefore will be an exponentially 

decaying function. Higher order polynomials can result in a rise time as well. For this work 

we find that an AR-2 model (p = 2) sufficiently models the rise and fall of observed 

GCAMP responses. The filter h is convolved with the spike-time vector to create the 

temporal activity per neuron.

4.3.3. [Ca2+] dynamics—The fluorescence of a cell is dependent on the number of 

calcium ions bound to the indicator. if we denote [Ca2+] as the amount of free calcium in the 

cell and [B] as the number of proteins in the cell, we can use the binding/unbinding 

dynamics, coupled with the entry/exit dynamics of [Ca2+] in the cell to determine the 

fluorescence level at any given time. Specifically, we use the nonlinear diffusion of [Ca2+]

d Ca2 +

dt = − γ 1 + κs +
B Kd

Ca2 + + Kd
2

−1

Ca2 + − Ca2 +
rest ,

where [Ca2+]rest represents the baseline free [Ca2+] , γ is the [Ca2+] diffusion constant, κs is 

the endogenous [Ca2+] binding ratio, and Kd is the protein binding affinity constant [69, 70]. 

As γ is a function of the volume-to-surface area, we use a different γ value for dendrite 
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dynamics as for dynamics in the soma [107]. While this model permits simulation of the 

[Ca2+] concentration over time, the model does not include the on/off time constants τon and 

τoff that describe how long it takes for the bound proteins to become active. We can model 

this effect, as in [70], by convolving with a double-exponential function

ℎ t = A 1 − e−t/τon e−t/τoff (4)

where the amplitude A and the time constants τon and τoff can be fit to the particular protein 

kinetics. The final step in simulating the fluorescence time-traces is to convert the calcium 

concentrations to fluorescence levels. For this task, we use the Hill equation

Δ F /F = 1
1 + KD/ Ca2 + nH (5)

where the parameters KD and nH have been measured in the literature (specifically [72], 

Table 1), and the absolute florescence is

F = F0 Δ F /F + F0 (6)

where the baseline fluorescence F0 can be tuned to the protein statistics.

4.4. Optics simulation

The optics module consists of modeling the shape and intensity of the point-spread function 

(PSF) within the scanned tissue. For computational purposes, we assume the shape of the 

PSF is constant across the scanned volume and only the amplitude is modulated. We 

estimate the PSF within the scanned tissue by propagating a specified field through the 

simulated tissue across the field of view.

We describe the scalar field at the front aperture of the objective lens as a Gaussian with a 

circular aperture and spherical phase:

U0 ρ =
exp − ρ2

ρe2
− ikρ2

2f ρ ⩽ ρ0

0 ρ > ρ0

(7)

where U0 is the scalar field, ρ = x2 + y2 is the polar position, k is the wavenumber, ρ0 is the 

radius of the objective lens, ρe is the radius of the excitation beam, and f is the focal length 

of the objective lens. The wavefront is multiplied by any additional specified aberrations due 

to the microscope or the sample:

U ρ, θ = U0 ρ exp ik∑
i = 1

∞
aiZi ρ, θ (8)
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where θ is the polar angle, ai are the Zernike coefficients, and Zi are the Zernike 

polynomials. By default, only spherical aberration approximating the contribution of the 

refractive index mismatch of the sample and astigmatism approximating the contribution of 

offset scanning galvanometers are included.

The field U (ρ, θ) is propagated through the sample to the focal plane along a 2D grid of 

positions within a simulated refractive index volume δn. The volume δn is generated from 

the simulated vasculature and a 3D Gaussian process with a weight distribution 

approximating the refractive index distribution of mouse cortical tissue (see Supp Fig. 11) 

[108]:

δn x, y, z = ndiff V x, y, z + GP x, y, z (9)

where V is the vasculature and GP is the smooth Gaussian Process representing the optical 

properties in the non-vasculature areas. The vasculature provides the bulk of the long range 

refractive index shifts in the simulation, while the Gaussian process approximates the local 

shifts.

