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Systematic detection of functional proteoform
groups from bottom-up proteomic datasets
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To a large extent functional diversity in cells is achieved by the expansion of molecular
complexity beyond that of the coding genome. Various processes create multiple distinct but
related proteins per coding gene - so-called proteoforms - that expand the functional
capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets,
where peptides instead of intact proteoforms are measured, has remained difficult. Here we
present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up
proteomics data. It leverages the concept of peptide correlation analysis to systematically
assign peptides to co-varying proteoform groups. We show applications of COPF to protein
complex co-fractionation data as well as to more typical protein abundance vs. sample data
matrices, demonstrating the systematic detection of assembly- and tissue-specific proteo-
form groups, respectively, in either dataset. We envision that the presented approach lays the
foundation for a systematic assessment of proteoforms and their functional implications
directly from bottom-up proteomic datasets.
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uman cells are known to perform thousands of different

biochemical functions and the central dogma of biology

states that proteins that catalyze the vast majority of these
functions arise from the transcription and translation of the
information contained in the respective genome. The Interna-
tional Human Genome Sequencing Consortium reported ~20,000
protein-coding genes in the human genome! and, surprisingly,
the number of protein-coding genes does not scale with the
complexity of functions of eukaryotic organisms2. These findings
have led to the notion that the protein-coding information of the
genome is substantially diversified structurally and functionally
along the axis of gene expression®. Specific mechanisms that
catalyze this diversification include alterative splicing of tran-
scripts, posttranslational processing and modification of proteins,
and the variable association of proteins in functional protein
complexes. Consequently, protein-coding genes frequently give
rise to multiple distinct protein species—proteoforms—which
have a unique primary amino acid (AA) sequence and localized
posttranslational modifications (PTMs)*° and which might, in
turn, partition into different protein complexes or show func-
tional differences. Currently, it is estimated that the ~20,000
coding genes generate more than a million different proteoforms®
that can differ between individual cells, tissues, and disease
phenotypes®7-9. This increase in complexity beyond the directly
translated genomic sequence information hampers genotype-
based phenotype inference and highlights the importance of
capturing proteome diversity to increase the mechanistic under-
standing of biochemical processes in basic and translational
research.

Over the last decades, mass spectrometry (MS) has emerged as
the key technology for proteomic analyses!®!1, The large array of
mass spectrometric techniques can be grouped into two main
approaches: top-down and bottom-up proteomics. In top-down
workflows, samples containing intact proteins are chromato-
graphically separated, ionized, and analyzed in a mass spectro-
meter. Recorded spectra of both the intact and fragmented
proteins determine the unique primary protein sequence and
PTMs of individual proteoforms!2, Recent top-down proteomic
studies reported the identification of more than 3000 unique
proteoforms originating from up to ~1000 individual genes!314.
Gaining deeper proteoform coverage by top-down proteomics is
challenged by the limitations of current separation techniques, the
MS and tandem MS (MS/MS) analysis of large ions, and the
interpretation of the resulting spectra by available analysis
softwarel21°. Although top-down proteomics provides unprece-
dented insights into proteoform diversity and some proteoforms
have successfully been annotated with molecular functions and
implicated phenotypic traits’, the systematic assessment of
proteoform-specific functions remains challenging. A shift of
focus from the mere enumeration of various proteoforms detec-
ted from a cell towards establishing direct links between pro-
teoform species and their functional significance would be a
major advance in the field.

Bottom-up proteomics is the more widely used technique for
proteome-wide studies, because some of the technical challenges
facing top-down proteomics are alleviated. Here, proteins are
enzymatically digested into smaller peptide sequences, which are
subsequently separated by liquid chromatography, ionized and
analyzed by MS/MS. The identity and quantity of proteins in the
tested sample are subsequently inferred from the peptides that are
identified based on the acquired precursor and fragment ion
spectra. The method is technically robust and has demonstrated
the detection of translation products of the vast majority of
coding genes in a number of species. However, bottom-up pro-
teomic workflows suffer from the principal limitation that the
connectivity between identified peptides and their proteins of

origin is lost during the enzymatic digestion step. This necessi-
tates an in silico inference step that maps measured peptide sig-
nals back to individual proteins. This is a challenging task in
general'® and is particularly hard for resolving different
proteoforms. Recent advances in instrumentation, data acquisi-
tion and data analysis, especially the development of data-
independent acquisition (DIA/Sequential Window Acquisition of
all Theoretical (SWATH)-MS) strategies, have enabled the mea-
surement of large bottom-up proteomic datasets at high pro-
teome coverage, combined with consistent and accurate
quantification!”-12, Based on these developments, the peptide-
level bottom-up proteomic data became more reliable, both on
the qualitative and quantitative level, as demonstrated in several
of our previous studies?21. Thus, useful information about the
presence of individual modifications or sequence variants on the
peptide level can be readily obtained. However, the possibilities to
systematically assign and distinguish unique proteoforms from
bottom-up proteomics datasets remains a mostly unexplored area
to date.

Nevertheless, researchers in the early days of bottom-up pro-
teomics already observed that peptides of the same protein might
follow distinct quantitative patterns across a dataset, and that
peptide co-variation analysis can be leveraged to improve pro-
teomic analyses on different levels. The predominant focus of
previous work has been to use peptide correlation analysis for the
purpose of filtering out dissimilarly behaving peptides in an effort
to improve protein quantification?2?3 or protein inference*. It
has also been recognized that some of the determined “outlier”
peptides could indeed contain valuable biological information,
e.g., by originating from different proteoforms and previous work
explored the possibility to use peptide correlation patterns for
proteoform assignment?3-2>-27,

In this work, we present COPF, a strategy for COrrelation-
based functional ProteoForm assessment in bottom-up pro-
teomics data. COPF extends the concept of peptide correlation
analysis towards establishing a generic workflow with the main
purpose of systematically assigning peptides to co-varying pro-
teoform groups (also see Glossary in Supplementary Table 1). We
benchmark COPF against PeCorA, a state-of-the-art tool for
proteoform identification in bottom-up proteomics data?’,
demonstrating that COPF performs better in the detection of
proteoforms differing by multiple peptides. Furthermore, our
data show that COPF results are based on a conservative and
well-calibrated error model, and that the strategy is applicable to
complex experimental designs and also the analysis of a single
condition. We first demonstrate the capabilities of COPF by
applying it to a dataset where cells in two cell cycle stages are
compared. The dataset was generated by protein complex co-
fractionation via size-exclusion chromatography (SEC) coupled to
DIA/SWATH-MS?28, The results indicate that COPF is capable to
systematically detect assembly- and cell cycle-specific proteoform
groups. As a second example, we apply COPF to assign functional
proteoform groups in a typical bottom-up proteomic cohort
study consisting of five tissue samples from the mouse BXD
genetic reference panel?®. In this dataset, COPF could determine
several tissue-specific proteoform groups. The wealth of biological
information that COPF provides for both the cell cycle SEC-
SWATH-MS and mouse tissue datasets can be further investi-
gated on the online platform that we provide for manual data
exploration: http://proteoformviewer.ethz.ch/. The COPF algo-
rithm is fully integrated and is available within the CCprofiler
framework?!:30, Tt includes specific modules to assess the biolo-
gical credibility of detected proteoform groups and the unique
possibility to directly integrate COPF results into protein complex
analysis to determine assembly-specific proteoforms. We envision
that COPF can make a significant contribution towards the
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systematic assessment of proteoform groups across large bottom-
up proteomic datasets and for linking these groups to biological
functions.

