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Abstract

Deep learning has revolutionized image processing and achieved the-state-of-art performance in 

many medical image segmentation tasks. Many deep learning-based methods have been published 

to segment different parts of the body for different medical applications. It is necessary to 

summarize the current state of development for deep learning in the field of medical image 

segmentation. In this paper, we aim to provide a comprehensive review with a focus on multi-

organ image segmentation, which is crucial for radiotherapy where the tumor and organs-at-risk 

need to be contoured for treatment planning. We grouped the surveyed methods into two broad 

categories which are ‘pixel-wise classification’ and ‘end-to-end segmentation’. Each category was 

divided into subgroups according to their network design. For each type, we listed the surveyed 

works, highlighted important contributions and identified specific challenges. Following the 

detailed review, we discussed the achievements, shortcomings and future potentials of each 

category. To enable direct comparison, we listed the performance of the surveyed works that used 

thoracic and head-and-neck benchmark datasets.

1. Introduction

Medical image segmentation is one of the most important medical image analysis tasks. It 

has a wide range of applications in imaging systems such as microscopy, X-ray, ultrasound, 

computed tomography (CT), magnetic resonance imaging (MRI) and positron emission 

tomography (PET). Medical image segmentation plays an essential role in radiotherapy, 

which is the standard care for certain cancers [1]. The success of radiotherapy depends 

highly on accurate irradiation to the target and sparing of organs-at-risk (OARs) [2, 3]. 

Therefore, accurate structure delineation is crucial for radiotherapy, especially for highly 

conformal radiotherapy such as intensity modulated radiotherapy (IMRT), proton therapy 

and stereotactic body radiotherapy (SBRT). These highly conformal treatments are designed 

to shape radiation to target volume while sparing healthy OARs, and are usually planned 
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with sharp dose drop-off. Misdelineation of anatomical structures could result in severe 

misadministration of radiation doses to the target and OAR. In current clinical practice, 

structure contours are manually delineated by physicisans. The manual contouring process is 

tedious, time consuming and laborious. Manual delineation of soft tissues on CT images is 

challenging due to low soft tissue contrast, which makes the contours prone to errors and 

inter/intra-observer variabilities [4–9]. In the past decades, researchers have spent enormous 

effort to develop automatic contouring methods for accurate and consistent organ 

delineation.

Traditional medical image segmentation [10–14] usually involves handcrafted image feature 

detection such as line/edge detection and mathematical models to trace image gradient along 

object boundaries such as graph cuts, active contours, level-set and so on. Atlas-based 

method is another commonly used approach for automatic segmentation [15–18]. The atlas-

based methods propagate the predefined structure contours to the images to be segmented 

using image registration. The segmentation accuracy of this technique highly relies on the 

accuracy of the image registration. Model-based methods which make use of statistical 

shape models for automated segmentation have also been proposed [19–21]. The accuracy of 

those methods depends on the reliability and generalizability of the models. Models that are 

built based on normal anatomical structures have shown limited success on irregular 

structure segmentation.

Recently, machine learning (ML) has gained a lot of interest in medicine [22–24]. Artificial 

Neural Network (ANN), a subfield of ML, utilizes multiple layers of connected neurons 

with learnable weights and biases to simulate human brains to accomplish high-level tasks 

[25–30]. Deep Learning (DL) is a new term for ANN arising from advances in the ANN 

architectures and algorithms since 2006, referring to ANN with many hidden layers. Since 

there is no consensus on the number of layers required to be count as deep, the distinction 

between ANN and DL is not clearly defined [31]. DL has demonstrated enormous potential 

in computer vision [32]. DL uses a data-driven approach to explore vast image features to 

facilitate various vision tasks, such as image classification [33], object detection [34] and 

segmentation [35]. Inspired by the success of DL in computer vision, researchers have 

proposed various methods to extend the use of DL techniques to medical imaging. To date, 

DL has been extensively studied in medical image segmentation [36–72], image synthesis 

[73–96], image enhancement and correction [97–107], and registration [108–122]. DL-based 

multi-organ segmentation technique represents a significant potential in daily practices of 

radiation therapy since it can expedite the contouring process, improve contour accuracy and 

consistency and promote compliance to delineation guidelines [39, 45, 123–127]. 

Furthermore, rapid DL-based multi-organ segmentation could facilitate online adaptive 

radiotherapy to improve clinical outcomes. After studying 80 online MRI-guided adaptive 

radiotherapy cases, Lamb et al. [128] reported the median time of adaptive process prior to 

beam delivery was 54 minutes, out of which the re-contouring process took up to 22 

minutes. To expedite the contouring process for adaptive radiotherapy, DL-based abdominal 

multi-organ segmentation has been proposed and tested on Viewray MR images [129]. 

Though the DL-based contour process took only several minutes, post manual correction 

was often needed to meet the physicians’ satisfaction. The time analysis reported in this 

study shows that the average contouring time, which is the automatic contouring time plus 
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the post manual correction time, was only a quarter of the total time needed to manually 

contour from scratch. CT-based multi-organ segmentation which includes eight organs has 

been proposed for pancreatic radiotherapy [130]. The eight organs include large bowel, 

small bowel, duodenum, left kidney, right kidney, liver spinal cord and stomach. This CT-

based method could be used with on-rail CT to facilitate fast contouring for adaptive 

radiotherapy. Besides the CT-based segmentation, CBCT-based multiorgan segmentation has 

also been proposed for prostate adaptive radiotherapy [131].

DL-based methods [130, 132–136] have achieved the-state-of-art performances in medical 

image segmentation, especially in multi-organ segmentation. In contrast to traditional 

methods that ultilize handcrafted features, DL-based methods adaptively explore 

representative features from medical images [137]. In this paper, we reviewed deep learning-

based methods for medical image segmentation with a focus on multi-organ segmentation. 

We classified the methods into two broad categories which are pixelwise classification and 

end-to-end segmentation. Each category was reviewed in details to study its latest 

developments, contributions and chellenges. We provided benchmark evaluations of recently 

published multi-organ segmentation methods for CT thoracic and Head and Neck (HN) 

segmentations.

2. Deep Learning in Multi-Organ Segmentation

DL-based multi-organ segmentation methods can be categorized by network architecture, 

training process (supervised, semi-supervised, unsupervised, transfer learning), input image 

types (patch-based, whole volume-based, 2D, 3D) and so on. In this paper, we first classify 

them into two broad categories which are pixelwise classification and end-to-end 

segmentation since the two category represent the major steps of development in DL-based 

image segmentation. Based on the network structure design, we further divided the pixelwise 

classification methods in to 1) Auto-Encoder (AE) and 2) Convolutional Neural Network 

(CNN). Similarly, we divided the end-to-end segmentaiton methods into 1) Fully 

Convolutional Network (FCN), 2) Region-based FCN (R-FCN), 3) Generative Adversarial 

Network (GAN) and 4) Synthetic Image-aided Segmentation. For each sub-category, we 

provided a comprehansive list of the surveyed works followed by a short discussion.

Works cited in this review were collected from various databases, including Google Scholar, 

PubMed, Web of Science, Semantic Scholar and so on. Keywords used to search literature 

include but not limited to deep learning, multi-organ, medical image segmentation, 

convolutional neural network and so on. Over 60 papers that are closely related to multi-

organ segmentation were collected. Most of these works were published between the year of 

2017 and 2020. In this paper, we also included some single organ segmentation papers for 

the ease of description since many multi-organ segmentation methods were developed by 

replacing the last layer for multi-class classification. The number of multi-organs 

publications is plotted against year in Fig. 1.

Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95) and mean surface 

distance (MSD) were often used to evaluate the performance of the segmentation methods. 
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The DSC is a measure of the volumetric overlap between the predicted and ground truth 

segmentation.

DSC = 2 × X ∩ Y
X + Y

where X and Y are the predicted and ground truth segmentation, respectively.