The Fresnel diffraction integral is used to estimate the field throughout the volume, and the 

split-step beam propagation method [109] is used to apply the effects of inhomogeneity 

within the volume. The simulated phase-difference volume is summed into optical phase 

masks corresponding to each propagation step:

ϕ xi, yi, zi = k∫zi

zi + 1
δn x, y, z dz . (10)

This quantity is multiplied after each optical propgation step as

Ui + 1

= eikz

iλ zi + 1 − zi ∫∞

∞∫
−∞

∞
e−iϕiUie

ik
2 zi + 1 − zi

xi + 1 − xi
2 + yi + 1 − yi

2
dxidyi,

(11)

where ϕi = ϕ (xi, yi, zi) is the optical phase mask and Ui = U (xi, yi, zi) is the scalar field at 

each position. The resultant 3D field generated by the propagation is then used to calculate 

the two-photon PSF:

PSF x, y, z = U x, y, z 4 . (12)

The aberrations caused by the phase differences approximate the effects of wavefront 

distortions caused by refractive index inhomogeneity within the imaged sample [110, 111]. 

The two-photon PSFs at each location across the field of view are averaged to obtain the 

PSF to be scanned through the simulation, and the summed intensity of the PSFs across the 

field are used to generate an intensity scaling mask for scanning. For runtime considerations, 

the PSF near the focal plane is sampled at the resolution of the volume while the out of focus 

PSF and scaling mask is sampled at a reduced resolution.
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For alternative optical setups, we adjust the input field U0 accordingly. For a low numerical 

aperture excitation beam, ρe is reduced, and for a Bessel beam excitation U0 is replaced with 

an excitation ring. See supplementary information for more details.

An additional optical mask is also calculated by estimating the reduction in signal from 

absorption of the collected light by the vasculature. The collected light at each scanned 

position is reduced by a collection cone corresponding to the simulated collection objective 

numerical aperture:

r z = tan sin−1 NA/n z (13)

where r(z) is the collected cone radius as a function of depth, and:

C x, y = 10A∫0
d r z ∗ V x, y, z dz (14)

where C is fraction of light collected, d is the tissue depth, and A is the adjusted light 

absorbance of light emitted from GFP normalized by the arterial blood absorbance factor. 

This absorbance mask is multiplied to the optical excitation mask to give the combined 

spatial signal scaling mask.

4.5. Scanning in silico

The final module takes the generated volume, the generated PSF and time-traces, and 

generates the TPM output frames. The first step here is to use the time-traces and 

fluorescence distribution for each neuron to “color in” the corresponding volume with the 

current fluorescence level for that neuron. Similarly, the background level is set by repeating 

this process with the neuropil. The PSF is then convolved with the current volume, and the 

result is masked with the optical path mask to create an initial image.

To simulate motion in the movie, we select a portion of this initial frame to treat as the entire 

image. The starting position (upper left corner) for the with-motion frame is moved 

according to a small ± 0.5 µm jitter with occasional larger jumps (up to 2–3 µm). Options to 

include per-line motion and shearing are also implemented by choosing different sub-

sections of each row as the with-motion frame is extracted from the larger motionless frame. 

This frame represents the fluorescence level at each point in the sampled image. To obtain 

the actual electrical signals sampled by the TPM device, we apply a noise model that 

simulates the number of photons incident on the array (modeled as Poisson) followed by an 

electrical noise model that is Gaussian, with increasing mean and variance with larger 

numbers of incident photons. If λ is the true florescence for a pixel, x is the number of 

incident photons, and y is the measured electrical signal, the noise model can be expressed 

as

x Poisson λ

y logN μ0 + μx, σ0
2 + σ2x
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where µ0 and σ0
3 are the baseline noise mean and variance (with no photons), and µ and σ2 

are the parameters controlling how the measurement mean and variance grow with increased 

incident photons.