Results

Principle of the method and implementation. The assignment
of peptides to unique proteoforms is a challenging task in
bottom-up proteomic workflows, because the majority of detected
peptides are frequently shared between multiple proteoforms and
multiple diverging peptides cannot be uniquely assigned during
protein inference. Here we propose a data-driven strategy to
assign peptides to unique functional proteoform groups based on
peptide correlation patterns across large bottom-up proteomic
datasets (COPF). We define a functional proteoform group as a
group of peptides derived from the same gene that co-vary across
a large and heterogeneous dataset. A proteoform group can, but
does not have to represent a unique, specific proteoform (also see
Glossary in Supplementary Table 1). The COPF strategy is based
on the following considerations: (i) in case only one proteoform is
expressed or all proteoforms of a protein have similar char-
acteristics across a heterogeneous dataset, all sibling peptides (i.e.,
peptides originating from the same parental gene/protein) should
display a similar quantitative profile, as schematically illustrated
in Fig. 1A left panel; (ii) if a gene generates multiple distinct
proteoforms that differ between the analyzed samples across a
heterogeneous dataset, sibling peptides of that protein can be
separated into groups of highly correlated peptides, which we
accordingly assign to distinct proteoform groups, schematically
illustrated in Fig. 1A right panel.

Conceptually, the proteoform detection workflow in COPF can
be divided into four steps (Fig. 1A, computational data analysis).
First, the intensities of peptides assigned to the same gene or
protein identifier are determined from the corresponding MS
signals across all measured samples. Second, all pairwise peptide
correlations within a protein are calculated based on the
determined intensity values across samples. Third, the peptides
of a protein are subjected to hierarchical clustering, using one
minus the previously calculated correlation as the distance metric.
The tree is then cut into two clusters, minimally containing two
peptides each (see “Methods” section for details). Fourth, a
proteoform score is calculated for each protein. The score is
calculated as the mean peptide correlation across clusters minus
the within-cluster correlation. A higher proteoform score thus
indicates a higher within-cluster vs. across-cluster correlation.
The assumption of our COPF strategy is that proteins with
multiple distinct proteoforms that behave differentially across a
dataset will have higher proteoform scores than proteins without
differentially behaving proteoforms. Finally, COPF estimates p-
values for each proteoform score and performs multiple-testing
correction (see “Methods” section for details).

It is important to highlight that COPF analysis does not require
any prior definition of biological conditions or a specific
experimental design, as it exploits inherent variation in the data
independent of its origin. Thus, COPF has the unique benefit that
it is applicable to non-pairwise comparisons or to comparisons
that do not include multiple conditions, exemplified by
continuous data such as a single SEC-SWATH-MS experiment
where only one condition is analyzed. In addition, COPF can also
be applied to data with complex, nested designs including
multiple covariates. In fact, the correlation-based approach
employed by COPF is particularly powerful when applied to
large and heterogeneous datasets, even in the absence of an
explicit reference condition. These are typically difficult to assess
by other approaches, such as PeCorAZ’, which require a
homogeneous reference condition.

The COPF strategy is implemented and openly available as an
extended version of our previously published CCprofiler R
package?1,30:31 at: https://github.com/CCprofiler/CCprofiler. The
CCprofiler framework offers the unique possibility to directly
integrate COPF results into the analysis of protein complex
assemblies by SEC-SWATH-MS or similar co-fractionation MS
approaches (Fig. 1B). Proteoform groups assigned by COPF can
thereby directly be classified as assembly-specific and/or as
condition-specific if multiple conditions are analyzed. To gain
even more insights into the characteristics of the detected
proteoform groups, we further implemented a peptide proximity
analysis as a post-processing module in COPF (Fig. 1C). The
proximity analysis evaluates whether peptides assigned to the
same proteoform group are in closer relative sequence proximity
than expected for random peptide grouping. This module
identifies cases where proteoforms differ by extended sequence
stretches, e.g., when generated by alternative splicing or
proteolytic cleavage. The post-processing modules of COPF that
are available within the CCprofiler framework therefore provide
the opportunity to not only detect proteoform groups but to also
systematically assess some of their biological characteristics.

Benchmark. A particular challenge for benchmarking the COPF
strategy for assigning functional proteoform groups is the lack of
available biological ground truth data. To evaluate COPF per-
formance, we therefore conducted a sensitivity analysis based on
an in silico generated benchmarking dataset and compared the
COPF results with those from PeCorA, a recently published tool
for proteoform assessment2’. We used a subset of the SWATH-
MS multi-laboratory study!® as the basis to generate the bench-
marking data. The selected dataset contains 21 replicate MS
analyses of HEK293 cell lysates measured on 3 days over a week
(days 1, 3, and 5, respectively). To introduce quantitative varia-
tion, we generated in silico fold-changes by adjusting intensities
of day 3 and day 5 data with two randomly selected factors
between 1 and 6. Subsequently, artificial proteoforms were
introduced for 1000 proteins by selecting a specified number of
peptides for which the intensity values in the day 5 data were
adjusted by a random factor between 0.01 and 0.9. Example
intensity profiles for a protein with two proteoforms (top) and
a protein with only a single proteoform (bottom) are shown in
Fig. 2A. The resulting set of proteins with either a single or two
proteoforms was then used to evaluate the ability of our algorithm
to correctly distinguish proteins with a single or multiple pro-
teoforms, as well as to assign peptides correctly to their corre-
sponding proteoform group. Figure 2B shows the pseudo-volcano
plot for proteins with two (green) and single (orange) proteo-
forms. Here, proteoforms were generated by randomly perturbing
between 2 peptides and 50% of the peptides in a protein. To set
COPF performance metrics in context to previous work, we also
analyzed our benchmarking dataset with the recently published
PeCorA software?’. For this comparison, we generated three
benchmarking sets: the first consisted of proteins where proteo-
forms differed by a single peptide, the second of proteins where
proteoforms differed by two peptides, and the third consisted of
proteins where proteoforms differed by 50% of a proteins’ pep-
tides. We compared the receiver operating characteristic (ROC)
curves for COPF and PeCorA for all three benchmarking sets
(Fig. 2C). Here, individual points are derived by filtering the data
at a specific adjusted (adj.) p-value threshold and showing the
corresponding true positive rate (TPR) and false positive rate
(FPR). COPF requires minimally two peptides to differentiate
proteoform groups. As expected, COPF could not detect the
proteoforms differing by a single peptide in the first bench-
marking set (Fig. 2C left panel). In contrast, PeCorA was
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specifically designed for detecting proteoforms differing by a
single peptide and could, therefore, achieve a convincing ROC
curve. In the second benchmarking set, proteoform groups dif-
fered by two peptides, and COPF and PeCorA show similar ROC
curves (Fig. 2 middle panel and Supplementary Fig. 1A). Here,
COPF has slightly higher TPRs in the lower range of FPRs
between 0 and 0.1. Finally, COPF markedly outperformed
PeCorA in the third benchmarking set in which proteoform

negative sequence proximity

groups differed by 50% of the protein’s peptides (Fig. 2C right
panel). The observed results are in line with expectations derived
from the design of either tool. PeCorA is particularly sensitive in
detecting single outlier peptides, whereas COPF is particularly
powerful in detecting proteoforms that differ by multiple
peptides. Looking at the assignment of peptides to proteoforms,
it is apparent that PeCorA can successfully determine single
proteoform peptides (orange color in Fig. 2C left panel).
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Fig. 1 Analysis concept and workflow overview. A COPF is based on the concept that all peptides of a single proteoform protein that are differentially
regulated across a dataset should follow the same quantitative pattern (left panel). In contrast, for differentially regulated proteins with more than one
proteoform, peptides unique for each proteoform should follow a distinct quantitative pattern (right panel). In this figure, exemplary proteoforms generated
via alternative splicing are depicted. Exons in the pre-mRNA are indicated as colored boxes and introns as lines. In the depicted example of alternative
splicing, one splice variant only contains blue exons, thus resulting in a blue proteoform. The second splice variant additionally contains two orange exons,
thus generating a mixed blue and orange proteoform. During proteolytic digestion for bottom-up proteomics, proteins and proteoforms are cleaved into
peptides, a process during which the direct link between a peptide and its parental proteoform is lost. COPF takes advantage of datasets that assess
quantitative peptide profiles across a large number of samples (Step 1). Here, this is illustrated by 12 samples measured across two different conditions. To
quantify co-variance across samples, all pairwise peptide correlations are calculated for each protein (Step 2). The correlation distance (1 — Pearson's
correlation) is subsequently used for hierarchical peptide clustering into two groups (Step 3). Finally, proteoform scores and corresponding p-values are
calculated based on the within- vs. across-cluster Pearson’s correlation (Step 4). Proteins without alternative proteoforms between conditions get a low
score/high adjusted p-value (gray points), whereas proteins with multiple detected proteoforms between conditions achieve a higher proteoform score/
low adjusted p-value (red points). B COPF is embedded in the CCprofiler framework. Proteoform groups detected from SEC-SWATH-MS data can
therefore directly be integrated into a protein complex analysis, to determine assembly-specific proteoforms. Here, peptides of the orange proteoform
group are exclusively present in the monomeric state, whereas peptides of the blue proteoform group form a protein complex with the two proteins
indicated in gray. € COPF has a post-processing module for sequence proximity analysis. Peptides are indicated as small boxes, colored by their assigned

proteoform group in orange or blue.