The HD95 and MSD measures the surface distances between the predicted and ground truth 

segmentations. The HD95 quantifies the maximum 95 percentile distance while the MSD 

quantifies the mean surface distance.

HD95 = maxk95%[d(X, Y ), d(Y , X)]

MSD = 1
X + Y Σx ϵ X d(x, Y ) + Σy ϵ Y d(y, X)

where d(x,Y) = minyϵY‖x − y‖2. d(X,Y) is the total surface distance between X and Y.

2.1 Pixel-wise Classification

Early DL-based methods performed image segmentation by repeatedly classifying the center 

pixels of sliding image patches that cover the whole image. Two major types of network for 

pixelwise classification are the AE and CNN. Fig. 2 shows the common network 

components for AE and CNN based methods.

2.1.1 Auto-Encoder—AE consists of a neural network encoder that encodes the input 

into a latent representation by minimizing the reconstruction errors between the input and 

the output. The output represents the restored input from the low-dimensional latent 

representation. By constraining the dimension of the latent space, AE can effectively 

compress the input into patterned latent space representation. To prevent the AE from 

learning an identity function, stacked AE (SAE) was proposed. SAE is constructed by 

stacking AEs on top of each other, where the output of each layer is wired to the inputs of its 

successive layers [138]. The benefit of SAE is that it can benefit from deeper network, 

which has higher level of feature representation [138]. Denoising autoencoder (DAEs) is 

another variant of the AE which prevent the model from learning a trivial solution by 

training the network to reconstruct a clean input from the corrupted input [139]. Stacked 

denoising autoencoder (SDAE) is another type of AE that utilizes the power of DAE [140].

Overview of works: Ahmad et al. proposed a deep SAE (DSAE) for CT liver segmentation 

[141]. First, deep features were extracted from unlabeled data using the AE. Second, these 

features are fine-tuned to classify the liver among other abdominal organs. An average DSC 

of 0.9 was achieved on 659 2D liver images. Vaidhya et al. used SDAE to overcome the 

challenge of varying shape and texture of glioma tissue in MRI for this segmentation task 

[140]. 3D image patches were extracted from multiple sequences MRI and then were fed 

into the SDAE model to obtain the glioma segmentation. Two SDAE models were trained, 
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one for high grade glioma (HGG) data, the other one for a combination of HGG and low-

grade glioma (LGG) data. During testing, the segmentation was obtained by a combination 

of predictions from the two networks via maximum a posteriori (MAP) estimation. The 

network has achieved mean DSC of 0.82 ± 0.14 and 0.72 ± 0.21 for whole tumor 

segmentation on the HGG data and LGG data, respectively. Alex et al. applied SDAE for 

brain lesion detection, segmentation, and false-positive reduction [139]. SDAE was 

pretrained using many unlabeled patient volumes and fine-tuned with 2D patches drawn 

from a limited number of patients. LGG segmentation was achieved using a transfer learning 

approach in which the pretrained SDAE network was fine-tuned using the LGG data. The 

method was able to achieve a mean DSC of 0.86 ± 0.12 for brain whole tumor segmentation 

on the BraTS challenge datasets.

Accurate vertebrae segmentation in the spine is essential for spine assessment, surgical 

planning and diagnosis. Qadri et al. proposed a stacked SAE (SSAE) model for the 

segmentation of vertebrae from CT images [142]. High-level features were extracted from 

the 2D image patches using the SSAE model, which was trained in an unsupervised way. To 

improve the network performance, the authors fine-tuned the network using supervised 

training. The SSAE model was validated on the 2014 MICCAI CSI challenge datasets with 

an average DSC of 0.86.

Discussion: SDAE has been shown to be working for the segmentation of brain MRI tumor 

on public BraTS 2013 and BraTS 2015 data [139, 145]. DSAE has been shown to have high 

classification accuracy and speed for liver segmentation on CT images [141]. AE can learn 

medical image deep contextual features from large-range input samples to improve their 

contextual discrimination ability [144]. Validated on the 98 spine CT scans from the public 

MICCAI CSI 2014 dataset, the SSAE method could effectively and automatically locate and 

identify spinal targets in CT scans, and achieve high localization accuracy without making 

any assumptions about visual field in CT scans [142].

Although AE has many advantages, it faces some challenges and limitations in medical 

multi-organ segmentations. One of the limitations is related to data regularity. AE-based 

segmentation methods work quite well for anatomical structures that have small shape 

variability such as lung, heart and liver. However, it remains challenging for the 

unsupervised AE methods to segment irregular lesions and tumors that have large shape 

variability. The number of layers used in AE could be limited due to large computation 

complexity. Unlike CNN which uses convolution kernels with shared learnable parameters, 

AE methods cannot be easily extended to large number of layers which limits its learning 

ability.

2.1.2 Convolutional Neural Networks—A typical CNN consists of convolutional 

layers, activation functions, max pooling layers, batch normalization layers, dropout layers 

and fully connected layers. The last layer of a CNN is typically a sigmoid or softmax layer 

for classification and tanh layer for regression. The convolution layers can learn to extract 

various feature maps depending on the task. Pooling layers are used to reduce the spatial size 

of the feature maps using maximum/average down-sampling operations. Activation 

functions such as Rectified linear unit (ReLU) and Leaky ReLU are used to simulate neuron 
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activation by clipping any negative input values to zero and passing positive input values to 

the connected neurons [146]. Fully connected layer connects every neuron in previous layer 

to every neuron in next layer. They are placed before the final classification layer to flatten 

the feature maps. The final classification layers are used to predict the possibility of the 

center image pixel of belonging to one of the classes.

During the training, gradient based optimization methods such as stochastic gradient descent 

(SGD) and Adam gradient descent are commonly used to update the learnable parameters of 

the CNN architecture through back-propagation. Cross-entropy is one of the most widely 

used loss functions. LeNet was first proposed by Lecun et al. to classify hand-written digits 

[147]. LeNet is composed of convolution layers, pooling layers and fully connected layers. 

As computers get more powerful and more data are available for network training, 

Krizhevsky et al. proposed AlexNet in 2012 and won the ILSVRC-2012 image classification 

competition [148] by a large margin [33]. Since the introduction of AlexNet, CNNs started 

to gain widespread attention, which has led to the development of various types of CNNs 

that achieved the-state-of-art performances in many image processing tasks. The 

improvements of AlexNet over LeNet include 1) ReLU layer for nonlinearity and sparsity, 2) 

data augmentation to enlarge the dataset variety, 3) dropout layer to reduce learnable 

parameters and prevent overfitting, 4) GPU for parallel computing, 5) local response 

normalization and 6) overlapping pooling. In 2014, Zeiler and Fergus proposed ZFNet to 

improve the performance of AlexNet [149] and showed that shallow network can learn edge, 

color and texture features of images and deep network can learn abstract features of images. 

They demonstrated that better performance can be achieved via deeper network. The main 

improvement of ZFNet is deconvolution network used to visualize the feature map. To 

evaluate the network performance with respect to network depths, VGG was proposed to 

extend the network depth to 19 layers by Simonyan and Zisserman [150]. GoogLeNet was 

proposed to introduce the inception module [151]. The inception module allows broader 

perception field and deeper network which improves the network’s ability of feature 

extraction. As a result, GoogLeNet won the ImageNet Large-Scale Visual Recognition 

Challenge 2014 (ILSVRC14). As the network gets deeper, training of the network gets 

harder due to gradient vanishing/exploding. To alleviate the problem, He et al. proposed a 

residual network (ResNet) which allows even deeper network to be trained for image 

recognition [152]. Huang et al. later proposed a densely connected convolutional network 

(DenseNet) by connecting each layer to every other layers [153] in order to combine both 

low-frequency and high-frequency feature maps.