As a final step, we simulate the analog-to-digital accumulators’ property where photons 

arriving in one pixel’s accumulation time can cause an analog shape that bleeds through to 

the accumulation for the next pixel (Fig. 16). We simulate this effect by noting that if a 

photon arrives early in the sample period, then the analog PMT response g (t) is completely 

inside of the sample period and no bleed-through occurs. On the other hand, if the photon 

arrives within ∆ of the end of the sampling period, where ∆ is the temporal extent of g (t) 
(Fig. 16), then the tail end of g (t) that continues beyond the end of the period is integrated 

into the next sample. The probability of a given bleed-through level for one photon can thus 

be quantified as

p b =
1 − Δ

T for b = 0

Δ
T

1
g T − τ b for 0 < b ⩽ ∫

0

Δ
g t dt

, (15)

where τ(b) represents the delay τ that is needed to result in a given bleed-through b. Since 

the relationship between b and τ,

b = ∫T − τ

Δ
g t dt,

is monotonically increasing when g (t) ⩾ for all t, τ (b) is a well defined function. Since 

photon arrivals are approximately independent, the bleed-through probability distribution for 

multiple photons is the convolution of the distribution for a single photon. The resulting 

statistical model then takes a random fraction (uniformly chosen between zero and 50%) of 

each pixel with probability 0.2, and adds that amount to the next pixel,

p b =
1 − Pbleed for b = 0

pbleed
bmax

for 0 < b ⩽ bmax

(16)

Vasculature scanning—To compare the axial spread of the PSF in deep volumes, we 

simulated datasets comparable to deep z-stacks of blood vessels [112]. The real z-stacks 

were taken in mouse neocortex at 830 nm excitation wavelength and a numerical aperture of 

1.0 with 1 µm spatial sampling at depths up to 450 µm. For our analyses we generated local 

vasculature z-stacks (60 µm) at a depth of 330 µm by using the scanning module to 

iteratively scan a uniformly labeled simulated blood vessel volume. To adjust for the 

scattering at the new imaging wavelength, we used the equation provided in [108] along 

with a quadratic relationship between scattering length and refractive index. These values 
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reasonably approximated values provided in [113] for nearby wavelengths. Additionally, we 

generated simulated datasets with randomly placed point sources (0.5 µm in size) that were 

scanned in a local z-stack.

We considered the axial and lateral spread of point sources (point source volumes) and line 

sources (capillaries in blood vessel volume) around 330 µm in depth for this analysis. For 

point sources we isolated a 7×7 pixel subregion centered around a point source, background 

subtracted the isolated values and estimated the axial full-width half-max (FWHM) of each 

source. For line sources capillaries were isolated into 30 × 30 pixel subregions, rotated, and 

a 5 µm central region of the brightest slice was used to estimate the lateral spread (FWHM). 

The central 5 µm subvolume was background subtracted and used to estimate the axial 

spread (FWHM). The axial PSF was estimated as the difference between the axial spread 

and half the lateral spread, an estimate which assumes the width of the lateral PSF and the 

line sources are roughly comparable.

Hemoglobin absorption—To calculate the absorption due to hemoglobin, we assumed 

default concentrations of 150mg/ml Hemoglobin (Hb), 64500 g/mol Hb, and 2.9 (abs/µm)/

(mol/L) in units of abs/µm. The absorbance was then calculated using Scott Prahl’s Hb curve 

[114] and eGFP emission spectrum [115].

Estimation of per-trace noise variance—To estimate the noise variance for each time-

trace, we begin with the basic per-pixel noise model

y = Φ f + d + ϵ, (17)

where the noise is heteroskedastic in that the variance is proportional to the mean

ϵ N 0, diag Φ f + d . (18)

The least-squares estimate of the activations under the imperfect spatial profiles Φ is

f = argmin
f

y − Φ f 2
2

(19)

= ΦT Φ −1 ΦT y (20)

= ΦT Φ
−1

ΦT Φ f + d + ϵ (21)

The covariance of this estimate is then

Cov f = Cov ΦT Φ
−1

ΦT Φ f + d + ϵ (22)
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= Cov ΦT Φ
−1

ΦT ϵ . (23)

= E ΦT Φ
−1

ϵϵT Φ ΦT Φ
−1

. (24)

= ΦT Φ
−1

ΦT E ϵϵT Φ ΦT Φ
−1

. (25)

= ΦT Φ
−1

ΦT diag Φ f + d Φ ΦT Φ
−1

. (26)