However, mistakes increase with higher numbers of peptides per
proteoform (violet color in Fig. 2C middle and right panel). In
contrast, COPF can successfully group peptides to the correct
proteoform group, given the proteoforms differ by minimally two
peptides (orange color in Fig. 2C middle and right panel).

To assess the false discovery rate (FDR) estimation in COPF,
we compared the multiple-testing adj. p-value with the empirical
FDR in each of the ground truth benchmark datasets (Fig. 2D).
The results show that FDR estimates by COPF are well-calibrated
and overall conservative (generally following, but staying below
the diagonal line) for proteoforms differing by two or more
peptides (Fig. 2D middle and right panel). Introducing a
proteoform score threshold in addition to the adj. p-values
provides even more conservative results. Our analyses further
show that the adj. p-values reported by PeCorA cannot be directly
interpreted as FDRs. Although they represent an ordering relation
and thus produce reasonable ROC curves (Fig. 2C), the adj. p-
values of PeCorA do not correspond to protein-level FDR
estimates (Fig. 2D). Although performing an additional multiple-
testing correction of the p-values reported by PeCorA across all
peptides in the dataset slightly reduced this effect (Supplementary
Fig. 1A, B), additional measures would be necessary to derive
FDR statistics for PeCorA.

In summary, the in silico benchmark analyses demonstrate that
COPF can (1) confidently identify proteins with proteoforms, if
proteoforms differ by two or more peptides, (2) correctly group
peptides into the correct proteoform groups, and (3) provide
well-calibrated and conservative FDR estimates for proteoform
detection. The comparison with the state-of-the-art PeCorA tool
shows that the two tools are complementary. Although PeCorA
performs well for proteoforms differing by a single peptide, COPF
outperforms PeCorA for proteoforms differing by multiple
peptides.

Identification of cell cycle- and assembly-specific proteoforms
in a SEC-SWATH-MS dataset. We applied the COPF strategy to
our previously published native complex co-fractionation dataset
of Hela CCL2 cells synchronized in interphase and mitosis?® to
identify cell cycle- and assembly-specific proteoforms. In this
case, the dataset consists of native complexes isolated from cells
in two cell cycle states, separated by SEC, and then analyzed by
bottom-up proteomic analysis using DIA/SWATH-MS?1:31. The
workflow with individual steps is schematically illustrated in
Fig. 3A. First, cells are lysed under close to native conditions to
keep protein complexes intact. Second, the protein complex
mixture is separated by SEC into 65 fractions. Third, each

sampled fraction is separately processed for bottom-up proteomic
measurements by SWATH-MS!7 followed by peptide-centric
analysis32-34, In a fourth step, peptide elution profiles across the
SEC fractions are evaluated to infer protein complex assemblies
by CCprofiler as described before?!3! and additionally by the
COPF method to identify proteoforms differentially associating
with complexes within or across cell cycle states.

For the COPF analysis, we took the original peptide-level elution
profiles from Heusel et al.28 as a starting point. We imported the
data into the CCprofiler framework for subsequent data preproces-
sing as follows. First, we annotated peptides with their start and end
position in the canonical protein sequence. Second, peptides with
overlapping start and end positions (e.g., peptides resulting from
missed cleavages) were reduced to one representative peptide,
selected based on the highest overall intensity across the dataset.
Third, missing values were imputed for fractions with a valid value
in both the preceding and following SEC fraction. Fourth, peptides
detected in fewer than three consecutive fractions and peptides with
zero variance along the SEC dimension were removed. Finally, only
proteins with two or more remaining peptides were considered for
further analysis by COPF. Importantly, intensities of individual
peptides across all measured fractions and conditions were
considered for calculating the pairwise correlations in COPF and
to derive the scoring metrics.

The pseudo-volcano plot for the 5451 proteins of the SEC-
SWATH-MS dataset that remained after the above filtering steps
is shown in Fig. 3B. At a multiple-testing corrected p-value
threshold of 10% and a minimal proteoform score of 0.1, COPF
reported 317 proteins with functional proteoform groups. Two
hundred and forty-three (77%) of these proteins are annotated
with multiple isoforms in UniProt (Fisher’s exact test: odds ratio
=1.8, p-value=6x10"7 when compared to the entire SEC-
SWATH-MS dataset). A comparison with an independent study
on phospho-signaling across cell cycle conditions?”
further showed that the 317 proteins are significantly enriched
for cell cycle-regulated phosphosites (Fisher’s exact test: odds
ratio = 4.8, p-value = 7 x 10739), Proximity analysis of identified
peptides within the protein sequence revealed that the proteo-
forms for 68 proteins (21%) were significantly closer in sequence
proximity than expected by chance (p-value <10%) and proteo-
forms for an additional 92 proteins (29%) scored among the
lowest 10% of possible p-values, given the number of peptides in
the protein (for details, also see “Methods” section). We further
analyzed the dataset with respect to proteoforms that associate
with different complexes (assembly-specific) and to proteoforms
that differ between cell cycle states (cell cycle specific).
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Fig. 2 COPF benchmark. A We generated an in silico benchmark dataset to evaluate COPF performance. Twenty-one replicate measurements of HEK293
cell lysates derived from the SWATH-MS interlab study'® were selected and adjusted (i) to introduce variance across samples and (ii) to introduce
proteoforms for a subset of proteins. The top panel shows the peptide-level intensity profiles for an exemplary protein consisting of two detectable
proteoforms (two perturbed peptides in purple). The lower panel shows the peptide-level intensity profiles for a protein consisting of a single detectable
proteoform (no perturbed peptides). B Pseudo-volcano plot for proteins with two (green) and only one (orange) proteoform. For this figure, proteoforms
were generated by randomly perturbing between two peptides and 50% of the peptides in a protein. C Receiver operator characteristic (ROC) curves for
three in silico benchmark datasets. They show the true positive rate (TPR) over the false positive rate (FPR). Individual points in the curve are generated by
iterating over different adjusted p-value thresholds. The datapoints derived from an adjusted p-value threshold of 0.1 are highlighted by a red circle.
D Empirical FDR values vs. estimated adjusted p-values. Individual points in the curves are generated by iterating over different adjusted p-value thresholds.

Proteoform groups for 109 proteins (34%) could be classified as
assembly-specific, as we observed them in multiple distinct
assembly states resolved along the SEC dimension (for details, see
“Methods” section). In addition, COPF predicted proteoform
groups of 124 proteins (39%) that were significantly differentially
expressed between the two cell cycle stages (log2-fold change > 1
and Benjamini-Hochberg (BH) adj. p-value <0.05). A summary
of the proteoform characterization is provided in Fig. 3C.

As a final assessment of the global characteristics of the set of
proteins detected as having multiple proteoform groups, we
performed an enrichment analysis (Fig. 3D). We observed that
the protein set is highly enriched in phosphoproteins and genes
processed by alternative splicing. In addition, the protein set is
enriched in UniProt keywords related to processes important
during cell cycle progression, which is expected given the tested
biological conditions.
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cycle SEC-SWATH-MS dataset. At a multiple-testing corrected p-value threshold of 10% and minimal proteoform score of 0.1, a set of 317 proteins was
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analysis of the predicted set of reported proteoform groups.
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In addition to these global insights, our dataset provided a rich
source of new biological information. In the following, we present
selected examples that highlight different mechanisms generating
proteoforms and different functional associations of proteoforms
with either the cell cycle or protein assembly.