Overview of works: Roth et al. proposed a multi-level deep CNN approach for abdominal 

CT image pancreas segmentation [154]. A dense local image patches and labels were 

obtained by extracting 2D image patches in the axial, coronal and sagittal plane using a 

sliding window. The proposed CNN learns to assign class probabilities to the center voxels 

of the image patches. The proposed CNN architecture consists of five convolutional layers 

followed by max-pooling layers, three fully connected layers, two dropout layers and a soft-

max operator to perform binary classification. Evaluated on 82 patient’s CT images using 4-

fold cross-validation, an average DSC of 0.84 ± 0.06 and 0.72 ± 0.11 was obtained for the 

training and testing, respectively. For volumetric datasets, it is beneficial to explore the 3D 
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images directly rather than 2D images. Therefore, Hamidian et al. proposed to use 3D patch-

based CNN to detect lung pulmonary nodules for chest CT images [155]. Volumes of 

interest image patches were extracted from the 3D lung image database consortium (LIDC) 

dataset [156]. They demonstrated that 3D CNN is more suitable for volumetric CT data than 

2D CNN.

In radiotherapy, it is common to segment multiple organs near the tumor for treatment 

planning. For nasopharyngeal carcinoma (NPC), it is very challenging to automatically 

segment the surrounding adhesion tissues of the parotids, thyroids and optic nerves due to 

low soft tissue contrast of the CT images. To overcome this challenge, Zhong et al. proposed 

a cascaded CNN network to delineate these three organs for NPC radiotherapy using a 

boosting algorithm which includes three cascaded CNNs [157]. The first network was 

trained with the traditional approach. The second one was trained on patterns (pixels) 

filtered by the first network. Finally, the third network was trained on the new patterns 

(pixels) that were jointly extracted by the first and second networks. The outputs of the three 

nets were combined to obtain the final output. 2D patch-based ResNet [152] was used to 

build the cascaded CNNs. CT images of 140 NPC patients treated with radiotherapy were 

collected. Manual contours of the three organs were used as learning targets. The mean DSC 

values were above 0.92 for the parotids, above 0.92 for the thyroids, and above 0.89 for the 

optic nerves. For thoracic radiotherapy treatment, Harten et al. proposed a combination of 

2D and 3D CNNs for automatic segmentation of organs including esophagus, heart, trachea, 

and aorta on simulation CT scans of patients diagnosed with lung, breast or esophageal 

cancer [158]. The 3D patch-based network contains a deep segment of residual blocks [159] 

with sigmoid layer to perform multi-class binary classification. The 2D patch-based (2D 

patch extracted from axial, coronal and sagittal planes) network contains dilated 

convolutions [160] with softmax layer to perform classification. 40 data were used for 

training and 20 data were used for testing.

Discussion: In the study of [158], researchers evaluated the performance of 2D CNN, 3D 

CNN and a combination of the two and demonstrated that the combined network produced 

the best results. The DSC of the esophagus, heart, trachea, and aorta were 0.84±0.05, 

0.94±0.02, 0.91±0.02, and 0.93±0.01, respectively. These results demonstrated potential for 

automating segmentation of OARs in routine radiotherapy treatment planning. A major 

drawback of the pixelwise classification methods is that classification need to be performed 

for every pixel repeatedly. This approach is inefficient since it requires repeated forward 

network prediction on every voxel of the image. To make the segmentation more efficient, 

Kamnissas et al. proposed a dense-inference technique that predicts the segmentation on a 

smaller patch rather than only the center pixel [161]. However, this method is still relatively 

inefficient as compared to end-to-end segmentation that utilized the transposed convolution 

kernel to directly predict a segmentation map that is in the same size as the input image.

2.2 End-to-end Segmentation

2.2.1 FCN methods—For pixelwise classification-based methods, the center voxel of 

the input image is classified by fully connected layers based on the flattened feature maps 

that are passed down through multiple convolutional layers. Shelhamer et al. first proposed a 
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CNN that replaces the fully connected layer by a convolutional layer. Since all layers in the 

network are convolutional layers, the new network is named as fully convolutional network 

(FCN). Thanks to the deconvolution kernels that were used to up-sample the feature maps, 

FCN allows the model to predict a dense segmentation map that has the same size as the 

input image, which was referred to ‘end-to-end segmentation’ [35]. By using FCN, the 

segmentation of whole image can be achieved in just one forward network inference.

U-Net is one of the most well-known FCN structures for medical image segmentation that 

utilizes the concept of deconvolution and skip connection [177]. As a variant of the FCN, the 

U-Net is a 19 layer -deep network that includes an encoding path and a decoding path. To 

preserve the spatial high-resolution information, the U-Net used long skip connections 

between the layers of equal resolution in the encoding path and decoding path. Milletari et 
al. proposed an variant of U-Net, called V-Net [178]. Unlike U-Net, V-Net involves residual 

block as short skip connection between early and later convolutional layers. This 

architecture improves convergence rate as compared to non-residual learning network, such 

as U-Net. To cope with class imbalance problem, V-Net used Dice loss instead of binary 

cross entropy loss.

Deep supervision is commonly used to train the FCN. The main idea of deep supervision 

[43, 46] is to provide supervision over not only the final output layer but also the 

intermediate hidden layers. The direct supervision was extended to multiple deep layers, 

which could enhance the network’s discriminative ability. Attention gate was used in FCN to 

improve performance in image classification and segmentation [179] by highlighting salient 

features and suppressing irrelevant features for a specific task.

Overview of works: Zhou et al. proposed a 2.5D FCN segmentation method to 

automatically segment 19 organs in CT images of whole body [180]. In this work, 2.5D 

image patches, which consists of several consecutive axial slices, were used as multi-channel 

input for the FCN. Individual FCNs were also trained for the coronal and sagittal views, 

resulting in a total of three FCNs. Final segmentation was obtained from the three networks. 

Transrectal ultrasound (TRUS) is commonly used in image-guided prostate cancer 

interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is very 

important for biopsy needle placement, brachytherapy treatment planning, and motion 

management. However, the prostate segmentation of TRUS image is challenging due to low 

image contrast and image noise. Lei et al. proposed a deeply supervised V-Net for accurate 

prostate segmentation [43]. A deep supervision strategy with hybrid loss function (logistic 

and Dice loss) was used at different stages of the decoding path. To improve the 

segmentation accuracy at the prostate apex and base, a multi-directional contour refinement 

model was introduced to fuse transverse, sagittal and coronal plane-based segmentation. 

Tested on 44 patients’ TRUS images, this method has a mean DSC of 0.92±0.03 for the 

prostate segmentation. Wang et al. proposed a 3D FCN with deep supervision and group 

dilated convolution to segment the prostate on MRI [46]. In this method, deep supervision 

mechanism was introduced into FCN to effectively alleviate the common gradient exploding 

and vanishing problems in training deep models. A group dilated convolution which 

aggregated multi-scale contextual information for dense prediction was proposed to enlarge 

the effective receptive field. A combined loss which included cosine and cross entropy was 
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used to improve the segmentation accuracy. Tested on 40 patients’ T2 MR images, this 

method has a mean DSC of 0.86±0.04 for the prostate segmentation.

Glands segmentation is essential in cancer diagnosis. However, accurate automated DL-

based segmentation of glands is challenging due to the large variability in glandular 

morphology across tissues and pathological subtypes. Many accurate gland annotations are 

required for network training. Binder et al. investigated cross-domain (-organ type) 

approximation to reduce the need of organ-specific annotations [181]. Two proposed Dense-

U-Nets are trained on Hematoxylin and Eosin (H&E) strained colon adenocarcinoma 

samples focusing on the gland and stroma segmentation. Unlike U-Net, Dense-U-Nets use 

asymmetric encoder and decoder. The encoder is designed to automatically and adaptively 

learn the spatial hierarchies of features from low to high level patterns coded within the 

image. The decoder uses transition layer (convolution with stride size 2) and dense 

convolution blocks consecutively to extract the encoded feature representation. The dense-

convolution blocks from DenseNet [153] are used to strengthen feature propagation, 

encourage feature reuse and substantially reduce the total number of required parameters in 

the network. The decoder is composed of deconvolution layers and convolution blocks. The 

skip connection between the encoder and the decoder allows for feature reuse. The 

architecture has two decoders, one to predict the relevant gland locations, and a second to 

predicts the gland contours. Thus, the decoders output a gland probability map and a contour 

probability map. The network is supervised to predict both the gland locations and the gland 

contours. The model trained via Gland-approach achieves DSC of 0.92 and 0.78 on the 

colon and breast test datasets, respectively.