Calcium analysis algorithms—All analyses were computed with the 2017 versions of 

CNMF [52] and Suite2p [18]. Parameters were adjusted manually for each algorithm to 

optimize the output. For CNMF we used fr = 30, tsub = 5, patch size = [40,40], overlap = 

[8,8], K = 7, tau = 6, p = 0, and nu_bg = 1. For Suite2P we used diameter = 12, DeleteBin = 

1, sig = 0.5, nSVDforROI = 1000, NavgFramesSVD = 5000, signalExtraction = ‘surround’, 

innerNeuropil = 1, outerNeuropil = Inf, minNeuropilPixels = 400, ratioNeuropil = 5, 

imageRate = 30, sensorTau = 0.5, maxNeurop = 1, sensorTau = 0.5, and redmax = 1. For 

PCA/ICA we used fr = 30, ssub = 2, tsub = 10, nPCs = 1000, smwidth = 3, thresh = 2, 

arealims = 10, mu = 0.5, dt = tsub/fr, deconvtau = 0, spike_th = 2, norm = 1. While figures 

displayed typical outputs (i.e., denoised traces from CNMF), all quantitative comparisons 

were computed using the raw DF/F traces returned by each algorithm.

Local correlation calculation—To calculate the local correlations, V1 two-photon 

recordings and simulations were motion corrected using correlation-based rigid motion 

correction [116]. A 1500-frame subsection of each dataset over a 250 × 250 pixel area was 

extracted. For each pixel, the Pearson correlation between its fluorescence activity and that 

of each of the neighboring pixels in a 51 × 51 pixel square neighborhood (up to 25 pixels 

away in each direction) were calculated. The results were averaged over all pixels (to create 

the mean images) and histograms were created to depict the spread for correlations along the 

fast-scan direction.

Computation of the ideal spatial profiles—The ground-truth template for each cell 

was obtained from NAOMi by lighting up that individual cell and zeroing out all other cells, 

and then scanning the volume at the simulated imaging depth plane. We further refined this 

profile to the ‘visible’ pixels by removing any pixel whose estimated noise variance was 

larger than the signal. Such a ‘binary mask’ is common, for example, in increasing 

intelligibility for speech data by applying the binary mask in the time-frequency domain.

Calculation of auxiliary time-traces—To calculate the auxiliary, noisy “ground truth” 

time traces, we used Profile assisted least squares (PALS), which uses the ground truth ideal 

profiles in a least-squares estimation. We considered the movie frames yt for t = 1…T and 
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the calculated ground-truth spatial profiles X = [x1, …, xN]. The noisy time trace estimates 

were then calculated via the least-squares estimation procedure at each time-step t

s t = argmin
S

yt − Xs 2
2 . (27)

Fitting GCaMP parameters—Fitting GCaMP6f and GCaMP6s parameters was 

accomplished by using either constrained optimization (interior-point implementation in 

MATALB) or BayesOpt [117]. Data used to fit these models were downloaded from [118] 

and are available on the Collaborative Research in Computational Neurosciences (CRCNS) 

web portal at https://crcns.org/data-sets/methods/cai-1/?searchterm=chen%20gcamp.

Baseline estimation—Baseline fluorescence estimation is critical for assessing how 

much of the total acquired signal originates from each individual cell, which in turn permits 

more accurate ∆F/F estimates. More accurate estimates both reduce both reduce the 

expected noise level, and also produce time traces that are more meaningful in that they 

directly relate to the actual intracellular calcium levels and spike rates. This is especially true 

in preperations with variable expression levels. Accurate baseline estimation is challenging 

with no clear present solution. Analyzing current methods for baseline estimation, however, 

can provide an approximate error range of this measure, which is vital for establishing error 

bars in the scaling of spike rate estimates and other factors for detemining data quality for 

ensuing analyses.

We analyzed ∆F/F distributions and estimates per pixel (pixelwise estimation) to obtain a 

range for the values that this ratio can take (Sup. Fig. 38). To estimate the baseline 

fluorescence level for each neuron we first calculated its spatial profile S(k) and the modal 

image M(k) for each pixel k. We assumed M(k) = c * S(k) + B(k) , where B(k) is the 

contribution to the fluorescence from all other sources and the baseline fluorescence level is 

given by c * S(k) . When the neuron was active, the pixel values were approximated as F(k) 

= (dF/F) * c S(k) + B(k), in the absence of background activity, which we assumed for this 

estimate.