The first example is the proteasome subunit-f type-7 (PSMB7,
UniProt ID: Q99436), which is convincingly resolved in our SEC
data. The proteasome assembly line is a well-studied yet still
heavily investigated system. Figure 4A shows a simplified
schematic of the process. A key step in the prevalent model of
208 particle assembly is the integration of PSMB7 as the last p-
subunit, triggering proteolytic cleavage of its pro-peptide,
followed by formation of the full 20S core proteasome complex3°.
Our data-driven COPF strategy identified two assembly-specific
proteoforms for PSMB7 (also see Supplementary Fig. 2A). The
SEC profiles of all detected PSMB7 peptides are shown in Fig. 4B.
The peptides assigned to the two different proteoform groups are
highlighted in blue and orange. Although the peptides of both
proteoform groups participate in the lower molecular weight
(MW) peak around fraction 33, only peptides of the orange
proteoform group were detected in the higher MW peak around
fraction 25. From protein co-elution analysis (Supplementary
Fig. 2C) and our previous study?!, we know that the peak group
around fraction 33 corresponds to a proteasome assembly
intermediate and the peak group around fraction 25 corresponds
to the full 20S core proteasome. Checking the location of the
detected peptides along the PSMB7 sequence reveals that the
peptides of the blue proteoform correspond to the two N-
terminal peptides (Fig. 4C, also see Supplementary Fig. 2B). The
second peptide (TGTTIAGVVYK) spans the known proteolytic
cleavage site of the PSMB7 pro-peptide. To verify our finding, we
performed a targeted re-extraction of the semi-tryptic peptide
(TTIAGVVYK) that is produced by tryptic digestion of the
processed, short proteoform using Skyline3”-38. The extracted
signal of this semi-tryptic peptide is highlighted in green in
Fig. 4B, C (also see Supplementary Fig. 3). In contrast to the fully
tryptic (blue) peptide, the cleaved peptide sequence co-elutes with
the peptides of the orange proteoform group, indicating that the
processed form is integrated in the 20S proteasome core complex
as expected and identifying the precise location of the proteolytic
processing that generates the proteoform.

The nuclear pore complex (NPC) protein Nup98-Nup96
(UniProt ID: P52948) presents a second example of the capacity
of COPF for data-driven proteoform assignment. The Nup98-
Nup96 proteoform groups were identified by the algorithm as
both assembly and cell cycle specific (Fig. 4D). The Nup98 gene is
known to encode a 186 kDa precursor protein that undergoes
autoproteolytic cleavage, to generate a 98kDa nucleoporin
(NUP98) and a 96 kDa nucleoporin (NUP96) (Fig. 4D)3%-42,
NUP96 is an important scaffold component of the NPC,
whereas NUP98 has diverse functional roles during mitosis.
Previously, we showed the upregulation of the Nupl07-160
subcomplex (Corum ID: 87) in mitosis as compared to interphase
(see Fig. 6H in ref. 28). There, we stated that the protein product
of the Nup98 gene is upregulated together with the other
members of the Nup107-160 subcomplex, i.e., proteins SECI13
(P55735), NUP107 (P57740), NUP160 (Q12769), NUP43
(Q8NFH3), NUP37 (Q8NFH4), NUP133 (Q8WUMO), SEHIL
(Q96EE3), and NUP85 (Q9BW27). Here, our purely data-driven
approach was capable of correctly grouping peptides according to
the two known proteoforms NUP98 and NUP96 (Fig. 4E, F, also
see Supplementary Fig. 2D, E). Based on this assignment, we can
now also demonstrate that only the NUP96 proteoform integrates
into the Nup107-160 subcomplex and follows its behavior across
the cell cycle (Supplementary Fig. 2F). This is in line with reports
from previous studies?3.

In addition to the above-mentioned examples where proteo-
forms were derived from enzymatic or autoproteolytic cleavage,
the COPF algorithm could further detect proteoforms derived
from alternative splicing, exemplified by the nuclear autoanti-
genic sperm protein (NASP, UniProt ID: P49321). Previous
studies reported two alternative-splicing-derived proteoforms of
the NASP protein that can be detected in transformed cell lines: a
somatic form (sNASP) and a shorter, testicular form (tNASP)4.
In our HeLa cell cycle dataset, COPF detected two assembly-
specific proteoform groups that correctly matched the annotated
proteoforms sNASP and tNASP (Fig. 5A, also see Supplementary
Fig. 4A). The two distinct peptide peak groups in different MW
regions of the SEC separation indeed confirm previous findings
that the two proteoforms engage in different assemblies.

Whereas the examples described above refer to well-annotated
proteoforms that we were able to resolve without including prior
knowledge in the analysis, our findings also uncovered less well-
understood proteoforms. Figure 5C, D show the profile and
sequence location for peptides of Transmembrane protein 106B
(TMEM106B, UniProt ID: QINUM4), which has no annotated
sequence variants or specific post-processing steps annotated in
UniProt. Nevertheless, COPF identified two clearly distinguishable,
assembly-specific proteoforms (Supplementary Fig. 4B). In recent
literature, we found evidence that TMEMI106B is a lysosomal
membrane protein that, upon membrane integration, undergoes
evolutionarily conserved regulated intramembrane proteolysis#>+4°,
This involves a two-step mechanism where the luminal domain is
first cleaved off by an unknown enzyme at AA residue 127, followed
by a second cleavage (at AA 106) of the N-terminal fragment that is
still anchored in the membrane (cleavage sites are indicated by the
scissors in Fig. 5D). Our data suggest that the peptides of the blue
proteoform group belong to the C-terminal luminal domain, eluting
separately in the low MW range, likely consistent with a monomeric
form (expected monomeric MW = 31 kDa, observed elution at ~42
+10kDa as estimated based on the log-linear MW calibration of
the SEC fractions, see “Methods” section). The high MW signal
likely corresponds to the full protein integrated into the lysosomal
membrane. Enrichment analysis of co-eluting proteins in the high
MW range shows an enrichment in membrane-associated proteins
(Supplementary Fig. 4C, D).

The strong enrichment of phosphoproteins in general and
more specifically of proteins with previously reported cell cycle-
regulated phosphosites3” in the set of proteins with proteoform
groups was a significant finding in the global analysis of COPF
results (Fig. 3D). To follow-up on these results, we set out to
identify the specific proteoform groups that are enriched in cell
cycle-regulated phosphosites. For this, we performed enrichment
analyses in each of our predicted proteoform groups to test
whether they are enriched for cell cycle-regulated phosphosites as
determined by Karayel et al.3. In total, 42 out of the 317 proteins
with multiple proteoform groups (13%) had one proteofrom
group significantly enriched in previously annotated cell cycle-
regulated phosphosites, thus suggesting that these proteoforms
might be phosphorylation-derived. Twenty-eight (67%) of these
proteins also turned out to be cell cycle stage-specific (log2-fold
change>1 and BH adj. p-value<0.05, Fig. 5E). One such
example is the Ataxin-2-like protein (UniProt ID: QSWWM?7).
Peptides of the first proteoform group (orange) are higher-
abundant in mitosis (log2-fold change=1.38 and BH adj. p-
value = 0.002), whereas the second proteoform (blue) is sig-
nificantly lower-abundant (log2-fold change up to —2.66 and BH
adj. p-value = 0.005) (Fig. 5F and Supplementary Fig. 5). Four out
of five regulated phosphosites’® (Fig. 5G) fell into sequence
regions covered in our dataset, exactly matching the four peptides
of the second proteoform (blue). Making use of the possibility to
re-extract data from SWATH-MS maps, we performed a targeted
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Fig. 4 COPF results for PSMB7 and NUP98/96. A Schematic overview of the proteasome assembly line. B Peptide profiles of the proteasome subunit-p
type-7 (B7, PSMB7, UniProt ID: Q99436) in interphase. Peptides of the two assigned proteoform groups are colored in orange and blue. A zoom-in on
fraction 10 to 40 is shown in log scale, including an additional semi-tryptic peptide TTIAGVVYK that represents the N-terminal tryptic peptide of the
processed proteoform (green). Please note that the abundance values between the orange and blue peptides cannot be directly compared to the semi-
tryptic peptide TTIAGVVYK in green because of the separate analysis platforms used. € Protein sequence plot for PSMB7. Sequence coverage and position
of the detected peptides of the two assigned proteoform groups are indicated in blue and orange. Pro-peptide and chain information from UniProt are
indicated as horizontal bars. The known pro-peptide cleavage site is indicated by scissors. A zoom-in representation is provided for the region around the
annotated cleavage site. The semi-tryptic peptide from B is highlighted in green. D Schematic overview of the NUP98 and NUP96 proteoform biogenesis
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analysis in Skyline to detect and quantify the expected
phosphopeptides in our dataset (Supplementary Fig. 6). As
predicted, we could confirm mitosis-specific phosphorylation for
two of the four peptides (EIESS[+80]PQYR and TLSS[+80]
PSNRPSGETSVPPPPAVGR, Fig. 5F). One phosphopeptide
(GPPQS[+80]PVFEGVYNNSR) had only a weak signal (purple)