Discussion: The FCN usually has a fixed receptive size which struggles to detect the target 

once its size changes. One solution is multi-scale networks, where input images are resized 

first before feeding to the network. Multi-scale techniques can alleviate the problem caused 

by fixed receptive size in the FCN [191]. However, sharing the parameters of the same 

network on a resized image may not be very effective as the object of different scales 

requires different parameters to process. Another solution is to perform multiple predictions 

on a sliding window across the entire image if the reception size is smaller than the image to 

be segmented [155].

Multiscale FCN-based segmentation [43, 46] can achieve good performance at the cost of 

higher computation complexity than the U-Net and V-Net methods. The problem of using 

2.5D patch images as input is that the segmented contours of the axial, coronal and sagittal 

plane may not perfectly align. Though the FCN methods segment the object in an end-to-end 

fashion, each voxel is classified independently. For example, the pixel-wise cascaded CNN 

[157] outperformed U-Net [177] in segmenting three OARs. This could be due to that the U-

Net lacks spatial relationship modeling among the voxels, resulting in unreasonable object 

shapes. Therefore, post-processing such as conditional random field and graph cut are often 

adopted to refine the results [129].

2.2.2 Region-based FCN (R-FCN)—Multi-organ segmentation is more challenging 

than single object segmentation in that multi-class classification is more difficult than binary 

classification. To improve the segmentation accuracy, multi-organ segmentation can be 
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divided into two-steps: 1) to localize the targets of interest and 2) to perform binary 

classification for every target separately. We call this type of methods region-based FCN.

Cascaded FCN is one type of R-FCN that stacks two FCN where the first FCN is used to 

locate the targets of interest and the second FCN is used to perform binary classification for 

each target. The cascaded FCN could help to alleviate the class imbalance problem in 3D 

FCN by the first FCN that locates the target and balances the foreground and background.

Another type of R-FCN takes a different approach to locate the ROIs. Regional proposal 

networks are integrated to the FCN [211]. A selective search [212] method was used to 

extract many candidate regions from image. The locations of the region proposals were 

represented by multi-scale bounding boxes. After training, the region proposal network can 

predict the offsets and scales of the bounding boxes to refine the its locations and sizes to 

better encompass the targets of interest. However, the large number of regional proposals 

makes the network computationally demanding. To expedite the region detection process, 

Fast R-CNN [213] was proposed. The Fast R-CNN used a backbone network to identify the 

regional proposals, which were then processed using ROI pooling layers. Unlike R-CNN, 

the Fast R-CNN does not need to feed many region proposals to the network for each 

feeding image. Instead, the convolution operation is performed only once per image in Fast 

R-CNN. Both R-CNN and Fast R-CNN use selective search to identify the region proposals, 

which can be time-consuming. To make the algorithm faster, Ren et al. proposed Faster R-

CNN [214] to replace the selective search with learnable network proposals. A separate 

network was used to predict the region proposals which were then reshaped using ROI 

pooling layers for bounding box refinement and classification. The Fast and Faster R-CNN 

were proposed for only quick object detection and localization. To perform segmentation on 

the detected bounding box at the same time, He et al. proposed Mask R-CNN which 

integrated two more convolution layers to perform semantic segmentation within the 

bounding box [215]. One major contribution of Mask R-CNN is the introduction of ROI 

align, which makes the target feature maps to have consistent size for better image 

segmentation.

Overview of works: Christ et al. performed liver lesions segmentation using cascaded 

FCNs, where the first FCN detects the liver location, and the second FCN extracts features 

from the detected ROI to obtain the liver lesions segmentation [216]. A Dice of 0.823 was 

achieved for lesion segmentation in CT images and 0.85 in MRI images. Similarly, Wu et al. 
investigated the cascaded FCN to improve the performance for fetal boundary detection in 

ultrasound images [217]. Their results have shown better performance compared to other 

boundary refinement techniques. The cascaded FCN usually outperforms the single FCN 

since separate sets of filters can be learned and applied to each ROI. Trullo et al. proposed 

two collaborate FCNs to jointly segment multi-organ in thoracic CT image, one was used for 

organ localization and the other one was used to segment the organ within that ROI [218]. 

The drawbacks of cascaded FCN are that the performance of the second FCN largely 

depends on the performance of the first FCN to accurately localize the target of interest. Due 

to the two-step process, the cascaded FCN usually takes longer to train and segment.
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Xu et al. proposed an efficient detection method for multi-organ localization in CT image 

using 3D regional proposal network (RPN) [219]. Since the proposed RPN is implemented 

in a 3D manner, it can take advantage of the spatial context information in CT image. 

AlexNet was used to build the backbone network architecture that can generate high-

resolution feature maps to further improve the localization performance of small organs. The 

method was evaluated on abdomen and brain site datasets and achieved high detection 

precision and localization accuracy with fast inference speed. Xu et al. proposed a novel 

heart segmentation framework, called CFUN, which combined Faster R-CNN and U-Net 

[220]. The CFUN can detect and segment the whole heart with good results at reduced 

computational cost. CFUN introduces a new loss function based on edge information named 

3D Edge-loss to accelerate the network training and improve the segmentation results. The 

proposed CFUN takes less than 15 seconds to segment the heart with an average DSC of 

0.86 on the MM-WHS2017 challenge datasets. Similarly, Bouget et al. proposed a 

combination of Mask R-CNN and U-Net for the segmentation and detection of mediastinal 

lymph nodes and anatomical structures in CT data for lung cancer staging [221]. Li et al. 
proposed a lung nodule detection method based on Faster R-CNN for thoracic MRI in a 

transfer learning manner [222]. A false positive (FP) reduction scheme based on anatomical 

characteristics is designed to reduce the FPs and preserve the true nodule. Similarly, Faster 

R-CNN was also used for pulmonary nodule detection on CT image [223].

Discussion: The Region-based FCN methods are useful tools for multi-organ segmentation 

and detection tasks. One drawback of the cascaded FCN is that it is a two-step process 

which may slow down the segmentation. The segmentation accuracy also largely depends on 

the accuracy of the region localization. The introduction of region proposal networks such as 

Faster R-CNN has made progress toward fast bounding box detection and localization. 

However, small and low contrast targets such as nodules and esophagus may be missed by 

the region proposal network, resulting in erroneous segmentation. Due to the higher data 

dimensionality and larger number of weight parameters, training 3D R-FCN based models is 

more time-consuming than the 2D version. However, significant advantages such as higher 

localization and segmentation accuracy still encourage us to handle this problem in 3D. To 

speed up the training procedure of the proposed method, one potential solution is to apply 

batch normalization after each convolutional layer in the backbone network to improve the 

model convergence, and conduct most calculations on GPU in parallel [219].

2.2.3 GAN—GAN has gained a lot of attention in image processing due to its data 

generation capability without explicitly modelling the probability density function. A typical 

GAN consists of two competing networks, a generator and a discriminator [234]. The 

generator is trained to generate artificial data that approximate the target data distribution. 

The discriminator is trained to distinguish the artificial data from the true data. The 

discriminator encourages the generator to predict realistic data by penalizing unrealistic 

predictions. The adversarial loss could be considered as a trainable network-based loss term. 