We estimated c * S(k) by plotting a scatter-plot of S(k) against M(k) and noting that for a 

given S value, there exist a range of possible M values with a minimum value that increases 

as S increases. These minimum values correspond to the case where the contribution by B is 

minimal and approximately uniform, corresponding to fluorescence from the tails of the 

PSF. By fitting the line of these minimum values, we used this slope to approximate the 

value of c. Care may be taken to estimate this minimum B contribution by examining the 

values of pixels immediately outside the spatial profile. We used PCA to locally estimate 

S(k) , which better approximates these values immediately outside of the neuron, improving 

estimation accuracy.

For each pixel k, we note that B(k) must be positive. Therefore, for each pixel k, c <= M(k)/

S(k), which set a upper bound for c. Second, we required that the maximum dF/F value for 

the indicator is not exceeded. By using the maximum fluorescence image, we set a lower 

bound for c. These give a physically allowable range of c for each neuron.
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Robustness to dendritic arbor stimulation—The NAOMi simulation software 

allowed us to estimate the effect of dendritic specific signals on the estimation of overall 

activity traces. We explored this by generating a 100 µm x 100 µm x 100 µm volume and 

scanned it with a 40 mW diffraction-limited Gaussian beam. We then perturbed only the 

dendritic spike trains to include additional spikes, recomputed the time traces, and simulated 

a second video from the same volume. The ground-truth spatial components were used in 

conjunction with the movies to estimate the activity traces for each neuron from both videos 

(Sup. Fig. 21). To remove the confounding effect of noise, a post-processing wavelet 

denoising step was run on all time-traces. We found minimal differences in the time-traces 

due to this additional source of potential time-trace contamination.

Neuropil estimation and comparison—Neuropil is a vital characteristic of calcium 

imaging data. Moreover, the correlation between the activity present in the surrounding 

axons and dendrites may impact signal estimation. We compared correlations across the 

field-of-view for a simulated dataset with a 50 µm x 50 µm field-of-view from the V1 dataset 

used in Figure 2. In particular we calculated the correlation of individual pixels at increasing 

distances from the center pixel of a given component (as found via CNMF [52]), and then 

plotted the average correlations as a function of distance (Sup. Fig/ 20). While this analysis 

is similar to the analysis in [18], the imaging conditions of these datasets (both real and 

simulated) are different. We find NAOMi produces a qualitatively similar drop-off with a 

similar steady-state correlation (Sup. Fig. 20).

Impact of anatomical values on NAOMi—NAOMi leverages a large literature of 

measured anatomical properties. These properties impact the simulated videos and can 

change the quality of the simulation. We tested the robustness of NAOMi to two important 

properties here: cell size and cell density. We varied both values by ±20% and observed 

changes in the mean images (Sup. Fig. 22) and pixel value histograms (Sup. Fig. 23). For 

consistent comparisons of other statistics, we retained all other parameters, including the 

exact same vasculature, across all simulated volumes and videos. We found that while 

changes in density resulted in minimal qualitative changes to the mean images and 

histograms, changes in cell sizes had a more significant impact.

Real two-photon datasets used for comparison—All experimental procedures were 

approved by the Princeton University Institutional Animal Care and Use Committee. Two 

datasets were used for the comparisons: one recorded from a transgenic Ai93-Emx1 mouse 

(Emx1-IRES-Cre;Camk2a-tTA;Ai93(TITL-GCaMP6f) [119]) in Fig. 2 and a second from a 

Thy1 GP5.3 mouse (C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J [120]) in Sup. Fig. 19. 

Animals were prepared and recorded in a manner similar to described in [49] and [121] from 

primary visual cortex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

A number of datasets were used to validate the NAOMi simulation. These data are available 

from different sources with different restrictions:

• Two-photon images from mouse V1 (Fig. 2): This data was taken at the 

Princeton Neuroscience Institute by the laboratory of David Tank, and is 

available upon request to the authors.