and the fourth could not be detected. Nevertheless, it is
remarkable that the phosphopeptides could be detected and
quantified in the samples given the long processing protocol
without enrichment and without specific phosphatase inhibition
treatment. These findings highlight that the COPF approach is
capable of determining phospho-specific proteoform groups,
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given that at least two peptides are involved. Here, it is important
to emphasize again that the strategy by which phospho-specific
proteoform groups were detected with COPF directly links these
detections to their biological relevance in the cell cycle.

Tissue-specific proteoforms in SWATH-MS data of different
mouse tissues. In comparison to the SEC-SWATH-MS dataset
where native protein complexes are separated and analyzed in
consecutive fractions, bottom-up proteomic datasets of unfrac-
tionated samples are more commonly available. Using a pre-
viously published SWATH-MS dataset of five different mouse
tissues from eight BXD mice each?® (Fig. 6A), we tested the
assumption that the COPF strategy to identify functional pro-
teoforms was also applicable to peptide intensity vs. sample data
matrices from sample sets of sufficient size and variability
between samples.

We initially imported the peptide-level data matrix (intensity
vs. sample) into the CCprofiler framework and applied the same
data processing steps as for the application of COPF for SEC-
SWATH-MS data described above, except for the consecutive
identification filter and missing value imputation. Proteins with
two or more remaining peptides were considered for further
analysis by COPF and resulted in the pseudo-volcano plot for
2885 proteins shown in Fig. 6B. At a multiple-testing corrected p-
value threshold of 10% and a minimal proteoform score of 0.1,
COPF reported 63 proteins with potential functional proteoform
groups. Fourteen (22%) of these are annotated with multiple
isoforms in UniProt. Peptide proximity analysis within the coding
sequence further revealed that the proteoforms for 19 proteins
(30%) were significantly closer in sequence proximity than
expected by chance (p-value<10%) and proteoforms for an
additional 7 proteins (11%) scored among the lowest 10% of
possible p-values, given the number of peptides identified for the
respective protein (for details, also see “Methods” section).
Further evaluation of the detected proteoform groups revealed
that proteoform groups for 56 proteins (89%) could be classified
as tissue specific. This classification is based on the protein being
differentially regulated when using tissue and predicted proteo-
form group information as prior knowledge for an analysis of
variance (ANOVA) (Bonferroni corrected p-value<0.01). A
summary of the proteoform characterization is provided in
Fig. 6C.

We further performed an enrichment analysis of the proteins
annotated with multiple proteoforms (Fig. 6D), showing that they
are significantly enriched in keywords related to fatty acid
metabolism. Interestingly, many proteins are also associated with
acetylation.

Finally, we compared the proteoform containing proteins
called by COPF with those determined by PeCorA?2” (Fig. 6E). In
total, PeCorA reported significant peptides for 2730 out of 2885
proteins (95%) at an adj. p-value cutoff of 10%. This set covers all
but one proteoform containing protein determined by COPF. If
an additional multiple-testing correction of the adj. p-values
reported by PeCorA was performed across all peptides, the
number of proteins reported by PeCorA dropped only by 41, still
covering 93% of all proteins. These findings are in line with the
benchmarking results (see above), suggesting that PeCorA is
more sensitive than COPF at determining outlier peptides,
however at the cost of a potentially high FPR.

Among the 63 proteins assigned to have functional proteoform
groups by COPF, multiple biologically interesting instances stood
out, exemplified by LIM domain-binding protein 3 (Ldb3, also
known as Cypher, UniProt ID: Q9JKS4), and sorbin and SH3
domain-containing protein 2 (Sorbs2, UniProt ID: Q3UTJ2),
respectively.

The protein Ldb3 was previously described as muscle specific*”
and, accordingly, was found to be highly expressed only in the
heart and quadriceps samples of our dataset (Fig. 7A). The COPF
strategy clearly assigned the peptides of Ldb3 into two tissue-
specific proteoform groups, indicated in orange and blue (Fig. 7B).
These proteoforms directly match the previously annotated splice
variants of Ldb3, where peptides of the first proteofrom group,
QIJKS4-1, exactly map to the canonical sequence region that also
has an alternative sequence variant (alternative sequence 1 in
Fig. 7C). To further validate this finding, we performed a targeted
extraction of peptides in the alternative sequence region
(peptides: VVANSPANADYQER and FNPSVLK) and could
confirm their expression in quadriceps tissue (Supplementary
Fig. 7). These findings are in line with previous studies that
reported tissue-specific expression of the alternative splice variant
in the skeletal muscle?’.

For Sorbs2 (Fig. 7D), our fully data-driven approach assigned
the peptides to two clearly distinct proteoform groups (Fig. 7E).
The peptides of the orange proteoform group are abundant in the
brain, heart, and liver tissues, whereas the peptides of the second,
blue proteoform group are observed exclusively in the brain.
Mapping the identified peptides to the canonical protein sequence
and matching them with annotated sequence variants (Fig. 7F), it
can be observed that the two blue peptides map to the region of a
brain-specific splice variant (alternative sequence 10) that
includes an exon that has previously been shown to only be
expressed in the brain tissue and exclusively in the neurons#8->0,