The two networks compete in a zero-sum game [235]. GAN has been shown to be useful in 

many applications, such as image reconstruction [236], image enhancement [97, 99], 

segmentation [45, 237], classification and detection [238], augmentation [239], and cross-

modality image synthesis [82].
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Overview of works: As discussed above in the FCN-based methods, one challenge in 

medical image segmentation is that these methods may have boundary leakage in low 

contrast regions. Using adversarial loss introduced via a discriminator can take into account 

high order potentials to solve this problem [240]. The adversarial loss can be regarded as a 

learned similarity measurement between the segmented contours and the annotated ground 

truth (manual contours) for medical image segmentation tasks. Instead of only measuring the 

voxel classification loss such as Dice loss and cross entropy loss, the discriminator in GAN 

can map the segmented and ground truth masks to a latent space and measure the global 

similarity. Logistic loss between the latent space features of the segmented and ground truth 

masks can be used to measure the shape similarity. The idea is analogous to the perceptual 

loss that is widely used in natural images processing.

Dai et al. proposed a structure correcting adversarial network (SCAN) to segment the lung 

and the heart in Chest X-Ray (CXR) images [237]. SCAN used an FCN to generate the 

binary mask of the segmented organs and a critic network to judge whether the segmented 

structure is reasonable from a physiological perspective. The critic network was trained to 

discriminate between the ground truth organ annotations from the segmented masks 

generated by the network. The critic network helps to regularize the appearance of the 

segmentation result to achieve realistic segmentation outcomes.

GAN can be used to alleviate the problem of training data shortage. It is common that only 

limited datasets are available for network training since it is very time-consuming and 

laborious to manually generate large datasets especially for multi-organ segmentation. To 

overcome this challenge, Mondal et al. proposed a GAN-based method that is capable of 

learning from a few labeled images. The network was used to perform 3D multimodal brain 

MRI segmentation from a few-shot learning perspective [241]. The proposed adversarial 

network encouraged the segmentation to have a similar distribution of outputs for images 

with and without annotations, thereby improving the generalization ability of the network.

Dong et al. proposed a conditional GAN to train deep neural networks for the segmentation 

of multiple organs on thoracic CT images [45]. The proposed U-Net-generative-adversarial-

network (U-Net-GAN) utilized a set of U-Nets as generators and a fully convolutional 

networks (FCNs) as discriminators. Specifically, the U-Nets were trained to produce image 

segmentation map of multiple organs. The discriminator, structured as FCN, discriminated 

between the ground truth and segmented organs produced by the generator. The generator 

and discriminator competed against each other in an adversarial learning process to improve 

the segmentation results of multiple organs. For multi-organ segmentation, training a 

universal network to segment all targets usually result in reduced segmentation accuracy. 

GAN method in [45] grouped OARs of similar dimensions, and utilized three sub-networks 

for segmentation, one for lungs and heart, and the other two for esophagus and spinal cord, 

respectively. This approach improved segmentation accuracy at the cost of computation 

efficiency. This segmentation technique was applied to delineate the left and right lungs, 

spinal cord, esophagus, and heart using 35 patients’ chest CTs. The averaged DSC for the 

above five OARs are 0.97, 0.97, 0.90, 0.75, and 0.87, respectively.
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Discussion: GAN can improve the segmentation accuracy by training a discriminator to 

generate an adversarial loss. However, GAN based network can be difficult to train since the 

generator and discriminator needs to be trained simultaneously to reach Nash equilibrium. 

Binary classifications of the results as fake or true provide stepped and unsmooth gradient, 

which make it difficult to train the discriminator. To alleviate this problem, Wasserstein 

GAN [258] was proposed to use Earth-Mover distance based metrics to replace the binary 

classification to improve the gradient back propagation during discriminator training. The 

training stage of GAN can be difficult and time-consuming. However, once trained, the 

GAN uses only the generator to perform segmentation. Using adversarial loss as a shape 

regulator can benefit more when the learning target (organ) has a regular distinctive shape, 

e.g., for lung and heart, but can be less useful for small tubular objects, such as vessels and 

catheters.

2.2.4 Synthetic image-aided segmentation—Multi-modal images could be used to 

improve the segmentation accuracy since each imaging modality has its own advantages and 

disadvantages. For example, CT images have high bony structure definition but low soft-

tissue contrast. MR images have high soft-tissue contrast but lower image spatial resolution. 

Therefore, it is beneficial to take multi-modal images for segmentation. However, multi-

modal images are not always available for the images to be segmented. Even if other 

modality images exist, they need to be co-registered at first in order to be content-consistent. 

As an alternative, cross-modality image synthesis has been used to aid the segmentation 

process [131, 133, 259].

Overview of works: Accurate segmentation of the pelvic OARs on CT image for treatment 

planning is challenging due to the poor soft-tissue contrast [85, 260]. MRI has been used to 

aid CT prostate delineation, but it is not as accessible as CT for radiation therapy [261, 262]. 

Lei et al. developed a deep attention-based segmentation strategy to segment CT pelvic 

organs with the help of synthetic MRI (sMRI), which were generated by cycle generative 

adversarial network (CycleGAN) [82] [40]. This method includes two steps: first, a 

CycleGAN was used to estimate sMRI from CT images. Second, a deep attention FCN was 

trained based on the sMRI and manual contours deformed from MRIs. Attention models 

were introduced to focus on prostate boundary. Inspired by this method, Dong et al. 
developed a novel sMRI-aided segmentation method for mail pelvic CT multi-organ [39]. 

The DSC between the segmented bladder, prostate, and rectum manual contours were 

0.95 ± 0.03, 0.87 ± 0.04 and 0.89 ± 0.04 respectively. Similarly, Lei et al. extended this 

method to multi-organ segmentation of cone-beam computed tomography (CBCT) pelvic 

data for potential CBCT-guided adaptive radiation therapy workflow [38]. The DSC between 

the segmented and physicians’ manual contours (bladder, prostate, and rectum) were 0.95 ± 

0.02, 0.86 ± 0.06 and 0.91 ± 0.04, respectively.

Head-and-neck (HN) multi-organ segmentation is very challenging for radiotherapy because 

many vital and small structures exist in the area. CT/CBCT HN images suffer from low soft 

tissue contrast and image artifacts which make is difficult to accurately segment all the 

OARs. FCN methods often result in boundary leakage due to the low soft tissue contrast. To 

alleviate this problem and increase the automatic segmentation accuracy, Liu et al. proposed 

Fu et al. Page 13

Phys Med. Author manuscript; available in PMC 2022 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a synthetic MRI-aided CT image segmentation method using dual pyramid network [133]. A 

CycleGAN image synthesis network was first trained using manually registered MRI-CT 

image pairs. Synthesized MRI was generated based on the original CT images using the 

CycleGAN. The synthetic MRI and CT images were both taken as input images to train a 

dual pyramid network. The authors have achieved superior results as compared to the 2015 

HN challenge results. Similarly, Dai et al. proposed a synthetic MRI-aided CBCT HN 

segmentation method for adaptive radiotherapy [259].

Discussion: Compared to using only the CT/CBCT images, sMRI-aided image 

segmentation has higher segmentation accuracy. This is because the sMRI provides 

complementary information for the network to learn. For prostate, this improves the prostate 

segmentation accuracy and alleviate the issue of prostate volume overestimation when using 

CT images alone. For HN, sMRI improves the boundary definition of the small organ 

structures due to the sMRI’s superior soft tissue contrast. However, the image quality of the 

sMRI largely depends on the quality of the training MRI-CT image pairs, which are usually 

obtained using deformable image registration. Therefore, the performance of this method 

can be affected by the quality of image registration. It is very difficult to perform robust and 

accurate image registration of the abdomen especially when the MRI and CT images were 

acquired at different days.