• Simulated videos (Fig. 2–4, Sup. Fig. 1–35): All simulated videos are available 

on an Open Science Framework repository https://osf.io/863j9/. A handful of 

volume files are too large to deposit at OSF and can be made available upon 

request from the authors.

• Vasculature data (Sup. Fig. 1–3): Vasculature data was generously provided by 

the laboratory of Chris Schaffer [112].

• Electron microscopy (EM) data (Sup. Fig. 4–6): The EM data is available from 

the Open Connectome project at https://neurodata.io/. Manual annotation used 

for somatic comparisons were performed by the authors and are available on the 

above Open Science Framework repository.

• Dendrite morphology data (Sup. Fig. 7): The data used to compare dendritic 

morphology is freely available from the Allen Institute via the Cell Types 

database: https://celltypes.brain-map.org/.

• Simultaneous spiking and fluorescence activity (Sup. Fig. 9): The data used to fit 

and compare the fluorescence model was collected by Chen et al. [46] and are 

available online at https://crcns.org/data-sets/methods/cai-1/about-cai-1.
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Highlights

• We present a new method for generating realistic simulations of two-photon 

calcium imaging data

• two-photon imaging simulations are used to evaluate the performance of 

automated segmentation algorithms

• Datasets for a variety of customized two-photon microscopy techniques and 

sample conditions are generated and analyzed
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Figure 1: 
Block diagram of NAOMi simulator. A: Neural volume generation process. Vasculature is 

generated throughout the volume, followed by cell bodies and finally dendrites and axons 

are grown. B: Network activity generation. The spiking activity for each neuron is simulated 

and converted into calcium ([C]), bound calcium ([CB]), and fluorescence (F) for a chosen 

indicator. C: Light propagation model. An optical wavefront corresponding to particular 

microscope optics is propagated through a simulated scattering volume, generating a 

spatially changing scattered point-spread function (top, See Sup. Fig. 13) for creating 

relative intensity masks (bottom). D: Scanning and image formation. The volume, 

modulated by the simulated activity, is scanned using the output of the light model with 

motion and noise sources from a model of the light collection, amplification, and digitization 

process.
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Figure 2: 
Comparison of simulated data to recordings of mouse V1 L2/3 using GCaMP6f. A: The 

mean image for mouse V1 recordings and simulated data. B: Pixel value distributions across 

the full videos display bimodal peaks and a right log-linear tail. C: Distribution of the 

maximum ∆F/F values across all pixels in the FOV match between the simulated and real 

V1 data. D: The spatial frequency content in the mean simulated image captures the qualities 

of the real data. Both the spread of frequencies and the tendency for high-frequency 

components in the fast- and slow- scan directions that result from line-by-line motion and 

pixel bleed-through are captured. E: The overall contributions at different spatial frequencies 

to the mean activity matches between the recording and simulation. F: Principal component 

decompositions for both the real and simulated data exhibit similar decays in the variance 

explained per component. The resulting spatial principal components are qualitatively 

similar.
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Figure 3: 
Comparison of popular calcium imaging segmentation algorithms using synthetic data 

generated using NAOMI. A: Left: Overlapped spatial profiles from CNMF (yellow), Suite2p 

(blue), and PCA/ICA (green) with a high (r⩾0.5) Pearson’s correlation. White profiles 

correspond to profiles found by all three algorithms. Right: Simulation-derived profiles with 

highly correlated PALS time traces (r⩾0.5, orange) are compared to profiles found by any 

automated algorithm (cyan). Spatial profiles found by both any algorithm and with highly 

correlated PALS time traces are depicted in gray. B: Strongly paired (r⩾0.5) spatial profiles 

from each algorithm displayed separately. C: Example timecourses estimated by each of the 

segmentation algorithms as compared to the ideal profile assisted least-squares (PALS) 

estimated timecourse and the ground truth timecourse. D: Histogram of correlation values of 

estimated timecourses to the ground truth timecourses for each match spatial profile. E: 