Discussion
Until recently, proteoforms have mainly been inferred from
transcriptomics data of next-generation sequencing studies that
aim at discovering different mRNA transcripts of the same gene,
mostly generated by alternative splicing. In these studies, it is
assumed that the alternative transcripts are further translated
to protein sequences, which is not always the case®!”2,
One approach to study proteoforms directly on the protein level
is to generate and apply proteoform-specific antibodies, which
can only be achieved at fairly low throughput and high cost. One
recent example represents a study that characterized alternative
CD6 isoforms generated by alternative splicing®3. However,
the systematic identification of proteoforms on a proteome-wide
scale has only recently been enabled by MS-based technologies.
Impressive progress in top-down proteomics has led to the
identification and characterization of a few thousand proteoforms
in parallel'314, However, the proteomic coverage of top-down
proteomics approaches is still technically limited!%1>. As the
connection between protein and peptide is lost at an early stage of
bottom-up proteomic workflows, this method has mostly been
considered unsuitable for the analysis of proteoforms to date. In
this study, we present COPF, an analysis concept and software for
proteoform detection in bottom-up proteomics data. COPF has
multiple unique characteristics that distinguish it from other
methods for proteoform detection in bottom-up proteomics data:
first, COPF is applicable to complex experimental designs that do
not follow classical two- or multi-condition comparisons and it is
also applicable to data generated from a single sample or biolo-
gical condition exemplified by a single SEC-SWATH-MS
experiment. Second, COPF is optimized for proteoforms differ-
ing by multiple peptides, e.g., derived from alternative splicing,
proteolytic cleavage, truncation or multiple co-regulated PTMs.
Third, COPF includes a statistical model to estimate an FDR for
proteoform detection. Fourth, post-analysis modules such as
peptide proximity analysis evaluate the biological credibility of
the determined proteoforms. Finally, COPF is embedded in the
CCprofiler library that we originally designed for the analysis of
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Fig. 6 Global insights into tissue-specific proteoforms in full-proteome SWATH-MS data. A Schematic overview of the experimental design and analysis
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scoring results for the mouse tissue SWATH-MS dataset generated by the COPF algorithm. At a multiple-testing corrected p-value threshold of 10% and
minimal proteoform score of 0.1, 63 proteins were predicted with multiple proteoform groups. € Assessment of the reported proteoform groups. D UniProt
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Fig. 7 COPF results for Ldb3 and Sorbs2. A Peptide profiles of the LIM domain-binding protein 3 (Ldb3, also known as Cypher, UniProt ID: Q9JKS4). Peptides
of the two assigned proteoform groups are colored in orange and blue. B Zoom-in on muscle tissue, specifically highlighting two additionally extracted peptides
VVANSPANADYQER (light green) and FNPSCLK (dark green) that are specific to the known skeletal muscle-specific splice isoform of Ldb3. Please note that
the abundance values between the orange and blue peptides cannot be directly compared to the additionally extracted peptides in green because of the
separate analysis platforms used. € Protein sequence plot for Ldb3. Sequence coverage and position of the detected peptides of the two assigned proteoform
groups are indicated in blue and orange. Chain information and alternative sequence isoforms from UniProt are indicated as horizontal bars. The zoom-in on
alternative sequence 1 shows the sequence of the skeletal muscle-specific splice isoform. The two peptides from B are highlighted in light and dark green,
respectively. D Peptide profiles of the sorbin and SH3 domain-containing protein 2 (Sorbs2, UniProt ID: Q3UTJ2). Peptides of the two assigned proteoform
groups are colored in orange and blue. E Clustering dendogram for Sorbs2. F Protein sequence plot for Sorbs2. Sequence coverage and position of the detected
peptides of the two assigned proteoform groups are indicated in blue and orange. Alternative sequence isoforms from UniProt are indicated as horizontal bars.
A zoom-in on the terminal regions of alternative sequence 10 shows that the orange proteoform does not cover this sequence region.
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protein complexes in SEC-SWATH-MS datasets. COPF results
can therefore be directly integrated into protein complex analysis
to determine assembly-specific proteoforms, a question that could
not be systematically assessed before.

A key challenge during the development of COPF was the lack
of a ground truth dataset with known functional proteoforms. To
nevertheless carry out a performance evaluation of our software,
we generated an in silico reference dataset. Our analyses
demonstrate that COPF can identify proteins with multiple
proteoforms and assign detected peptides to the correct proteo-
form at well-controlled error rates (Fig. 2). We further bench-
marked COPF performance against PeCorA, a recently published,
state-of-the-art tool, for the detection of outlier peptides and
potential proteoforms from bottom-up proteomics data?’. Our
analysis showed that COPF outperforms PeCorA in cases where
proteoforms differ by two or more peptides. Based on the con-
ceptual design of COPF, it cannot detect proteoforms differing by
a single peptide. PeCorA can identify these single peptides with
high sensitivity, however coming at the cost of lower selectivity,
which is currently not controlled on the protein level. This effect
could be observed in both the benchmarking and mouse tissue
dataset. Overall, it is difficult to distinguish technical outliers
from true biological signals among the PeCorA results. Proteo-
forms reported by COPF require at least two peptides differing
between proteoforms, thus reducing the chance of observing a
purely technical artifact. In addition, the grouping of peptides by
COPF enables the direct report of proteoform groups. PeCorA
only reports single peptides differing in intensity between samples
but does not derive conclusions on whether multiple outlier
peptides of the same protein co-vary because they are derived
from the same proteoform or from different proteoforms. The
difference in COPF and PeCorA performance, depending on the
number of peptides that are required to differentiate between
proteoforms, suggests that PeCorA is particularly suitable to
detect proteoforms derived by single PTMs. In contrast, COPF is
particularly sensitive in detecting proteoforms covering larger
sequence stretches, such as those generated by proteolytic clea-
vage events or splice isoforms.

The performance characteristics observed in the benchmarking
analyses suggest that COPF sensitivity will increase markedly
with technical advances that improve sequence coverage as well as
data completeness across samples. In this study, COPF was
applied to two datasets generated by SWATH-MS. When com-
pared to more classical data-dependent acquisition, DIA (or
SWATH-MS) has the advantage of both increased data com-
pleteness and quantitative accuracy’. Recent developments on
MS instrument level as well as in data acquisition and analysis
promise further improvements with regard to proteome and
sequence coverage>>0,

In addition to considerations on proteoform types detectable
by a given analysis approach, experimental design is an important
factor that determines which strategy is suitable for a given study.
PeCorA is designed for multi-condition comparisons with well-
defined and fairly homogeneous groups, whereas COPF is spe-
cifically tailored towards complex study designs. COPF is
applicable to continuous datasets such as those generated by SEC-
SWATH-MS and also to nested study designs with multiple
covariates. Due to these conceptual differences, PeCorA could not
be applied to the SEC-SWATH-MS dataset presented herein. We
expect that the primary applications of COPF will be datasets
including highly heterogeneous samples for which a large degree
of overall quantitative variation is observed. Both the differential
SEC-SWATH-MS dataset and the mouse tissue dataset presented
herein provide good examples for data with high abundance
variation. Other promising study designs for COPF analysis
could, e.g., be linked to sub-cellular localization maps or similar

systems with a high degree of biological diversity. Applications
might also extend to less well-defined study designs by mining
large proteomic datasets available from proteomic databases such
as Pride®”. However, the scope of possible applications and its
limitations still remain to be explored.

Results of the COPF analysis presented herein are based on
splitting the peptides of a protein into maximally two proteoform
groups. However, it is expected that some proteins might have
more than two functionally relevant proteoforms that could, with
this approach, not be resolved. To address this limitation, alter-
native clustering strategies that can group peptides into multiple
proteoform groups are also available in COPF and can be
explored by users who aim to gain a more fine-grained separation
of proteins into a variable number of proteoform groups (also see
“Methods” section). Such analyses will strongly benefit from a
higher sequence coverage, which is expected to be achieved by
newest DIA technologies in the near future>>°,

An important distinction between functional proteoform
groups assigned by COPF and those determined by top-down
proteomics approaches is that COPF does not fully characterize
the proteoform’s complete primary AA sequence and all of its
modifications. It merely determines whether peptides exist that
can differentiate the different biological contexts of a protein.
Importantly, proteoform groups detected by COPF can directly
imply a functional consequence depending on the study design.
The power of the method is thereby directly linked to specific
dataset properties. SEC-SWATH-MS data, as presented in this
study, e.g., provides the opportunity to link the detection of
proteoform groups directly to protein complex assembly, a
property that makes such datasets unique and especially inter-
esting for systematic proteoform investigation by COPF. A sec-
ond factor based on which COPF can detect proteoform groups
and distinguish functional associations is the biological context of
a study, namely from the different biological conditions at hand.
In the two datasets presented herein, these correspond to cell
cycle- and tissue-specific proteoform groups. The focus of COPF
to detect proteoforms with different functionality therefore
addresses the increasing discrepancy between the ability of high-
throughput data acquisition techniques to identify new chemical
entities and the challenge to associate functional significance to
these newly discovered entities.

The presented examples in this study include proteoform
groups generated by proteolytic cleavage (Figs. 4A-C and 5C, D),
autocatalytic cleavage (Fig. 4D-F), alternative splicing (Figs. 5A, B
and 7A-F), and multiple phosphorylations (Fig. 5F, G). These
examples demonstrate that the proposed strategy is, in principle,
agnostic to the different mechanisms by which proteoforms can
be generated inside the cell. This is in stark contrast to most other
approaches that commonly investigate a subset of mechanisms.
On one hand, proteoforms originating from alternative splicing
are most commonly studied by proteogenomic approaches that
combine RNA-sequencing with proteomics®®>°. Classical PTM
studies, on the other hand, are more commonly based on specific
enrichment protocols that enable an in-depth analysis of specific
modifications, such as phosphorylations or ubiquitinations, with
a focus on peptidoforms rather than proteoforms®. Although the
COPF strategy can, in principle, detect all types of proteoforms,
the current implementation is limited by a minimum peptide set
of two. The main reason is that it is difficult to confidently dis-
tinguish single outlier peptides from true biological signals.
Future work towards improving outlier vs. signal differentiation
will therefore further increase the sensitivity of the COPF strategy
and the scope of different proteoform groups that can be detected.