3. Benchmark

Due to the different datasets used for evaluation, it is difficult for the readers to compare the 

accuracy of the surveyed methods. To facilitate direct comparison, we have summarized the 

performance of many surveyed papers that used the same benchmark datasets. Two 

benchmark datasets surveyed here are from the 2017 AAPM thoracic auto-segmentation 

challenge [263] and 2015 MICCAI Head and Neck Auto-segmentation Challenge [264].

3.1 2017 AAPM Thoracic Auto-segmentation Challenge

The 2017 AAPM Thoracic Auto-segmentation Challenge provided a benchmark dataset to 

evaluate the performance of automatic multi-organ segmentation methods for thoracic CT 

images. The OARs included left and right lungs, heart, esophagus, and spinal cord. Sixty 

thoracic CT scans provided by three institutions were separated into 36 training, 12 offline 

testing, and 12 online testing scans. Clinical contours used for treatment planning were 

quality checked and edited to adhere to the RTOG 1106 contouring guidelines. From the 

report of this challenge, there are 7 participants who completed the online challenge. Five 

out of the 7 participants used DL-based methods. In addition to the participating methods, 

other algorithms that used the datasets were also listed in Table 7.

There are no significant differences in terms of DSC of lung, heart and spinal cord for the 

listed DL-based methods. In comparison, the DSC of esophagus has larger variations due to 

its low soft tissue contrast. The DSC metric could be biased since it tends to favor organs 

with large volume, such as the lung and heart. Similarly, it is important to note whether 

extensive post-processing was performed when interpreting the MSD and HD95 since the 

post-processing could significantly affect the values of surface agreement metrics. With no 

post-processing, the U-Net-GAN method shows better surface agreement with ground truth. 
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This is due to the use of GAN which enforced additional regularization to the shape of the 

segmented organs.

3.2 2015 MICCAI Head and Neck Auto-segmentation Challenge

The 2015 MICCAI Head and Neck Auto-segmentation Challenge [264] provided a 

benchmark dataset to evaluate the performance of automatic multi-organ segmentation 

methods for head & neck CT images. The OARs were brainstem, mandible, chiasm, 

bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands. The 

datasets included 40 images, out of which, 25 images were used as training data, 10 images 

were used for off-site testing, and 5 images were used for on-site testing. The datasets were 

chosen to ensure good image quality, complete OAR coverage and minimal tumor overlap 

with OARs without any age or gender requirements. The report of this challenge [264] did 

not include any DL-based method. We studied recent DL-based multi-organ segmentation 

methods that used this benchmark dataset. The performance of these methods in terms of 

DSC and HD95 were listed in Table 8.

For HN organ segmentation, the synthetic MRI-aided method has near consistent 

improvement over other DL-based methods. This demonstrated the efficacy of synthetic 

MRI in image segmentation. Significant improvement has been achieved for the chiasm 

segmentation using synthetic MRI. However, as Liu et al. pointed out, synthetic MRI may 

not be as effective for some other organs such as the parotid, for which CT has good 

contrast. Therefore, the synthetic MRI-aided method has similar performance for the parotid 

segmentation as other methods. To train a synthetic image generation network, well-aligned 

CT-MRI image pairs are required for training. The unavailability of well-aligned image pairs 

poses additional challenge for synthetic image generation.

4. Other considerations

Data collected directly from clinical databases are usually not ready for network training. It 

is necessary to perform data preprocessing such as image resizing, image cropping, image 

normalization and data augmentation prior to network training. Other pre-processing 

techniques include registration [108], bias/scatter/attenuation correction [270, 271], voxel 

intensity normalization [272] and cropping [52]. Data augmentation is used to increase the 

amount of training samples and reduce network over-fitting. Typical data augmentation 

techniques include image rotation, translation, scaling, flipping, distortion, linear warping, 

elastic deformation, and noise contamination. During training, the ground truth contours are 

obtained by manual delineation by physicians. Depending on the manual contours 

generation, it is likely that the DL-based method is biased toward physicians’ contouring 

style as a system error, and contouring uncertainty as a random error. This limitation is 

expected in all supervised learning-based methods.

Depending on the network design and GPU availability, some methods use the whole image 

volume as input to train the network [216] whereas some methods uses 2D image slices 

[177]. The 2D-based approaches can reduce the memory requirement and computational 

cost; however, it fails to utilize the spatial information in the third dimension. Another way 

to exploit the 3D feature information while avoid computer memory overflow is to use 2D 
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kernels on multidirectional 2D images. Segmentation results from different image planes 

such as axial, coronal and sagittal planes can be combined using a surface-based contour 

refinement method [43]. 3D image patches are also widely used as network input [139, 140] 

to keep 3D spatial information and reduce computational cost.

Post-processing is often applied to refine the DL segmentation results to generate realistic 

structures with smooth boundary. Morphological operations are widely used to remove small 

erroneous labels. Conditional random field is also widely adopted as a post-processing step 

to refine segmentation results [216]. Conditional random field models the pixelwise spatial 

relationships in order to preserve the plausibility of the segmented structures. As GAN-

based methods are increasingly used to penalize implausible structures and preserve the 

spatial integrity of the segmentation results, conditional random field post-processing is 

expected to be used less in the future.

Another challenge in multi-organ segmentation is the class imbalance problem. For example, 

the esophagus and spinal cord are often much smaller than the lung for the segmentation of 

thorax CT organs. Training a network with class imbalanced datasets would bias the result 

towards the classes of large organs. Therefore, the choice of loss functions is crucial for 

these tasks [273]. Johnson et al. published a survey on deep learning with class imbalance 

[274].

5. Conclusion

We provide a comprehensive review of recently published deep learning-based multi-organ 

segmentation methods. There is a clear trend of using fully convolution network to perform 

end-to-end multi-organ segmentation. This is because the end-to-end segmentation takes the 

advantage of the rapid inference of DL network which significantly expedites the 

segmentation process. Region-based FCN methods are also gaining popularity to first 

identify the regions of targets and then performing region-based FCN segmentation for each 

target. However, the region-based FCN has not shown wide adoption because the one-step 

multi-organ segmentation network can also obtain good segmentation results without having 

to localize the target first. The necessity of the first organ localization step in region-based 

FCN is yet to be justified on more datasets. Another recent trend is the introduction of 

synthetic image to provide enhanced tissue contrast and to improve the realism of 

segmentation. However, the image synthesis step in synthetic image-aided segmentation is 

not trivial which prevent it from wide adoption. Apart from the unavailability of well-

aligned paired images for synthesis network training, how much benefit the synthesis images 

can bring to the segmentation task remains to be further investigated. One challenge for 

segmentation is to predict reasonable organ boundaries at regions with poor image contrast 

and few intensity gradients. Additional organ shape constraints are necessary to regularize 

the segmentation results. The GAN-based methods have shown promising results in 

increasing the plausibility and fidelity of the segmented structures by penalizing 

unreasonable segmentation results. Therefore, we expect to see a steady growth of shape 

constrained multi-organ segmentation. To enable direct comparison, we have listed the 

performance of many surveyed studied that used the 2017 AAPM thoracic contouring 

challenge datasets and the 2015 MICCAI head & neck contouring challenge datasets.
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1. Comprehensive review of deep learning-based multi-organ segmentation

2. Categorization of pixel-wise classification and end-to-end segmentation

3. Pixel-wise classification includes AE and CNN

4. End-to-end segmentation includes FCN, R-FCN, GAN and synthetic image-

aided

5. Benchmark of algorithms’ performances for thoracic and head-neck CT 

segmentation
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Fig. 1. 
The number of publications for DL-based multi-organ segmentation (till October 2020).
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Fig. 2. 
The network components of the pixelwise classification methods.
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Fig. 3. 
The network components of the end-to-end segmentation methods.
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Table 1