Spatial profiles from CNMF separated into strongly paired (r⩾0.5), weakly paired (r<0.5) or 

unpaired. F: ROC curves for strongly paired (r⩾0.5) spatial profiles sorted by their peak 

fluorescence and profile weight.
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Figure 4: 
Comparison of specialized imaging modalities to standard high NA Gaussian TPM for a 

sparsely labeled volume (A-C), nuclear labeled volume (D-F), and volumetric imaging (G-

I). A: Mean image (left) and example time traces (right) of a sparsely labeled volume with 

Bessel beam (top) and high NA Gaussian (bottom) illumination. B: Correlation matrices of 

extracted time traces for each method sorted by clustering into 3 groups using k-means. C: 

Histograms of spatial profile weights of cells in the volume using Gaussian and Bessel PSFs. 

D: Mean image (left) and example time traces (right) of a nuclear labeled volume with low 

NA Gaussian (top) and high NA Gaussian (bottom) illumination. E: Scatterplot of 

correlation values for low and high NA extracted timecourses against the true timecourse. F: 

Estimated ∆F F resolution of cells based on their spatial profile and the mean image. G: 

Mean image (left) and example time traces (right) of volumetric TPM with 4 high NA 

Gaussian planes (top) and 16 temporally focused planes (bottom) illumination. H: 

Histogram of axial positions of highly correlated (r ¿ 0.5) cells using a scanned high NA 

Gaussian or temporally focused illumination. I: Histograms of profile weights using high 

NA Gaussian or temporally focused illumination.
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Table 1:

Parameters used for in-silico simulation of neural activity in layer II/III of mouse primary visual area V1. 

Values for each parameter were either directly found in the literature or estimated from published data (entries 

with a †). The third column indicates whether these parameters were set directly in NAOMi, or were fit 

indirectly by setting other simulation parameters. In the latter cases, the measured values from a simulated 

NAOMi volume are shown for comparison, indicating that the simulated anatomy matches measured 

anatomical statistics.

Parameter Lit. Val. Fit type NAOMi Val. Unit Refs

Anatomical parameters:

Neural density 9.20E+04 Direct – mm−3 [60]

Fraction vasculature 0.01–0.04 Indirect 0.032 – [60, 77, 78]

Fraction cell bodies 0.12 Indirect 0.135 – [60]

Fraction neuropil 0.84 Indirect 0.833 – [60]

Fraction dendrites* 0.294 Indirect 0.223 – [60]

Fraction other (fluorescing)* 0.401 Indirect 0.33 – [60]

Fraction other (not fluorescing)* 0.293 Indirect 0.28 – [60, 79]

Vessel radius (capillary) 2.00E+00 Direct – µm [58]

Vessel radius (penetrating) 10 (9,11) Direct – µm [58]

Vascular density 1–3 Indirect 2 % [77, 60, 58, 78]

Penetrating vessel density 30
† Direct – mm−2 [58]

Somatic volume* 1.80E+03
† Indirect 1.80E+03 µm3 [80]

Nuclear volume* 800
† Indirect 800 µm3 [80]

Cytoplasm volume* 1000
† Indirect 1000 µm3 [80]

Basal dendrite diameter 0.7 Direct – µm [81]

Basal dendrite length 100–160
† Indirect 105 µm [61, 62, 63]

Apical dendrite diameter 1–2 Direct – µm [82]

Axonal diameter 0.3 Direct – µm [60]

Fluorescence parameters:

GCaMP6f binding affinity Kd 290 Direct – nMol [72]

Baseline Ca2+ concentration 50.00 Direct – nMol [70]

Ca2+ binding ratio ks 100,110 Direct 110 AU [69, 83, 84, 85]

Ca2+ diffusion constant γ 1800 Data fit 292.3 s−1 [69, 83, 86]

Ca2+ axon diffusion constant γ 2800 Direct – s−1 [69, 83, 84]

GCaMP6f Hill eqn. exponent nh 2.7 Direct – AU [72]

GCaMP6f Hill eqn. amplitude 25.2 Direct – F [72]

Indicator concentration 10–200 Direct 10 µM [70, 87, 88]

*
Adjusted for shrinkage: 31% [89]
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†
Value estimated from data in the literature
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