Although most presented examples confirm well-annotated
proteoforms, our approach has the unique feature of enabling
their systematic co-detection and to directly enable the assessment
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of their relevance in the studied system, e.g., classifying them as
assembly-, cell cycle-, or tissue-specific. The examples discussed in
this study only represent a fraction of the wealth of biological
information that can be extracted from the COPF analysis of either
the SEC-SWATH-MS or the mouse tissue proteomic datasets. To
enable researchers to further explore the results in greater depth and
to gain an insight into the sensitivity of the approach, we provide an
online platform for manual data exploration, which is openly
available at http://proteoformviewer.ethz.ch/.

With the constantly increasing number of large-scale datasets
and repositories generated by bottom-up proteomics®0-63, there is
a wealth of data waiting to be mined for new biology. We envision
that our proteoform analysis concept extends previous
work?32527 and will thereby contribute to a paradigm shift
towards the development of computational methods that directly
couple discovery to biological context in such datasets. Strategies
with such a direct link will enable easier interpretation of results
and selection of promising follow-up candidates.

Methods

Proteoform scoring. The proteoform score is calculated as follows: first, the
average peptide Person’s correlation is calculated for each cluster. The lowest
correlation value across all clusters is selected as within-cluster correlation
(yithin—cluster)- Second, the average Pearson’s correlation is calculated across all
peptides of the protein, referred to as across-cluster correlation (7,cyoss—cluster)-
Third, the proteoform score is calculated by subtracting the across-cluster corre-
lation from the within-cluster correlation.

Proteoform score = r,

within—cluster — -

across—cluster (1)

A p-value for the proteoform score is derived by first transforming the within-
and across-cluster correlations by the Fisher z-transformation:

2 1

Here, r corresponds to the respective Pearson’s correlation. The standard error
(SE) of the z-value is defined by:

z= lln(l i_ :) = arctanh(r) 2)

1
N-3
Here, N is the number of samples for which the correlation was calculated. A
test statistic, Z, can therefore be derived as follows:

SE = (3)

7 = Zacross—cluster — Zwithin—cluster

— @)
Nithin—ctuster =3 Nacross—cluster =3

The Z-value has an approximately Gaussian distribution under the null
hypothesis, assuming that the population correlations are equal. A p-value can
therefore be derived as follows:

p=2%1- (pnorm(|(Z)D)) (5)

The p-values across all proteins are finally corrected for multiple testing by the

BH procedure. The data analyzed in this study was filtered for adj. p-values of 0.1
and a proteoform score of 0.1.

In silico benchmark. The in silico benchmark is based on part of the SWATH-MS
interlab study!®. The selected dataset contains 21 replicate HEK293 runs measured
on three different days of a week (termed day 1, day 3, and day 5). The data were
downloaded from ProteomeXchange (http://proteomecentral.proteomexchange.
org) via the PRIDE partner repository®” with the dataset identifier PXD004886 file
site02_global_q_0.01_applied_to_local_global.txt. First, indexed retention time and
aqua peptides were removed from the dataset and precursor intensities were
summed across charge states. Only peptides without missing values across all 21
runs were considered for further analysis. In addition, proteins with less than four
peptides were removed. Median normalization across runs was performed to make
intensity values comparable.

To introduce quantitative variation, we generated in silico fold-changes by
adjusting intensities of day 3 and day 5 samples with two randomly selected factors
between 1 and 6. Subsequently, artificial proteoforms were introduced for 1000
randomly chosen proteins by selecting a specified number of peptides for which the
intensity values of day 5 were adjusted by a random factor between 0.01 and 0.9.
Depending on the benchmarking setup, either one peptide, two peptides, 50% of
the peptides, or a random number between 2 and 50% of peptides per protein were
selected.

A script with the complete benchmark analysis is available on GitHub (https://
github.com/ibludau/ProteoformAnanlysis/blob/main/PerformanceEvaluation/
InterlabBenchmark_final_paper.R).

COPF analysis of the cell cycle SEC-SWATH-MS dataset. The peptide-level
data and annotation of the cell cycle SEC-SWATH-MS dataset,
E1709051521_feature_alignment.tsv and HeLaCCL2_SEC_annotation_full.csv,
were downloaded from the Pride repository: https://www.ebi.ac.uk/pride/archive/
projects/PXD010288. The data were loaded in R and imported as traces object,
using importMultipleConditionsFromOpenSWATH. The proteins were further
annotated with general information from UniProt using annotateTraces. MW
calibration of the SEC fractions was performed based on measured standard
proteins and their MWs by calibrateMW and annotateMolecularWeight. Peptide
positions within the canonical protein sequence were determined by annotate-
PeptideSequences. Peptides from the same protein with similar start or end posi-
tion, e.g., generated by missed cleavages, were summarized into a single peptide
based on the highest intensity across the dataset by summar-
izeAlternativePeptideSequences. Missing values were imputed for fractions with a
valid value in both the preceding and following SEC fraction using findMissing-
Values and imputeMissingVals. Peptides detected in fewer than three consecutive
fractions across all replicates were excluded from further analysis (°*lterConsecuti-
veldStretches). Finally, peptides with zero variance were removed and only proteins
with multiple remaining peptides were kept for downstream analysis
(filterSinglePeptideHits).

For COPF analysis, replicates of each condition were first integrated by
integrateReplicates followed by appending SEC profiles across conditions by
combineTracesMutiCond. Subsequently, all pairwise Pearson’s correlations between
sibling peptides were calculated by calculateGeneCorrMatrices. Hierachical
clustering based on an average linkage was performed by clusterPeptides. The tree
was cut into two clusters by cutClustersInNreal. Each cluster is required to contain
at least two peptides. Peptides that would form a single peptide cluster were
marked as outliers. Finally, the proteoform scores and adj. p-values were calculated
by calculateProteoformScore. Proteoform groups were annotated across all
conditions and replicates by annotateTracesWithProteoforms.

To evaluate the sequence proximity of the resulting clusters, the
evaluateProteoformLocation function was applied.

Scripts for the SEC-SWATH-MS COPF analysis are available on GitHub
(https://github.com/ibludau/ProteoformAnanlysis/tree/main/CellCycleHela).

Differential proteoform group analysis of the cell cycle SEC-SWATH-MS
dataset. As a first step of differential proteoform group analysis, protein feature
finding was performed. For this, peptide traces were summed across all conditions
and replicates by integrateTracelntensities. Peak groups along the SEC dimension
were determined by findProteinFeatures (corr_cutoff = 0.9, window_size = 7,
collapse_method = “apex_only”, perturb_cutoff = “5%”, rt_height = 1, smooth-
ing_length=7, useRandomDecoyModel = TRUE, quantLevel = “protein_id”).
Subsequently, protein features were resolved on the proteoform group level using
resolveProteoformSpecificFeatures (minProteoformIntensityRatio = 0.1). Features
were scored and filtered for a 5% FDR (scoreFeatures, FDR = 0.05).

The differential analysis was performed similar as described by Heusel et al.28
with minor modifications. Intensity values per condition and replicate were first
extracted by extractFeatureVals and fillFeatureVals. The differential analysis was
subsequently performed by testDifferentialExpression. Tests on the peptide level
were finally aggregated to the proteoform group level by
aggregatePeptideTestsToProteoform. Results were filtered by for a median log2 fold
change > 1 and a BH adj. p-value <0.05.

A script for the differential SEC-SWATH-MS analysis is included on GitHub
(https://github.com/ibludau/ProteoformAnanlysis/blob/main/CellCycleHela/
06_differentialProteinFeatures_paper.R).