Overview of AE methods

Ref. Year Network Supervision Dimension Site Modality

[138] 2013 SAE Weakly supervised 3D patch Abdomen 4D DCE-MRI

[140] 2015 SDAE Supervised 3D patch Brain Gliomas MRI

[139] 2017 SDAE Semi-supervised 2D patch Brain lesion MRI

[141] 2017 SAE Transfer learning 2D slice Liver CT

[143] 2018 CSDAE Transfer learning 2D slice Thoracic chest X-rays

[142] 2019 SSAE Unsupervised 2D patch Vertebrae CT

[144] 2019 SSAE Unsupervised 2D patch Vertebrae CT

[132] 2019 Hierarchical 3D AE Supervised N.A. Head & Neck CT
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Table 2

Overview of CNN methods

Ref. Year Network Dimension Site Modality

[124] 2017 Deep deconvolutional neural network (DDNN) 2D slice Brain CT

[161] 2017 3D CNN 3D patch Brain lesion MRI

[154] 2015 Multi-level DCNN 2D patch Pancreas CT

[162] 2016 Holistically Nested CNN 2D patch Pancreas CT

[155] 2017 3D CNN 3D patch Chest CT

[134] 2017 3D DCNN Not specified Abdomen CT

[163] 2017 CNN 3D patch Head & Neck CT

[164] 2017 Fuzzy-C-Means CNN 3D patch Lung nodule CT

[165] 2017 DCNN 2D Slice Body, Chest, Abdomen CT

[166] 2018 Fusion Net 2D patch 100 ROIs HRCT

[167] 2018 DCNN 2D patch Spinal lesion CT

[168] 2018 DCNN 2D slice Malignant pleural mesothelioma CT

[169] 2018 2D and 3D CNN 2D slice, 3D volume Artery / vein CT

[170] 2018 3D ConvNets 3D volume Brain MRI

[171] 2018 CNN with specific fine-tuning 2D slice, 3D volume Brain, abdomen Fetal MRI

[172] 2018 2D and 3D DCNN 2D slice, 3D volume Whole body CT

[173] 2019 Deep fusion Network 2D slice Chest CXR

[174] 2019 DCNN 2D slice Abdomen CT

[175] 2019 2.5D CNN 2.5D patch Thorax CT

[157] 2019 Cascaded CNN 2D slice Head & Neck CT

[158] 2019 2D and 3D CNN 2D slice, 3D volume Thorax CT

[176] 2019 U-Net Neural Network 3D patch Lung CT
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Table 3

Overview of FCN methods

Ref. Year Network Dimension Site Modality

[177] 2015 U-Net 2D slice Neuronal structure Electron microscopic

[182] 2016 3D U-Net 3D volume Kidney Microscopic

[183] 2017 Dilated FCN 2D slice Abdomen CT

[184] 2017 3D FCN Feature Driven Regression 
Forest 3D patch Pancreas CT

[180] 2017 2D FCN 2.5D slices Whole body CT

[185] 2018 Foveal Fully Convolutional Nets N.A.* Whole body CT

[186] 2018 DRINet 2D slice Brain, abdomen CT

[187] 2018 3D U-Net 3D volume Prostate MRI

[135] 2018 Dense V-Net 3D volume Abdomen CT

[188] 2018 NiftyNet 3D volume Abdomen CT

[189] 2018 PU-Net, CU-Net 2D slice Pelvis CT

[126] 2018 Dilated U-Net 2D slice Chest CT

[190] 2018 3D U-JAPA-Net 3D volume Abdomen CT

[125] 2018 U-Net 2D slice Pelvis CT

[191] 2018 Multi-scale Pyramid of 3D FCN 3D patch Abdomen CT

[123] 2018 Shape representation model 
constrained FCN 3D volume Head & Neck CT

[192] 2018 Hierarchical Dilated Neural Networks 2D slice Pelvis CT

[129] 2018 Dense 3D FCN 3D volume Abdomen MRI

[193] 2018 3D FCN 3D patch Head & Neck CT

[194] 2019 Dilated FCN 2D slice Lung CT

[181] 2019 Dense-U-Net 2D slice Head & Neck Stained colon 
adenocarcinoma dataset

[195] 2019 2D and 3D FCNs 2D slice and 3D volume Pulmonary nodule CT

[136] 2019 Dedicated 3D FCN 3D patch Thorax/abdomen DECT

[127] 2019 2D FCN (DeepLabV3+) 2D slice Pelvis MRI

[196] 2019 2D FCN 2D patch Pulmonary vessels CT

[197] 2019 Dual U-Net 2D slice Glioma Nuclei
Hematoxylin and eosin 

(H&E)-stained 
histopathological image

[198] 2019 Consecutive deep encoder-decoder 
Network 2D slice Skin lesion CT

[199] 2019 U-Net 2D slice Lung HRCT

[200] 2019 3D U-Net 3D volume Chest CT

[42] 2019 3D U-Net with Multi-atlas 3D volume Brain tumor Dual-energy CT

[201] 2019 Triple-Branch FCN Not specified Abdomen/torso CT

[43] 2019 2.5D Deeply supervised V-Net 2.5 patch Prostate Ultrasound

[46] 2019 Group dilated deeply supervised FCN 3D volume Prostate MRI

[44] 2019 3D FCN 3D volume Arteriovenous 
malformations Contract-enhanced CT

[53] 2019 3D FCN 3D volume Left ventricle SPECT
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Ref. Year Network Dimension Site Modality

[54] 2019 DeepMAD 2.5D patch Vessel wall MRI

[202] 2019 3D U-Net 3D volume Head & Neck CT

[203] 2019 OBELISK-Net 3D volume Abdomen CT

[204] 2019 OAN-RC 2D slice Abdomen CT

[205] 2019 Multi-stage 3D FCN 3D volume Head & Neck CT

[206] 2019 2D/3D FCN 3D patch Abdomen CT

[207] 2020 U-Net 3D patch Abdomen CT

[208] 2020 2.5D U-Net 2.5D patch Body CT

[130] 2020 3D Attention U-Net 3D patch Pancreas/Abdomen CT

[209] 2020 3D U-Net 3D patch Thoracic/Abdomen CT

[210] 2020 3D U-Net 3D volume Head & Neck CT
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Table 4

Overview of Region-based FCN methods

Ref. Year Network Dimension Site Modality

[216] 2016 Cascaded FCN 3D volume Liver and lesion CT

[224] 2017 3D Cascaded U-Net 3D volume Abdomen DECT

[225] 2018 Cascade 3D FCN 3D patch Abdomen CT

[226] 2018 Mask R-CNN 2D slice Lung nodule CT

[227] 2019 3D FCN 3D patch Pelvic organs CT

[220] 2018 Combination of Faster R-CNN and U-Net (CFUN) 3D volume Cardiac CT

[221] 2019 Combination of U-Net and Mask R-CNN 2D slice Chest CT

[223] 2019 Faster R-CNN 2D slice Thorax/pulmonary nodule CT

[228] 2019 3D Mask R-CNN 3D volume Lung nodule CT

[222] 2019 3D Faster R-CNN 3D volume Thorax/ lung nodule MRI

[229] 2019 Mask R-CNN N.A.* Chest X-Ray

[219] 2019 3D RPN 3D volume Whole body CT

[230] 2019 Multiscale Mask R-CNN 2D slice Lung tumor PET

[231] 2019 2.5D U-Net 3D patch Pelvic organs CT

[232] 2020 3D Dense V-Net 3D volume Thorax/Abdomen CT

[233] 2020 2.5D CNN 2.5D Head & Neck CT

*
N.A.: not available, i.e. not explicitly indicated in the publication
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Table 5

Overview of GAN methods

Ref. Year Network Dimension Site Modality

[237] 2015 SCAN 2D slice Chest X-rays

[242] 2017 Multi-connected adversarial networks 2D slice Brain Multi-modality MRI