COPF analysis of the mouse SWATH-MS dataset. The peptide-level quantita-
tive data from Williams et al.2? was downloaded and only the whole proteome
samples were selected for the analysis with CCprofiler and COPF. The quantitative
data were loaded in R and imported as traces object, using importPCPdata. The
proteins were further annotated with general information from UniProt using
annotateTraces. Peptide positions within the canonical protein sequence were
determined by annotatePeptideSequences. Peptides from the same protein with
similar start or end position, e.g., generated by missed cleavages, were summarized
into a single peptide based on the highest intensity across the dataset by sum-
marizeAlternativePeptideSequences. Peptides with zero variance were removed and
only proteins with multiple remaining peptides were kept for downstream analysis
(filterSinglePeptideHits). Due to its suspicious properties, the protein with UniProt
accession A2ASS6 was removed.

For COPF analysis, all pairwise Pearson’s correlations between sibling peptides
were calculated by calculateGeneCorrMatrices. Hierachical clustering based on an
average linkage was performed by clusterPeptides. The tree was cut into two clusters by
cutClustersInNreal. Each cluster is required to contain at least two peptides. Peptides
that would form a single peptide cluster were marked as outliers. Finally, the
proteoform scores and adj. p-values were calculated by calculateProteoformScore.
Proteoform groups were finally annotated by annotateTracesWithProteoforms.

To evaluate the sequence proximity of the resulting clusters, the
evaluateProteoformLocation function was applied.
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A script for the mouse tissue data analysis is available on GitHub (https://
github.com/ibludau/Proteoform Ananlysis/blob/main/MouseTissue/
GetMouseTissueProteoforms_paper.R).

ANOVA analysis of the mouse SWATH-MS dataset. For the ANOVA analysis,
we selected proteoforms based on a proteoform score cutoff of 0.1 and adj. p-value
threshold of 0.1. Outlier peptides from the clustering were removed prior to pro-
teoform quantification, which was performed by proteinQuantification (quantLevel =
“proteoform_id”, topN = 1000, keep_less = TRUE). ANOVA analysis for each
protein was performed using the aov function of the R stats library, applying the
following function: log2-intensity ~ tissue * proteoform. Multiple testing across all
proteins was performed using a Bonferroni correction (p.adjust of the R stats library).

Enrichment analyses. All presented enrichment analyses were performed on the
DAVID website®405, Results were filtered for a p-value of 0.01, a minimum count
of 5, and a minimum fold enrichment of 1.2.

Sequence proximity analysis. The sequence proximity analysis evaluates whether
peptides assigned to the same proteoform group are in closer relative sequence
proximity than expected for random peptide grouping. To test this hypothesis, the
peptides of each protein are ranked by their relative peptide position start site (i.e.,
the position of the first AA of the given peptide in the canonical combined protein
sequence). Subsequently, the normalized standard deviation (SD) of the derived
peptide position ranks is calculated by dividing the SD of the observed rank vector
by the SD of a uniform distribution of equal length. To estimate a probability of
whether the observed proximity score is more extreme than expected by chance, we
randomly shuffle the peptide ranks 1000 times for each protein and calculate the
according proximity score for each of the permutations. An empirical p-value for
each proteoform group is subsequently derived by dividing the number of random
permutations with a more extreme proximity score compared to the real obser-
vation by the proximity score of the real observation. For proteins with very few
detected peptides, it is impossible to reach statistical significance by means of a
classical p-value. For these cases, we implemented a second pseudo p-value that
does not necessitate values “smaller or equal” (as for the classical p-value), but that
only considers “smaller” values. This means that at a pseudo p-value of 10%,
maximally 10% of the random permutations score better than the real observation.
This criterion covers extreme cases with few peptides, which might still be taken
into consideration for follow-up investigations. One example for a protein with two
proteoforms that do not reach statistical significance in the sequence proximity
analysis, because only two peptides in the short proteoform are too few, is PSMB7
(Supplementary Fig. 2B). You can appreciate that the true observed proximity score
is as low as statistically possible, therefore still potentially presenting an interesting
candidate, as shown in this example. We report these extreme cases by stating that
the protein scored among the lowest 10% of possible p-values.

Phospho-enrichment analysis. To test our hypothesis that some of the proteoform
groups detected by the cell cycle SEC-SWATH-MS analysis might be muti-phos-
phorylation-derived, we retrieved the cell cycle phospho-proteomic dataset from
Karayel et al.3%. The dataset was downloaded from the original publication Supple-
mentary Table 4 and filtered for ‘Mitosis/Interphase’ == TRUE and an absolute
‘Log2_ratios Mitosis/Interphase’ > 0.5. We used the remaining regulated phosphosites
to test if proteins with multiple proteoforms in our cell cycle SEC-SWATH-MS
dataset are enriched for these sites by performing Fisher’s exact test (fisher.test of the
R stats library). To further test for each proteoform if more peptides than randomly
expected contain a regulated phosphosite (as detected by Karayel et al.3%), Fisher’s
exact tests were performed for each proteoform in context of their protein. Proteins
with a p-value < 0.2 were considered interesting candidates where the proteoform
could be related to multiple cell cycle-dependent phosphorylation events.

Targeted analysis of selected peptides in Skyline. Selected raw data of both the
cell cycle SEC-SWATH-MS and mouse tissue SWATH-MS data were downloaded
from their respective Pride repositories https://www.ebi.ac.uk/pride/archive/
projects/PXD010288 and https://www.ebi.ac.uk/pride/archive/projects/
PXD005044. Targeted extraction of the selected peptides was performed using
Skyline version 4.1. The acquisition method was set to DIA and the isolation
scheme was matched to the original publication of the datasets. Complete y and b
ion series without retention time filtering were extracted for all peptides of interest.
The data were than manually inspected for matching peak groups and the fragment
ions were filtered for co-elution. The quantification was subsequently based on the
total area under the identified peak groups.

Website. Data preprocessing and visualization for the dashboard were performed
using the python programming language. The following libraries were utilized for
data processing: numpy, pandas, scipy, re, and pyteomics®®7. Parameter selection,
tables, and plots were generated using libraries from the HoloViz family of tools
including the following: panel, holoviews, param, bokeh, plotly, and matplotlib.
Information about protein domains was retrieved from UniProt (https://www.
uniprot.org/, accessed 22 June 2020 for human and 12 July 2020 for mouse),

» «

including following categories: “Chain,” “Domain,” “Alternative sequence,” “Pro-

peptide,” “Signal peptide,” and “Transit peptide.”

PeCorA analysis. PeCorA analyses were performed as described in the original
publication?”. The threshold_to_filter in PeCorA_preprocessing was set to the
minimum intensity value. To test the effect of an additional multiple-testing cor-
rection on the already adj. p-values reported by PeCorA, BH adjustment was
performed across all peptides in a dataset (see Supplementary Fig. 1).

A script for the mouse tissue data analysis with PeCorA is available on GitHub
(https://github.com/ibludau/ProteoformAnanlysis/blob/main/MouseTissue/
MousePecoraAnalysis.R).

Dynamic proteoform clustering. Instead of clustering peptides into only two
proteoform groups, COPF also offers the possibility to automatically split peptides
into any number of proteoform groups by utilizing the function cutreeDynamic
from the R package dynamicTreeCut®8. The function is available within COPF as
cutClustersDynamic. By using a minimum number of two peptides per cluster
(min_peptides_per_cluster = 2), single peptide outliers are removed similar to the
COPF internal clustering strategy (cutClustersInN). Although available in CCpro-
filer, this strategy has not been extensively tested across multiple datasets and
results should be carefully explored.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data presented in this study have been published before and are available on
ProteomeXchange (http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository®”. The SEC-SWATH-MS data of HeLa cells in interphase and mitosis were
published by Heusel et al.28 and are available via the identifier PXD010288. The mouse
tissue SWATH-MS data were previously published by Williams et al.2? and are available
via the identifier PXD005044. The data used to generate the in silico benchmark were
previously published by Collins et al.!? and are available via the identifier PXD004886.

Code availability

The CCprofiler workflow including the COPF algorithm is fully implemented and
available on GitHub at https:/github.com/CCprofiler/CCprofiler and via Zenodo3. The
code to perform all analyses presented in this study is also available on GitHub at https://
github.com/ibludau/Proteoform Ananlysis and via Zenodo®.
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