[243] 2017 Dilated GAN 2D slice Brain MRI

[244] 2017 Conditional GAN 2D slice Brain tumor MRI

[245] 2017 GAN 2D patch Retinal Vessel Fundoscopic

[240] 2017 Adversarial Image-to-Image Network 3D volume Liver CT

[246] 2017 Adversarial FCN-CRF Nets 2D slice Mass Mammograms

[247] 2018 GAN Not specified Brain tumor MRI

[241] 2018 Few-shot GAN 3D patch Brain MRI

[248] 2018 Context-aware GAN 2D cropped slices Cardiac MRI

[249] 2018 Conditional Generative Refinement Adversarial 
Networks 2D slice Brain MRI

[250] 2018 SegAN 2D slice Brain MRI

[251] 2018 MDAL 2D slice Left and Right-Ventricular Cardiac MRI

[252] 2018 TD-GAN 2D slice Whole body X-ray

[45] 2019 U-Net-GAN 3D volume Thorax CT

[253] 2019 Conditional GAN 2D slice Nuclei Histopathology Images

[254] 2019 Distance-aware GAN 2D slice Chest CT

[255] 2019 Shape Constraint GAN 3D volume Head & Neck CT/MRI

[256] 2019 Shape Constraint GAN 3D volume Abdomen CT

[257] 2020 CycleGAN 2D slice Pelvic organs MRI
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Table 6

Overview of synthetic image-aided image segmentation

Ref. Year Network Dimension Site Modality

[39, 40] 2019 Synthetic MRI-aided 2.5D patch Pelvic CT

[38, 131] 2019 Synthetic MRI-aided 3D volume Pelvic CBCT

[133, 259] 2020 Synthetic MRI-aided 3D volume Head-and-Neck CT/CBCT
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Table 7

DL-based methods using the 2017 AAPM Thoracic Auto-segmentation Challenge datasets.

Metric Method Esophagus Heart Left Lung Right Lung Spinal Cord

DSC

DCNN Team Elekta* 0.72±0.10 0.93±0.02 0.97±0.02 0.97±0.02 0.88±0.037

3D U-Net [265] 0.72±0.10 0.93±0.02 0.97±0.02 0.97±0.02 0.89±0.04

Multi-class CNN Team Mirada* 0.71±0.12 0.91±0.02 0.98±0.02 0.97±0.02 0.87±0.110

2D ResNet Team Beaumont* 0.61±0.11 0.92±0.02 0.96±0.03 0.95±0.05 0.85±0.035

3D and 2D U-Net Team WUSTL* 0.55±0.20 0.85±0.04 0.95±0.03 0.96±0.02 0.83±0.080

U-Net-GAN [45] 0.75±0.08 0.87±0.05 0.97±0.01 0.97±0.01 0.90±0.04

MSD (mm)

DCNN Team Elekta* 2.23±2.82 2.05±0.62 0.74±0.31 1.08±0.54 0.73±0.21

3D U-Net [265] 2.34±2.38 2.30±0.49 0.59±0.29 0.93±0.57 0.66±0.25

Multi-class CNN Team Mirada* 2.08±1.94 2.98±0.93 0.62±0.35 0.91±0.52 0.76±0.60

2D ResNet Team Beaumont* 2.48±1.15 2.61±0.69 2.90±6.94 2.70±4.84 1.03±0.84

3D and 2D U-Net Team WUSTL* 13.10±10.39 4.55±1.59 1.22±0.61 1.13±0.49 2.10±2.49

U-Net-GAN [45] 1.05±0.66 1.49±0.85 0.61±0.73 0.65±0.53 0.38±0.27

HD95 (mm)

DCNN Team Elekta* 7.3+10.31 5.8±1.98 2.9±1.32 4.7±2.50 2.0±0.37

3D U-Net [265] 8.71+10.59 6.57±1.50 2.10±0.94 3.96±2.85 1.89±0.63

Multi-class CNN Team Mirada* 7.8±8.17 9.0±4.29 2.3±1.30 3.7±2.08 2.0±1.15

2D ResNet Team Beaumont* 8.0±3.80 8.8±5.31 7.8±19.13 14.5±34.4 2.3±0.50

3D and 2D U-Net Team WUSTL* 37.0±26.88 13.8±5.49 4.4±3.41 4.1±2.11 8.10±10.72

U-Net-GAN [45] 4.52±3.81 4.58±3.67 2.07±1.93 2.50±3.34 1.19±0.46

*
Note: Participating methods of the AAPM thorax challenge [263].
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Table 8

DL-based methods using the 2015 MICCAI Head and Neck Auto-segmentation Challenge datasets.

Metric Organs
Shape model 
constrained 
FCN [264]

Two-
stage U-
Net [266]

AnatomyNet 
[267]

DL-
based 
[268]

Synthetic 
MRI-aided 

[133]

3D U-
Net 

[182]

3D-
CNN 
[269]

DSC

Brain Stem 0.87 ± 0.03 0.88 ± 
0.02 0.87 ± 0.02 0.87 ± 

0.03 0.91 ± 0.02 0.80 ± 
0.08 N.A.

Chiasm 0.58 ± 0.1 0.45 ± 
0.17 0.53 ± 0.15 0.62 ± 

0.1 0.73 ± 0.11 N.A. 0.58 ± 
0.17

Mandible 0.87 ± 0.03 0.93 ± 
0.02 0.93 ± 0.02 0.95 ± 

0.01 0.96 ± 0.01 0.94 ± 
0.02 N.A.

Left Optic Nerve 0.65 ± 0.05 0.74 ± 
0.15 0.72 ± 0.06 0.75 ± 

0.07 0.78 ± 0.09 0.72 ± 
0.06

0.72 ± 
0.08

Right Optic Nerve 0.69 ± 0.5 0.74 ± 
0.09 0.71 ± 0.1 0.72 ± 

0.06 0.78 ± 0.11 0.70 ± 
0.07

0.70 ± 
0.09

Left Parotid 0.84 ± 0.02 0.86 ± 
0.02 0.88 ± 0.02 0.89 ± 

0.02 0.88 ± 0.04 0.87 ± 
0.03 N.A.

Right Parotid 0.83 ± 0.02 0.85 ± 
0.07 0.87 ± 0.04 0.88 ± 

0.05 0.88 ± 0.06 0.85 ± 
0.07 N.A.

Left 
Submandibular 0.76 ± 0.06 0.76 ± 

0.15 0.81 ± 0.04 0.82 ± 
0.05 0.86 ± 0.08 0.76 ± 

0.09 N.A.

Right 
Submandibular 0.81 ± 0.06 0.73 ± 

0.01 0.81 ± 0.04 0.82 ± 
0.05 0.85 ± 0.10 0.78 ± 

0.07 N.A.

HD95 
(mm)

Brain Stem 4.01 ± 0.93 2.01 ± 
0.33 N.A. N.A. N.A. N.A. N.A.

Chiasm 2.17 ± 1.04 2.83 ± 
1.42 N.A. N.A. N.A. N.A. 2.81 ± 

1.56

Mandible 1.50 ± 0.32 1.26 ± 
0.50 N.A. N.A. N.A. N.A. N.A.

Left Optic Nerve 2.52 ± 1.04 2.53 ± 
2.34 N.A. N.A. N.A. N.A. 2.33 ± 

0.84

Right Optic Nerve 2.90 ± 1.88 2.13 ± 
2.45 N.A. N.A. N.A. N.A. 2.13 ± 

0.96

Left Parotid 3.97 ± 2.15 2.41 ± 
0.54 N.A. N.A. N.A. N.A. N.A.

Right Parotid 4.20 ± 1.27 2.93 ± 
1.48 N.A. N.A. N.A. N.A. N.A.

Left 
Submandibular 5.59 ± 3.93 2.86 ± 

1.60 N.A. N.A. N.A. N.A. N.A.

Right 
Submandibular 4.84 ± 1.67 3.44 ± 

1.55 N.A. N.A. N.A. N.A. N.A.
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